α - Instytut Elektrotechniki i Elektroniki Przemysłowej

Komentarze

Transkrypt

α - Instytut Elektrotechniki i Elektroniki Przemysłowej
This series presents continuation of Zeszyty Naukowe Politechniki Poznańskiej Elektryka
Editorial Board
prof. dr hab. inż. RYSZARD NAWROWSKI (Chairman), dr hab. inż. JÓZEF LORENC, prof. nadzw.,
dr hab. inż. KONRAD SKOWRONEK, prof. nadzw., dr hab. inż. ANDRZEJ KASIŃSKI, prof. nadzw.
Scientific Secretaries of the Conference ZKwE
dr inż. ANDRZEJ TOMCZEWSKI (Scientific Secretary of the Conference)
mgr DOROTA WARCHALEWSKA-HAUSER (Organising Secretary of the Conference)
Reviewers
KAROL BEDNAREK, PIOTR CZARNYWOJTEK, PAWEŁ IDZIAK, JAROSŁAW JAJCZYK,
CEZARY JĘDRYCZKA, LESZEK KASPRZYK, WOJCIECH LIPIŃSKI, RYSZARD NAWROWSKI,
LECH NOWAK, PRZEMYSŁAW OTOMAŃSKI, WOJCIECH PIETROWSKI, RYSZARD PORADA,
ANDRZEJ RYBARCZYK, ZBIGNIEW STEIN, WOJCIECH SZELĄG, GRZEGORZ WICZYŃSKI,
RAFAŁ WOJCIECHOWSKI
Cover design
PIOTR GOŁĘBNIAK
Edition based on ready-to-print materials submitted by authors
ISSN 1897-0737
Edition I
© Copyright by POZNAN UNIVERSITY OF TECHNOLOGY, Poznan, Poland, 2013
PUBLISHING HOUSE OF POZNAN UNIVERSITY OF TECHNOLOGY
60-965 Poznań, pl. M. Skłodowskiej-Curie 2
tel. +48 (61) 6653516, fax +48 (61) 6653583
e-mail: [email protected], www.ed.put.poznan.pl
Sale of the publication:
Poznańska Księgarnia Akademicka
61-138 Poznań, ul. Piotrowo 3
tel. +48 (61) 6652324; fax +48 (61) 6652326
e-mail: [email protected], www.politechnik.poznan.pl
Press: Binding and duplication in Perfekt Druk
60-321 Poznań, ul. Świerzawska 1
tel. +48 61 8611181-83
CONTENTS
Preface ...............................................................................................................
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
7
Łukasz KNYPIŃSKI, Lech NOWAK
Optymalizacja magnetoelektrycznego silnika synchronicznego
o magnesach złożonych z materiałów o różnych właściwościach
magnetycznych ........................................................................................
9
Marcin ANTCZAK, Dariusz KAPELSKI, Jerzy SIWIEC,
Wojciech SZELĄG
Analiza obwodu elektromagnetycznego silnika o biegunach wpisywanych ...
17
Zbynek MAKKI, Marcel JANDA, Ramia DEEB
Comparison of methods for solving the heat transfer in electrical
machines ..................................................................................................
25
Wiktor HUDY, Kazimierz JARACZ
Badanie wpływu parametrów mutacji postępowej w ewolucyjnej metodzie
identyfikacji parametrów modelu matematycznego silnika indukcyjnego ......
33
Krzysztof SIEMBAB
Model silnika PMSM do badań symulacyjnych sterowania
tolerującego uszkodzenia .........................................................................
41
Marcin KOWOL, Piotr MYNAREK, Janusz KOŁODZIEJ
Zastosowanie środowiska LabVIEW w badaniach silników z magnesami
trwałymi ...........................................................................................................
49
Piotr MYNAREK, Marcin KOWOL, Marian ŁUKANISZYN
Zastosowanie metody elementów skończonych do wyznaczania
parametrów elektromagnetycznych silnika PMSM .................................
57
Bogdan FABIAŃSKI
Napęd z silnikiem reluktancyjnym przełączalnym z materiałów
proszkowych – porównanie parametrów pracy z konstrukcją
konwencjonalną .......................................................................................
63
Piotr SOBAŃSKI, Teresa ORŁOWSKA-KOWALSKA
Analiza symptomów uszkodzeń łączników tranzystorowych falownika
napięcia w napędzie indukcyjnym ...........................................................
71
Łukasz NIEWIARA, Krzysztof ZAWIRSKI
Auto-strojenie regulatora typu PID z wykorzystaniem logiki rozmytej
79
Piotr DERUGO, Mateusz DYBKOWSKI, Krzysztof SZABAT
Analiza
adaptacyjnego
neuronowo
rozmytego
regulatora
z wykorzystaniem konkurencyjnych warstw typu Petriego w sterowaniu
silnikiem prądu stałego ........................................................................................
85
4
12.
Contents
Wiesław ŁYSKAWIŃSKI, Łukasz KNYPIŃSKI, Lech NOWAK
Obwodowo-polowa optymalizacja transformatora impulsowego ............
93
13.
Jacek HORISZNY
Analiza wpływu niejednoczesności zamykania biegunów łącznika na
prądy załączeniowe transformatora w stanie jałowym ............................ 101
14.
Ryszard NAWROWSKI, Zbigniew STEIN, Maria ZIELIŃSKA
Obliczanie wpływu niesymetrycznych obciążeń transformatorów SN/NN
na współczynniki niesymetrii napięć w sieci niskiego napięcia ....................... 109
15.
Eugeniusz KORNATOWSKI
Wibroakustyczna diagnostyka transformatorów w stanie nieustalonym ...... 119
16.
Tomasz PAJCHROWSKI
Adaptacyjne sterowanie silnikiem synchronicznym o magnesach
trwałych .................................................................................................... 127
17.
Tomasz PAJCHROWSKI
Energooszczędny napęd z silnikiem synchronicznym o magnesach
trwałych z łagodnym startem ................................................................... 135
18.
Sławomir JUDEK, Leszek JARZĘBOWICZ
Stanowisko do skanowania 3D nakładek odbieraków prądu
lokomotyw ............................................................................................... 141
19.
Leszek JARZĘBOWICZ, Sławomir JUDEK
Analiza obrazu 3D do oceny stanu zużycia nakładek ślizgowych ........... 149
20.
Krzysztof DRÓŻDŻ, Krzysztof SZABAT
Rozmyty regulator prędkości typu TSK układu napędowego
z silnikiem synchronicznym o magnesach trwałych ................................ 157
21.
Krzysztof SIEMBAB
Fault tolerant control of a PMSM drive in the selected emergency
conditions ................................................................................................. 165
22.
Norbert ADAMKIEWICZ, Dariusz ZMARZŁY
Charakterystyczne parametry pracy pomp w miejskich systemach
kanalizacji bytowo-gospodarczej ............................................................. 173
23.
Leszek KASPRZYK
Analiza zużycia energii podczas jazdy pojazdem samochodowym ......... 181
24.
Sławomir PLUTA, Łukasz WARGIN
Zastosowanie interfejsu Coogle Maps API dla potrzeb realizacji systemu
lokalizacji i rejestracji terminali mobilnych ................................................... 191
Contents
5
25.
Michał FILIPIAK, Jarosław JAJCZYK
Badanie systemu ESP w warunkach drogowych ..................................... 199
26.
Jarosław JAJCZYK, Michał FILIPIAK
Diagnostyka systemu elektronicznej stabilizacji toru jazdy .................... 207
27.
Tomasz WAWRZYNIAK
Badanie poboru energii w układzie zapłonowym stosowanym w
jednostkach bezzałogowych ........................................................................... 215
28.
Marcin JUKIEWICZ
Koncepcja sterowania małym pojazdem za pomocą interfejsu mózg–
komputer .................................................................................................. 223
29.
Łukasz PUTZ, Tomasz JARMUDA
Badania samochodu z silnikiem JTS – systemem elektronicznego
sterowania bezpośrednim wtryskiem benzyny ......................................... 231
30.
Stanisław MIKULSKI
Metody triangulacji laserowej w skanerach trójwymiarowych ................ 239
Authors index .................................................................................................. 247
PREFACE
The publication includes contents of selected lectures delivered during the
debates of the Conference on Computer Application in Electrical Engineering that
was held in Poznan on April 15-16, 2013.
The Institute of Electrical Engineering and Electronics of the Poznan University
of Technology organized the Conference on Computer Application in Electrical
Engineering for the 18th time. The first Conference was held in 1996 and, since that
time, has been held every year. Total number of 3178 lectures have been published
from 1996 to 2013. During the past eighteenth years about 3250 persons
participated to the Conferences, inclusive of the workers of universities, research
centres, and industry, also from Czech, Germany, Romania and Ukraine.
The Conference is aimed at presenting the applications of existing computer
software and original programs in the field of modelling, simulation,
measurements, graphics, databases, and computer-aided scientific and engineering
works related to electrical engineering.
The following thematic groups are foreseen:
1. ELECTRICAL ENGINEERING
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.
m.
Electromagnetic field, electromagnetic compatibility
Theory of circuits and signals
Bioelectromagnetism
Power engineering, renewable energy
Electronics and power electronics
Electrical engineering of vehicles
Electrical heating
Electrical machines, electrical drive
Materials technology
Mechatronics
Electrical and electronic metrology
Microprocessor technology and control systems
Lighting technology
2. DIDACTICS, EDUCATION AND SCIENTIFIC INFORMATION
Chairman of the Organising Committee ZKwE'2013
Prof. Ryszard Nawrowski, DSc
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Łukasz KNYPIŃSKI*
Lech NOWAK*
OPTYMALIZACJA MAGNETOELEKTRYCZNEGO SILNIKA
SYNCHRONICZNEGO O MAGNESACH ZŁOŻONYCH
Z MATERIAŁÓW O RÓŻNYCH WŁAŚCIWOŚCIACH
MAGNETYCZNYCH
W
artykule
przedstawiono
wyniki
optymalizacji
struktury
wirnika
magnetoelektrycznego silnika synchronicznego wzbudzanego układem magnesów
wykonanych z dwóch materiałów o różnych właściwościach magnetycznych. Obliczenia
symulacyjne przeprowadzono w opracowanym oprogramowaniu z uwzględnieniem
polowego modelu zjawisk elektromagnetycznych. Oprogramowanie składa się z dwóch
modułów: modułu MES do polowej symulacji zjawisk występujących w silnikach PMSM
oraz modułu optymalizacyjnego. Optymalizację parametrów silnika przeprowadzono przy
użyciu algorytmu genetycznego. Przedstawiono i omówiono wybrane wyniki obliczeń
symulacyjnych i optymalizacyjnych.
1. WPROWADZENIE
W wyniku ciągłego rozwoju inżynierii materiałowej powstają magnesy trwałe
o dużych gęstościach energii, lepszych parametrach magnetycznych,
mechanicznych i termicznych. Współcześnie producenci i użytkownicy maszyn
elektrycznych coraz częściej zwracają uwagę na energooszczędność urządzeń. Z
powyższych powodów obserwowany jest wzrost zainteresowania oraz rozwój
konstrukcji silników magnetoelektrycznych, to jest silników wzbudzanych
magnesami trwałymi. Silniki te posiadają wiele zalet: wysoki stosunek momentu
do masy, wyższą sprawność, niższe koszty eksploatacji, większą dynamikę
działania oraz niską awaryjność [1, 6, 8]. Możemy wyodrębnić dwa zasadnicze
rodzaje silników magnetoelektrycznych. Tak więc w zależności od kształtu
przebiegu siły elektromotorycznej indukowanej w uzwojeniach stojana: silniki z
sinusoidalnym przebiegiem siły elektromotorycznej rotacji (silniki synchroniczne
– PMSM) oraz silniki z trapezoidalnym przebiegiem siły elektromotorycznej
rotacji (silniki bezszczotkowe prądu stałego – BLDC). Różnorodność parametrów
magnesów trwałych oraz szerokie spektrum zastosowań praktycznych tego typu
maszyn, wpływa na zróżnicowanie konstrukcji maszyn synchronicznych
__________________________________________
* Politechnika Poznańska.
10
Łukasz Knypiński, Lech Nowak
wzbudzanych magnesami trwałymi [2]. W strukturach tych magnesy najczęściej
są naklejane na zewnętrzną powierzchnie wirnika lub umieszczone wewnątrz
pakietu wirnika (wsuwane). Wymiary, kształt oraz rozmieszczenie magnesów
trwałych pozwala na osiągnięcie pożądanego przez konstruktora rozkładu pola w
szczelinie powietrznej.
Rozwój technologii proszkowej umożliwia: swobodne kształtowanie geometrii
elementów oraz zmiany właściwości magnetycznych w zależności od
zastosowanych domieszek. W artykule przedstawione zostaną wyniki obliczeń
optymalizacyjnych magnetoelektrycznego silnika synchronicznego, posiadającego
magnesy złożone z materiałów o różnych właściwościach magnetycznych: a)
spiekanego materiału NeFeB, b) proszkowego diaelektromagnesu opracowanego
przez Instytut Tele- i Radiotechniczny [11]. Pełne wykorzystanie zalet i
właściwości takich silników wymaga poznania zjawisk, opracowania nowych,
dokładnych modeli matematycznych oraz algorytmów ich projektowania i
optymalizacji [7, 10].
2. STRUKTURA SILNIKA
Strukturę silnika przedstawiono na rys. 1. Podstawowe
charakteryzujące obwód magnetyczny stojana zestawiono w tabeli 1.
parametry
Rys. 1. Struktura silnika synchronicznego wzbudzanego układem magnesów
Tabela 1. Podstawowe wymiary i parametry silnika
Liczba
par
biegunów
[-]
2
Zewnętrzna
średnica
stojana
[mm]
154
Wewnętrzna
średnica
stojana
[mm]
94
Długość
pakietu
stojana
[mm]
125
Długość
szczeliny
powietrznej
[mm]
0,9
Liczba
żłobków
[-]
36
Liczba
zwojów w
żłobku
[-]
39
Optymalizacja magnetoelektrycznego silnika synchronicznego …
11
Rdzeń wirnika wykonano z magnetycznie miękkiego materiału proszkowego
Somaloy 500 [9], na powierzchni którego naklejono magnes trwały, składający się
z dwóch materiałów o różnych właściwościach magnetycznych ( M 1 , M 2 ). Obszar
M 1 magnesu jest wykonany z materiału NdFeB o właściwościach: H C  890 kA/m
oraz Br  1,23 T, natomiast obszar M 2 – z diaelektromagnesu proszkowego o
właściwościach: H C  404,97 kA/m oraz Br  0,646 T.
Przeprowadzono optymalizację parametrów struktury wirnika z uwzględnieniem
polowego modelu zjawisk elektromagnetycznych przy użyciu algorytmu
genetycznego. Obiekt opisano za pomocą czterech zmiennych decyzyjnych: z1  g m1
– grubość obszaru magnesu neodymowego, z 2   – parametr określający
względną
grubość
obszaru
magnesu
proszkowego
g m 2    g m1 ,
z3    (bm1  bm 2 )  – współczynnik zapełnienia podziałki biegunowej
materiałem magnetycznym, z 4  1  bm1 (bm1  bm 2 ) – względna rozpiętość
kątowa obszaru M 1 , przy czym bm1 – rozpiętość kątowa magnesu neodymowego,
bm 2 – rozpiętość kątowa magnesu proszkowego,  – podziałka biegunowa.
3. STRUKTURA OPROGRAMOWANIA
Oprogramowanie do optymalizacji struktury magnetoelektrycznego silnika o
magnesach złożonych z materiałów o różnych właściwościach magnetycznych
składa się z dwóch modułów: programu optymalizacyjnego oraz modułu do
polowej symulacji stanów pracy silnika. Schemat blokowy programu
przedstawiono na rys. 2.
Oba moduły tworzące program zostały połączone przez procedury:
transformacji zmiennych decyzyjnych oraz obliczania funkcji celu. W module
optymalizacyjnym do obliczeń wykorzystany jest wektor unormowany s [5],
natomiast model polowy silnika opracowany w programie Maxwell wykorzystuję
wektor zmiennych rzeczywistych z . Do optymalizacji wykorzystano algorytm
genetyczny. W pojedynczym pokoleniu wykonywane są wszystkie operacje
algorytmu genetycznego: reprodukcja (selekcja), krzyżowanie oraz mutacja. W
modelu do symulacji stanów pracy silnika PMSM z uwzględnieniem polowego
modelu zjawisk elektromagnetycznych wyznaczane są: średnia wartość momentu
elektromagnetycznego T , zawartość wyższych harmonicznych w przebiegu siły
elektromotorycznej indukowanej w uzwojeniu stojana THD , objętość materiałów
magnetycznych Vm oraz maksymalną wartość momentu zaczepowego Tc .
12
Łukasz Knypiński, Lech Nowak
Rys. 2. Schemat blokowy dwumodułowego oprogramowania do optymalizacji silników PMSM
4. WYNIKI OPTYMALIZACJI
Bardzo ważnym zagadnieniem podczas formułowania zadania optymalizacji jest
właściwy dobór parametrów stanowiących kryterium optymalności oraz
ograniczenia. W artykule [3] wykazano, że włączenie do kompromisowej funkcji
celu jednocześnie składnika unimodalnego (użyteczny moment elektromagnetyczny)
oraz składnika multimodalnego (moment zaczepowy) prowadzi do nieefektywnego
działania algorytmu. Na podstawie zdobytych doświadczeń dotyczących zagadnienia
optymalizacji maszyn magnetoelektrycznych przystosowanych do rozruchu
częstotliwościowego wykorzystano koncepcję dwuetapowej optymalizacji [4].
Etap I. Optymalizacja z uwzględnieniem współczynnika THD zawartości
harmonicznych w przebiegu siły elektromotorycznej
W etapie pierwszym, w kryterium optymalności, obok momentu użytecznego i
stopnia wykorzystania materiału magnetycznie twardego, uwzględniono
współczynnik THD przebiegu indukowanej siły elektromotorycznej. Po wielu
Optymalizacja magnetoelektrycznego silnika synchronicznego …
13
obliczeniach testowych zaproponowano kompromisową addytywną funkcję celu
dla i-tego osobnika w postaci:
THD i 

T 
 V 
   3  2  m i 
(1)
f i  1  i    2  2 

THD av 
Vav 
 Tav 


przy czym: 1 ,  2 ,  3 – współczynniki wagowe, Tav , THD av , Vav – średnie
wartości parametrów T , THD oraz Vm uzyskanych w procesie inicjacji algorytmu
genetycznego.
Przyjęto następujące parametry algorytmu genetycznego: liczba osobników w
populacji L = 60, wartość współczynnika mutacji p m =0,005, maksymalna liczbę
generacji równą (Np)max = 35. Założono wartości współczynników wagowych:
1  1 ,  2  0,75 ,  3  0,25 . Przebieg procesu optymalizacji zaprezentowano w
tabeli 2. Dla wybranych pokoleń przedstawiono wartości: zmiennych decyzyjnych,
parametrów silnika oraz wartość funkcji celu dla najlepszego osobnika w pokoleniu.
Tabela 2. Przebieg pierwszego etapu procesu optymalizacji
Np
1
3
5
10
16
20
25
30
35
gm1
[mm]
4,022
3,197
3,144
3,144
3,144
3,019
3,019
3,019
3,019
ξ
[-]
1,019
1,195
1,072
0,900
0,824
0,881
0,806
0,749
0,749
α
[-]
0,799
0,809
0,782
0,791
0,821
0,813
0,812
0,817
0,817
α1
[-]
0,545
0,629
0,704
0,704
0,704
0,704
0,704
0,704
0,704
T
[Nm]
14,400
16,190
16,308
16,296
16,561
16,298
16,172
16,236
16,236
THD
[%]
8,982
6,825
7,736
7,499
7,189
7,279
7,356
7,064
7,064
Vm
[cm3]
24,066
23,903
21,701
20,908
21,206
20,540
19,605
19,838
19,838
Tc
[Nm]
0,583
1,039
0,655
0,247
0,925
0,692
0,571
0,751
0,751
f
[-]
1,246841
1,425541
1,470121
1,473461
1,474563
1,490000
1,495876
1,496811
1,496812
Na rysunku 3 przedstawiono zmiany wartości składników kompromisowej
funkcji celu w wybranych pokoleniach procesu optymalizacji.
Rys. 3. Porównanie wartości T oraz THD w wybranych pokoleniach
14
Łukasz Knypiński, Lech Nowak
Etap II. Optymalizacja z uwzględnieniem momentu zaczepowego
Drugi etap syntezy struktury wirnika polegał na włączeniu do procesu
optymalizacji momentu zaczepowego. Moment zaczepowy silnie zależny od
rozpiętości  obszaru magnetycznego. W obszarze jednej podziałki biegunowej
stojana posiada kilka maksimów i minimów [6], okres zmienności związany jest z
podziałką żłobkową  ż1 . Dlatego w drugim etapie zawężono przedział zmienności
parametru  :


ˆ  0,52 ż1 , ˆ  0,52 ż1
(2)


przy czym: ˆ  0,817 – optymalna wartości zmiennej  wyznaczona w pierwszym
etapie optymalizacji.
Optymalizację przeprowadzono dla multiplikatywnej funkcji celu:
q
f i  t q1 h q2 tc 3
(3)
Jako odniesienie przyjęto średnie wartości z inicjacji:
t
T
THD
T
, h
, tc  c .
Tav
THD av
Tc av
(4)
Przyjęto wartości optymalne z pierwszego etapu optymalizacji: grubość
magnesu g m1  gˆ m1  3,019 mm oraz wartość parametru   ˆ  0,749 .
Na podstawie obliczeń testowych przyjęto współczynniki q1  2 , q2   1 2 ,
q3   1 2 . Porównanie wyników obliczeń dla kolejnych pokoleń przedstawiono w
tabeli 3.
Tabela 3. Przebieg drugiego etapu procesu optymalizacji dla funkcji multiplikatywnej
Np
1
2
5
7
10
12
α
[-]
0,7741
0,8876
0,7750
0,7498
0,7499
0,7499
α1
[-]
0,8683
0,7697
0,8683
0,8683
0,7695
0,7695
T
[Nm]
16,875
17,323
16,884
16,643
15,963
15,963
THD
[%]
8,575
12,01
8,615
7,689
7,964
7,964
Vm
[cm3]
19,590
21,899
19,611
18,976
18,500
18,500
Tc
[Nm]
0,1850
0,1005
0,1827
0,3015
0,1648
0,1648
fc
[-]
2,63135471
2,70846627
2,71009390
2,71009390
2,71059382
2,71059382
Rys. 4 ilustruje przekroje poprzeczne najlepszej maszyny w wybranych
pokoleniach procesu optymalizacji.
Optymalizacja magnetoelektrycznego silnika synchronicznego …
a) 1 pokolenie
15
b) 12 pokolenie
Rys. 4. Porównanie przekroi poprzecznych maszyny w wybranych pokoleniach
W wyniku II etapu optymalizacji uzyskano ponad czterokrotne zmniejszenie
wartości maksymalnego momentu zaczepowego przy nieznacznym zmniejszeniu,
zaledwie o 1,5% momentu użytecznego. Uzyskano efekt ekonomiczny w postaci
zmniejszenia objętości materiału magnetycznego o 10%. Ze względu na mniejszą
wagę w kompromisowej funkcji celu współczynnik THD uległ pogorszeniu.
5. PODSUMOWANIE
W
artykule
przedstawiono
wyniki
obliczeń
optymalizacyjnych
magnetoelektrycznego silnika synchronicznego wzbudzanego układem magnesów o
różnych właściwościach magnetycznych. Zastosowanie magnesów trwałych
złożonych z dwóch różnych materiałów umożliwia większy wpływ na rozkład pola
w szczelinie niż w przypadku zastosowania magnesów jednorodnych. Zastosowanie
wzbudzenia tak ukształtowanym układem magnesów zmniejsza wartość momentu
zaczepowego oraz współczynnika THD.
LITERATURA
[1]
[2]
Dudzikowski I., Ciurys M., Komutatorowe i bezszczotkowe maszyny elektryczne
wzbudzane magnesami trwałymi, Oficyna Wydawnicza Politechniki Wrocławskiej,
Wrocław 2011.
Jędryczka C., Łyakawiński W., Mikołajewicz J., Wojciechowski R., Analiza
struktur magnetoelektrycznych silników synchronicznych o rozruchu
częstotliwościowym. Modelowanie, Prace Naukowe Instytutu Maszyn, Napędów i
Pomiarów Elektrycznych Politechniki Wrocławskiej, Nr 66, Studia i Materiały Nr 32,
Tom 1, Wrocław 2012, s.86-91.
16
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
Łukasz Knypiński, Lech Nowak
Knypiński Ł., Nowak L., Algorytm optymalizacji magnetoelektrycznych silników
synchronicznych
z
uwzględnieniem
polowego
modelu
zjawisk
elektromagnetycznych, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów
Elektrycznych Politechniki Wrocławskiej Nr 66, Studia i Materiały Nr 32, Wrocław
2012, s. 60 – 69.
Knypiński Ł., Nowak L., Dwuetapowa optymalizacja magnetoelektrycznych silników
synchronicznych z uwzględnieniem współczynnika THD, Prace Naukowe Instytutu
Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej Nr 66,
Studia i Materiały Nr 32, Wrocław 2012, s. 70 – 77.
Knypiński Ł., Nowak L., Sujka P., Radziuk K., Application of a PSO algorithm for
identification of the parameters of Jiles-Atherton hysteresis model, Archives of
Electrical Engineering, Vol. 30, No. 2, June 2012, pp. 139 – 148.
Lindth P. M., Jussila H. K., Niemelä M., Parviainen A., Pyrhönen J., Comparison of
concentrated windings permanent magnet motors with embedded and surface
mounted rotor magnets, IEEE Transactions on Magnetics, vol. 45, No. 5, pp. 2085 –
2089, 2009.
Łukaniszyn M., Kowol M., Kołodziej J., Modelowanie i optymalizacja silnika
reluktancyjnego dwumodułowego, Przegląd Elektrotechniczny, No. 11, s. 100 – 106, 2011
Salminen P., Fractional slot permanent magnet synchronous motors for low speed
applications, PhD thesis, Lappeenranta University of Technology, Lappeenranta
2004.
Ślusarek B.,
Jankowski B.,
Kapelski D.,
Karbowiak M.,
Przybylski M.,
Łukaszewicz P., Wpływ zastosowania proszkowego obwodu magnetycznego na
parametry eksploatacyjne silnika elektrycznego małej mocy, Materiały konferencji
Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki PPEEm
2012, Gliwice, 11 – 13 grudzień, s. 198 – 192.
Yamazaki K., Kanou Y., Shape optimization of rotating machines using timesteeping adaptive finite element method, IEEE Transactions on Magnetics, vol. 46,
No. 8, pp. 3113 – 3116, 2010.
Projekt POIG.01.01.02-00-113/09 pt. Nowa generacja energooszczędnych napędów
elektrycznych do pomp i wentylatorów dla górnictwa, raport z prac zrealizowanych
w ramach zadania 8E. Prace zrealizowane pod kierownictwem prof. W. Szeląga.
http://www.ngn.put.poznan.pl/BazaWiedzy/ (dostęp z dnia 24.01.2013).
OPTIMIZATION OF PERMANENT MAGNET SYNCHRONOUS MOTOR
WITH SYSTEM MAGNETS ABOUT DIFFERENT MAGNETIC PROPERTIES
The paper presents the results of the optimization of the rotor permanent magnet
synchronous motor with magnet composed of two materials about different magnetic
properties. The software consists of two modules: a module to the field FEM simulation of
phenomena PMSM motors and optimization module. The optimization module has been
elaborated employing the Delphi environment. The genetic algorithm has been applied for
the optimization. Selected results of the calculation and optimization are presented and
discussed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Marcin ANTCZAK*
Dariusz KAPELSKI**
Jerzy SIWIEC***
Wojciech SZELĄG*
ANALIZA OBWODU ELEKTROMAGNETYCZNEGO
SILNIKA O BIEGUNACH WPISYWANYCH
Przedstawiono budowę i zasadę działania silników o biegunach wpisywanych. Do
analizy
silnika
zaproponowano
dwuwymiarowy
polowy
model
zjawisk
elektromagnetycznych uwzględniający histerezę magnetyczną materiałów magnetycznie
twardych. W rozważaniach uwzględniono ruch wirnika, nieliniowe właściwości
materiałów magnetycznie miękkich oraz prądy wirowe indukowane w elementach
masywnych przewodzących. Do rozwiązania równań modelu wykorzystano metodę
elementów skończonych krawędziowych oraz algorytm kolejnych kroków czasowych.
Opracowaną metodę oraz oprogramowanie wykorzystano do analizy silnika o biegunach
wpisywanych.
1. WPROWADZENIE
Silniki o biegunach wpisywanych opracowano w ostatniej dekadzie ubiegłego
wieku w Stanach Zjednoczonych. W stanie pracy ustalonej zachowują się one jak
silniki synchroniczne wzbudzane magnesami trwałymi. Są one przystosowane do
rozruchu bezpośredniego polegającego na załączeniu na uzwojenia stojana napięcia
zasilającego. Po załączeniu napięcia, powstaje w silniku moment elektromagnetyczny
histerezowy oraz moment asynchroniczny. Zaletą tych silników w porównaniu
z silnikami synchronicznymi magnetoelektrycznymi o rozruchu asynchronicznym jest
brak w przebiegu momentu elektromagnetycznego rozruchowego składowej
przemiennej wytwarzanej przez magnesy trwałe. Składowa ta utrudnia rozruch
silników o magnesach trwałych. Silniki o biegunach wpisywanych charakteryzują się
bardzo dobrymi właściwościami rozruchowymi. Projektuje się je tak, by względny
prąd rozruchowy był nie większy od 2 i by nadwyżka momentu
elektromagnetycznego nad momentem oporowym w zakresie zmian prędkości od zera
do synchronicznej była niewielka [2, 3, 4]. Prowadzi to do powstania w układzie
__________________________________________
* Politechnika Poznańska.
** Instytut Tele- i Radiotechniczny, Warszawa.
*** Wyższa Szkoła Gospodarki w Bydgoszczy.
18
Marcin Antczak, Dariusz Kapelski, Jerzy Siwiec, Wojciech Szeląg
napędowym niewielkiego momentu dynamicznego i wydłużenia czasu rozruchu.
Z porównania katalogowych wartości sprawności oraz współczynników mocy
silników indukcyjnych i silników o biegunach wpisywanych wynika, że przy tej samej
mocy i prędkości obrotowej większe wartości tych parametrów uzyskuje się dla
silników o biegunach wpisywanych [2, 4]. Aktualnie produkuje się na świecie silniki
biegunach wpisywanych przystosowane do zasilania z sieci jednofazowej. Znajdują
one zastosowanie w układach napędowych o nieregulowanej prędkości obrotowej, np.
w napędach pomp i wentylatorów.
W literaturze jest bardzo mało informacji o silnikach o biegunach wpisywanych.
Dotyczy to zwłaszcza silników trójfazowych [5]. Prezentowane są budowa, zasada
działania oraz parametry funkcjonalne silników jednofazowych [3, 4, 6]. Badania nad
silnikami o biegunach wpisywanych są w początkowym stadium rozwoju. Nie
opracowano jeszcze dla tych silników metod kompleksowej analizy sprzężonych
zjawisk elektromagnetycznych, cieplnych i mechanicznych. Nie ma również
komercyjnego oprogramowania do analizy i projektowania tych silników
z uwzględnieniem zjawiska histerezy magnetycznej. Z powyższych względów autorzy
opracowali algorytm i oprogramowanie bazujące na polowym modelu zjawisk
elektromagnetycznych uwzględniającym zjawisko histerezy magnetycznej.
Oprogramowanie to wykorzystano do analizy obwodu elektromagnetycznego silnika
o biegunach wpisywanych.
2. SILNIKI O BIEGUNACH WPISYWANYCH
W odróżnieniu od klasycznych maszyn synchronicznych w silnikach o biegunach
wpisywanych może zmieniać się zarówno liczba jak i położenie biegunów wzdłuż
obwodu wirnika. W literaturze prezentowane są głównie silniki o biegunach
wpisywanych przystosowane do zasilania z sieci jednofazowej [2, 6, 7]. Autorzy
w ramach prac prowadzonych na tego typu silnikami opracowali silnik trójfazowy
o strukturze pokazanej na rys. 1 [1]. Schemat połączeń uzwojeń przedstawiono na rys.
2. W żłobkach stojana rozmieszczone jest uzwojenie główne wytwarzające pole
wirujące oraz uzwojenie dodatkowe. Uzwojenia fazowe 1A, 1B, 1C uzwojenia
głównego oraz cewki 2A, 2B, 2C uzwojenia dodatkowego połączono w gwiazdę.
Uzwojenie dodatkowe z powodu specyficznego sposobu działania nazywane jest
uzwojeniem „wpisującym”. Jest ono przeznaczone do formowania wzdłuż obwodu
wirnika w warstwie materiału o szerokiej pętli histerezy pożądanego rozkładu wektora
namagnesowania. Warstwa ta znajduje się na powierzchni wirnika. Liczba oraz
rozpiętość kątowa utworzonych przez to uzwojenie biegunów zależy od prędkości
wirowania wirnika względem stojana. Rdzenie stojana i wirnika złożone są z
wykrojów wykonanych z blachy elektrotechnicznej. W wirniku oprócz warstwy
materiału magnetycznego o szerokiej pętli histerezy znajduje się uzwojenie klatkowe.
W celu ograniczenia prądu rozruchowego wykonane jest ono z materiału o dużej
rezystywności.
Analiza obwodu elektromagnetycznego silnika o biegunach wpisywanych
19
Rys. 1. Struktura silnika trójfazowego o biegunach wpisywanych
Rys. 2. Schemat połączeń uzwojeń silnika o biegunach wpisywanych
Po załączeniu napięcia zasilającego, silnik przyspiesza pod wpływem momentu
obrotowego asynchronicznego oraz histerezowego. Moment histerezowy powstaje w
wyniku przemagnesowywania przez pole wirujące powierzchniowej warstwy wirnika
wykonanej z materiału o szerokiej pętli histerezy. Po uzyskaniu przez wirnik 0,7-0,9
prędkości synchronicznej załączane jest uzwojenie wpisujące bieguny. Pole
wytworzone przez to uzwojenie współdziała z polem wirującym wytworzonym przez
uzwojenie główne. W wyniku czego w materiale magnetycznie twardym uzyskuje się
większe wartości wektora namagnesowania niż przy oddziaływaniu tylko pola
wirującego. Prowadzi to do wzrostu momentu elektromagnetycznego, przyspieszenia
wirnika i wpadu w synchronizm. Po wpadzie w synchronizm warstwa materiału o
szerokiej pętli histerezy jest namagnesowana w taki sposób, że liczba biegunów
wirnika jest równa liczbie biegunów uzwojenia stojana.
20
Marcin Antczak, Dariusz Kapelski, Jerzy Siwiec, Wojciech Szeląg
W chwilę po wejściu silnika w synchronizm uzwojenie wpisujące jest
odłączane od sieci i silnik pracuje jako silnik synchroniczny magnetoelektryczny.
Przy ponownym rozruchu silnika, bezpośrednio po złączeniu napięcia
zasilającego, udarowy przepływ uzwojenia głównego niszczy poprzedni rozkład
wektora namagnesowania i przemagnesowuje na nowo wirnik.
Przebieg zjawisk elektromagnetycznych i mechanicznych w silniku o biegunach
wpisywanych jest bardzo złożony. Ich analizę komplikują nieliniowe właściwości
materiałów magnetycznie miękkich, histereza magnetyczna warstwy materiału na
powierzchni wirnika, indukowane prądy wirowe oraz ruch środowisk [1, 8]. Zjawiska
te trudno jest odwzorować w modelu obwodowym maszyny elektrycznej [4]. Dlatego
w artykule do analizy silnika o biegunach wpisywanych wykorzystuje się model
polowo-obwodowy zjawisk sprzężonych. W modelu tym przyjmuje się, że pole
magnetyczne w części elektromagnetycznie czynnej silnika jest niezmienne wzdłuż
osi wału, a trójwymiarowość pola w obszarze połączeń czołowych uwzględnia się w
sposób uproszczony przez wprowadzenie ich rezystancji i indukcyjności [1, 8].
3. ALGORYTM ANALIZY ZJAWISK SPRZĘŻONYCH
Polowy model nieustalonych zjawisk sprzężonych w silniku o biegunach
przedstawiono w pracy [1]. Do formowania równań modelu dyskretnego zjawisk
sprzężonych wykorzystano metodę elementów skończonych krawędziowych [8].
Zagadnienie trójwymiarowe sprowadzono do dwuwymiarowego. Przy opisie pola
elektromagnetycznego posłużono się wektorowym potencjałem magnetycznym A
oraz skalarnym potencjałem elektrycznym V [1, 8]. W wyniku dyskretyzacji
przestrzeni i czasu uzyskano układ równań macierzowych opisujących wartości
krawędziowe φ wektorowego potencjału magnetycznego A oraz prądy w
uzwojeniach
S n  G (1  Ck )t 1

z


T
z
 Rt  L 



 n   M n  G(1  Ck )t 1 0   n -1


 n 
n
 zT
 L   i n 1
 i   tU  

oraz położenie α i prędkość kątową ω wirnika


 n 1  t 2 T n  Ton  Ttn J b1  2 n   n 1
t n  05t  
d
dt

t n  0,5 t

n 
 n
t


 (1)

(2)
(3)
gdzie: S – macierz reluktancji, φ – wektor potencjałów krawędzi siatki, z –
macierz określająca liczbę zwojów przyporządkowaną krawędziom, G – macierz
zastępczych konduktancji, M – wektor przepływów odwzorowujący
namagnesowanie warstwy histerezowej, U – wektor napięć zasilających, i –
wektor prądów w uzwojeniach, R – macierz rezystancji uzwojeń, L – macierz
indukcyjności połączeń czołowych, Ck – macierz współczynników, Δt = tn-tn-1 –
Analiza obwodu elektromagnetycznego silnika o biegunach wpisywanych
21
długość kroku czasowego, n oraz n-1 – odpowiednio indeksy wyróżniające
wielkości dla chwil t = tn i t = tn-1. Przykładowo Sn = S(tn), φn = φ (tn).
Przy odwzorowywaniu właściwości magnetycznych materiałów magnetycznie
miękkich przyjęto, że
H  B
(4)
przy czym reluktywność ν wyznacza się z jednoznacznej charakterystyki
magnesowania materiału. Natomiast dla potrzeb analizy zjawiska
przemagnesowywania warstwy powierzchniowej wirnika wykonanej z materiału
magnetycznego twardego założono, że
H   oB  Hi
(5)
gdzie Hi jest wektorem magnetyzacji, a νo reluktywnością próżni.
W modelu matematycznym właściwości magnetycznych magnesu trwałego
przyjmuje się, że materiał magnetycznie twardy charakteryzuje się anizotropią
prostokątną oraz uwzględnia się zjawisko histerezy magnetycznej [8, 9].
W opracowanym modelu dyskretnym do odwzorowywania histerezowych
właściwości materiału, z którego wykonano powierzchniową warstwę wirnika,
wykorzystano model odwrotny Jilesa-Athertona [9].
Układ równań (1)-(3), w zależności od gęstości dyskretyzacji przestrzeni, może
zawierać od kilkunastu do kilkudziesięciu tysięcy nieliniowych równań
algebraicznych. Do jego rozwiązania wykorzystuje się metodę Newtona-Raphsona.
[8]. Na podstawie przedstawionego modelu dyskretnego zjawisk opracowano program
komputerowy w środowisku programistycznym Delphi XE do analizy ustalonych i
nieustalonych stanów pracy silników o biegunach wpisywanych.
4. ANALIZA OBWODU ELEKTROMAGNETYCZNEGO
W celu przetestowania opracowanego oprogramowania przeprowadzono analizę
obwodu elektromagnetycznego silnika o strukturze pokazanej na rys. 1. Przyjęto, że
do budowy silnika wykorzystano pakiet stojana trójfazowego silnika indukcyjnego
typu Sg 100L-4B o napięciu zasilania U = 400 V, mocy 3kW. Warstwę histerezową
w wirniku zrobiono z dielektromagnesu, o indukcji remanencji 0,73 T oraz natężeniu
koercji 464 kA/m, opracowanego w Instytucie Tele- i Radiotechnicznym z Warszawy.
Prętowe uzwojenie klatkowe wykonano z aluminium. Obliczenia przeprowadzono na
komputerze o dwu procesorach czterordzeniowych - Intel XENON W5580 3,2Ghz
64bit. Czas obliczeń dla jednego kroku czasowego wynosił ok. 90 sekund.
Analizowano wybrane stany pracy silnika. Przedstawiono wyniki symulacji
procesu rozruchu silnika. Rozpatrzono rozruch bezpośredni silnika obciążonego
momentem oporowym To = 10Nm. W rozważaniach przyjęto, że przed załączeniem
silnika do sieci materiał magnetycznie twardy był rozmagnesowany. Uzyskany
przykładowy przebieg momentu elektromagnetycznego oraz prędkości obrotowej
przedstawiono odpowiednio na rys. 3. Widoczny jest wpływ załączenia uzwojenia
22
Marcin Antczak, Dariusz Kapelski, Jerzy Siwiec, Wojciech Szeląg
wpisującego na przebiegi momentu elektromagnetycznego i prędkości obrotowej.
Uzwojenie wpisujące załączono do sieci przy osiągnięciu przez wirnik prędkości 1050
obr/min, tj. w chwili t = tz. Załączeniu uzwojenia towarzyszy stan nieustalony. Można
zaobserwować zwiększenie momentu elektromagnetycznego i szybsze osiągnięcie
prędkości synchronicznej w porównaniu z rozruchem przeprowadzonym bez
załączania uzwojenia wpisującego.
Rys. 3. Przebiegi prędkości oraz momentu elektromagnetycznego podczas rozruchu silnika
o biegunach wpisywanych
Stan nieustalony związany jest również z wyłączeniem uzwojenia wpisującego.
Świadczą o tym pulsacje w przebiegach momentu i prędkości obrotowej dla t > tw.
Przykładowe rozkłady linii sił pola magnetycznego oraz rozkłady wektora
namagnesowania w warstwie o szerokiej pętli histerezy bezpośrednio po rozruchu
i wstanie pracy ustalonej pokazano na rys. 4. Wyniki analizy wpływu liczby zwojów
uzwojenia głównego przy aktywnym i nieaktywnym uzwojeniu wpisującym na
przebieg procesu rozruchu zestawiono na rys. 5. Natomiast wpływ uzwojenia
wpisującego na przemagnesowywanie warstwy materiału o szerokiej pętli histerezy
w podobszarach usytuowanych przy szczelinie powietrznej oraz przy rdzeniu wirnika
podczas rozruchu silnika pokazano na rys. 6. Na rysunku umieszczono również
graniczną pętlę histerezy materiału zastosowanego na warstwę histerezową.
5. UWAGI KOŃCOWE
Z przeprowadzonych rozważań i analizy wyników obliczeń wynika, że
opracowane oprogramowanie można wykorzystać do analizy zjawisk
elektromagnetycznych powiązanych z ruchem w silnikach o biegunach wpisywanych.
Przewiduje się zastosowanie opracowanego oprogramowania do zaprojektowania
silnika modelowego o biegunach wpisywanych. Po zbudowaniu i przeprowadzeniu
Analiza obwodu elektromagnetycznego silnika o biegunach wpisywanych
23
badań laboratoryjnych tego silnika autorzy ostatecznie zweryfikują przydatność
opracowanej metody i oprogramowania do analizy zjawisk sprzężonych, symulacji
stanów pracy i projektowania silników o biegunach wpisywanych.
a)
b)
Rys. 4. Rozkład linii sił pola magnetycznego w silniku i wektora namagnesowania w warstwie
histerezowej a) bezpośrednio po załączeniu silnika do sieci oraz b) w stanie pracy ustalonej
Rys. 5. Wpływ liczby zwojów uzwojenia głównego na przebieg procesu rozruchu
24
Marcin Antczak, Dariusz Kapelski, Jerzy Siwiec, Wojciech Szeląg
Rys. 6. Historia magnesowania podobszarów w warstwie histerezowej leżących (po lewej) przy
szczelinie powietrznej oraz (po prawej) przy powierzchni rdzenia wirnika podczas rozruchu
silnika przeprowadzonego z załączeniem uzwojenia wpisującego
LITERATURA
[1] Antczak M., Szeląg W., Polowo-obwodowa analiza silnika trójfazowego o biegunach
wpisywanych, Przegląd Elektrotechniczny, NR 4a, 2012, s. 10-13. 120-125.
[2] Layton L., Written-Pole Motors, http://www.pdhengineer. com/courses/e/E-3023.pdf,
(dostęp 2010.10.13), 1-30.
[3] Materiały informacyjne firmy Precise Power Corporation, www.written-pole.com,
(dostęp 2011.03.05).
[4] Zabet Khosousi H., Mirsalim M., Dynamic modeling of a 20-Horsepower singlephase written pole motor, IEEE Trans. Magn., 40, (2004), No. 4, 1901–1904.
[5] Menzies R. W., Ge L., Theory investigation of 3-phase written pole motors, Proc.
IEEE Can. Conf., 2002, 162-165.
[6] Hannah A., Electrical field measurements on an EPRI two-pole, 20-HP written pole
motor, IEEE Trans. Ind. Applicat., 33, 1997, No. 2, 408–414.
[7] Byung-Taek K., Dae-Kyong K., Se-Hyun R., Duck-Shick S., Byung K., Exciter
Design and Characteristic Analysis of a Written-Pole Motor, IEEE Trans. Magn., 45,
2009, No.3, 1768-1771.
[8] Szeląg W., Przetworniki elektromagnetyczne z cieczą magnetoreologiczną,
Wydawnictwo Politechniki Poznańskiej, Poznań 2010.
[9] Torre E.D., Magnetic Hysteresis, Wiley-IEEE Press, New York 2000.
ANALYSIS OF ELECTROMAGNETIC CIRCUIT OF WRITTEN POLE MOTOR
In the paper an electric motor with written poles has been presented. To the analysis of
electromagnetic and mechanical motion phenomena in the motor the field-circuit model has
been proposed. In the consideration the magnetic hysteresis of permanent magnet material
has been taken into account. The numerical implementation of proposed model is based on
the FEM and a step-by-step algorithm. Elaborated method and software has been applied to
the analysis of written pole motor. Chosen results of analysis of electromagnetic circuit of
a written pole motor have been presented.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Zbynek MAKKI*
Marcel JANDA*
Ramia DEEB*
COMPARISON OF METHODS FOR SOLVING
THE HEAT TRANSFER IN ELECTRICAL MACHINES
This paper describes the use of modern computational methods for the verification of
mathematical equations, to determine the total heat flow transmitted across a certain
surface. ANSYS WORKBENCH is choosen as the computational software for this purpose.
Calculations are presented for four models. There is a surface, which the total heat flow is
transmitted through is considered as: a simple flat plate, comprising with other flat plate,
and thin-walled and thick-walled tube. For each case, the total heat flow is calculated using
numerical methods and modern computer methods (ANSYS WORBENCH). Performed
results of numerical methods are compared with the results of ANSYS software. The
numerical methods are considered as a referent. The error of ANSYS calculations in
comparison with the the numerical is calculated. The heat transfer by conduction is
described for all presented models. Finally, the results of temperature distribution and heat
flux distribution for each simulated case are presented.
1. INTRODUCTION
1.1. Simple flat plate
For the numerical solution we have to use Fourier’s laws. Fourier's law is an
empirical law based on observation. It states that the rate of heat flow dQ/dt,
through a homo-geneous solid is directly proportional to the area A, of the section
at right angles to the direction of heat flow, and to the temperature difference along
the path of heat flow, dT/dx i.e. [1].
For simple flat plate applies equation

(1)
QS 
x
T1  T2  A
where Qs is numerical solution total heat flow transmitted across a certain surface
[J], λ is thermal conductivity [W/m.K], x is wall thickness [m], T1 is temperature
of hot wall [K], T2 is temperature of cold wall [K] and A is heat flow area [m2] [3].
__________________________________________
* Brno University of Technology.
26
Zbynek Makki, Marcel Janda, Ramia Deeb
Fig. 1. Case of simply flat plate [2]
1.2. Flat plate comprising with other flat plate
In this case we combined two materials (steel and cuprum) with different
thickness.
Fig. 2. Case of flat plate comprising with other flat plate [2]
For this case applies equation
QS 
T1  T3  A
(2)
x1 x2

1  2
1.3. Thin-walled and thick-walled tube
In this case is important ratio between the radius r1 and radius r2. When is this
ratio lower than 1.5 (r1/r2<1.5) is it thin-walled tube and applies this equation [3]
Comparison of methods for solving the heat transfer in electrical machines
QS  
r1  r2
.LT1  T2 
r2  r1
27
(3)
where L is length of tube [m].
When is this ratio upper than 1.5 (r1/r2 > 1.5) is it thick-walled tube and applies
this equation [3]
2 ..L
(4)
Q 
T  T 
S
ln
r2
r1
1
2
Fig. 3. Case of thin-walled and thick-walled tube [2]
2. CALCULATION PARAMETERS
Each calculation of the numerical and computer solution have set hot wall on
value 293.15 K and cold wall on value 263.15 K. Used material in case of Simple
flat plate, thin-walled and thick-walled tube is steel with thermal conduction 60.5
W/m.K and in case of flat plate comprising with other flat plate is steel as first
material with the same parameters as first case and cuprum as second material
with thermal conduction 400 W/m.K.
Thin-walled and thick-walled tube is solved as decomposed simple flat plate.
Simple flat plate, flat plate comprising with other flat plate, thin-walled and
thick-walled tube of results is divided into three parts. First (a) is change thickness
steel plate in case of simple flat plate and flat plate comprise with other flat plate
from 0.1 to 1 m. In case of thin-walled tube we change thickness from 0.05 to 0.3.
And in case of thick-walled tube from 0.75 to 1.9 m. Second part (b) is change
temperature T1 from 283.15 to 203.15 K for each model. And third part (c) is
change temperature T2 from 273.15 to 253.15 K for each model.
28
Zbynek Makki, Marcel Janda, Ramia Deeb
3. RESULTS
3.1. Simple flat plate
Table 3.1. Simple flat plate, (a) change thickness steel plate,
(b) change temperature T1 and (c) change temperature T2
Numerical
solution
Ansys
Error
Numerical
solution
Ansys
Error
Numerical
solution
Ansys
Error
Qs [J]
Qfem [J]
[%]
Qs [J]
Qfem [J]
[%]
Qs [J]
Qfem [J]
[%]
a
b
c
228690,00 228690,00
0,00
50820,00
50820,00
0,00
50820,00
50820,00
0,00
114345,00 114345,00
0,00
63525,00
63525,00
0,00
63525,00
63525,00
0,00
76230,00
76230,00
0,00
76230,00
76230,00
0,00
76230,00
76230,00
0,00
70366,15
70366,15
0,00
88935,00
88935,00
0,00
88935,00
88935,00
0,00
41580,00
41580,00
0,00 101640,00 101640,00
0,00 101640,00 101640,00
0,00
29508,39
29508,39
0,00
22869,00
22869,00
0,00
Fig. 4. Change thickness steel plate for simply flat plate
Comparison of methods for solving the heat transfer in electrical machines
29
Fig. 5. Change temperature T1 and T2 for simply flat plate
3.2. Flat plate comprising with other flat plate
Table 3.2. Flat plate comprising with other flat plate, (a) change thickness steel plate,
(b) change temperature T1 and (c) change temperature T2
Numerical
solution
Ansys
Erro Numerical
r
solution
Qs [J]
Qfem [J]
130214,9
5
a
130155,1
6
0,05
40588,35 40579,60
0,02
40588,35 40579,60
0,02
82971,43
82947,06
0,03
50735,44 50724,49
0,02
50735,44 50724,49
0,02
60882,53
60869,34
0,02
60882,53 60869,39
0,02
60882,53 60869,39
0,02
57083,31
57071,75
0,02
71029,62 71014,29
0,02
71029,62 71014,29
0,02
36553,85
36549,07
0,01
81176,71 81159,19
0,02
81176,71 81159,19
0,02
26884,94
26882,33
0,01
21261,13
21259,48
0,01
[%]
Qs [J]
Ansys
Error
Numerical
solution
Ansys
Error
Qfem [J]
[%]
Qs [J]
Qfem [J]
[%]
b
c
30
Zbynek Makki, Marcel Janda, Ramia Deeb
3.3. Thin-walled tube
Table 3.3. Thin-walled tube, (a) change thickness steel plate,
(b) change temperature T1 and (c) change temperature T2
Numerical
solution
Ansys
Qs [J]
Qfem [J]
Erro Numerica
r
l solution
[%]
Qs [J]
Ansys
Qfem [J]
Erro Numerica
r
l solution
[%]
Qs [J]
a
b
- 170973,0 172860,7
- 170973,0
0
7 1,10
0
161474,50 163660,41 1,35
- 213716,2 216074,5
- 213716,2
199468,50 202107,47 1,32
5
5 1,10
5
- 256459,5 259291,1
- 256459,5
256459,50 259291,15 1,10
0
5 1,10
0
299202,7 302502,1
- 299202,7
351444,50 351037,87 0,12
5
1 1,10
5
- 341946,0 345732,8
- 341946,0
541414,50 543338,54 0,36
0
4 1,11
0
1111324,5 1112993,0
0
2 0,15
Ansys
Erro
r
Qfem [J]
[%]
c
172860,7
7
216074,5
5
259291,1
5
302502,1
1
345732,8
4
1,10
1,10
1,10
1,10
1,11
3.4. Thick-walled tube
Table 3.4. Thick-walled tube, (a) change thickness steel plate,
(b) change temperature T1 and (c) change temperature T2
Numerical
solution
Ansys
Qs [J]
Qfem [J]
Erro Numerical
r
solution
[%]
a
Qs [J]
Ansys
Error
Numerical
solution
Ansys
Error
Qfem [J]
[%]
Qs [J]
Qfem [J]
[%]
b
c
19024,06
18819,90
1,07
27406,88 26843,86
2,05
27406,88 26843,86
2,05
27406,88
27036,03
1,35
34258,60 33554,67
2,05
34258,60 33554,67
2,05
41110,32
40265,48
2,06
41110,32 40265,48
2,06
41110,32 40265,48
2,06
58104,91
56165,18
3,34
47962,04 46976,28
2,06
47962,04 46976,28
2,06
82220,63
121256,5
1
80848,72
118811,3
2
1,67
54813,76 53687,09
2,06
54813,76 53687,09
2,06
2,02
Comparison of methods for solving the heat transfer in electrical machines
31
4. CONCLUSION
When changing thickness of the material in case is obtained simple flat plate
difference between the values calculated using the numerical method and ANSYS
Workbench 0% (in fact, this difference is about 1x10-6%). In the second case for
flat plate comprising with other flat plate is obtained the difference between the
values calculated using the numerical method and ANSYS Workbench maximum
0.05%. In this case we can see the effect of two materials with different thermal
conductivities. In the third case for thin-walled tube is the difference maximum
-1.32%. And in the last case for Thick-walled tube maximum error was 3.34%. All
results show that with increasing thickness of the material decreases nonlinearly
heat flow.
When changing temperature T1 or T2 we can see linear change in heat flow with
temperature.
All errors between the numerical solution and the computer came out small, so we can
say that ANSYS Workbench is a suitable solution to these problems.
ACKNOWLEDGEMENTS
Research described in this paper was financed by the Grant agency CR No. GACR:
102/09/18775 and Ministry of industry and trade of the Czech Republic under projects No.
FR-TI1/067 and FR-TI3/073. The work was supported by Centre for Research and
utilization of renewable energy CZ.1.05/2.1.00/01.0014.
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
Fourier's Law of Conduction. In: Fourier's Law of Conduction [online]. 1998 [cit.
2013-01-30]. Dostupné z: http://www.taftan.com/thermodynamics/FOURIER.HTM
Sdílení tepla a proudění. Ostrava: Ediční středisko VŠB-TU, 2008. ISBN 978-80248-1748-4.
Přenos tepla a látky. Brno: Akademické nakladatelství CERM, 2001. ISBN 80-214
2029-4.
ASHGRIZ, N. Handbook of Atomization and Sprays: Theory and Applications.
Canada: Springer. ISBN 978-1-4419-7264-4.
BURGESS, William, Michael ELLENBECKER a Robert TREITMAN.
VENTILATION FOR CONTROL OF THE WORK ENVIRONMENT. ISBN 0471-09532-X.
KREITH, Frank. The CRC Handbook of Thermal Engineering. CRC Press LLC,
2000. ISBN 0-8493-9581-X.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Wiktor HUDY*
Kazimierz JARACZ*
BADANIE WPŁYWU PARAMETRÓW MUTACJI
POSTĘPOWEJ W EWOLUCYJNEJ METODZIE
IDENTYFIKACJI PARAMETRÓW MODELU
MATEMATYCZNEGO SILNIKA INDUKCYJNEGO
W artykule przedstawiono metodę identyfikacji parametrów silnika indukcyjnego. Do
tego celu zastosowano algorytm ewolucyjny (EA). EA wykorzystuje operatory
krzyżowania, mutacji oraz mutacji postępowej. W pracy zbadano wpływ mutacji
postępowej na wyniki doświadczeń. Zaprezentowano wyniki badań.
1. WPROWADZENIE
Zagadnienie identyfikacji parametrów modelu matematycznego silnika
indukcyjnego było tematem wielu prac [1, 2, 4, 6, 7, 9, 11, 12, 14]. Stosowano
różne metody identyfikacji w tym metody sztucznej inteligencji [1, 2, 11, 12, 14].
W niniejszej pracy przedstawiono metodę identyfikacji parametrów modelu
matematycznego silnika indukcyjnego przy zastosowaniu algorytmu
ewolucyjnego. Algorytm ewolucyjny posiada wiele parametrów, które mają
znaczący wpływ na otrzymane rezultaty obliczeń. W niniejszej pracy
przedstawiono ego zastosowanie do identyfikacji oraz wpływ mutacji postępowej
na wynik obliczeń ewolucyjnych.
2. MODEL MATEMATYCZNY SILNIKA INDUKCYJNEGO
Przyjęto powszechnie stosowane założenia upraszczające [1, 2, 4, 8, 10, 11, 12,
13, 14], tj.:
 nie uwzględniono nasycenia obwodu magnetycznego silnika, przyjęto
monoharmoniczne pole magnetyczne w szczelinie,
 nie uwzględniono strat mocy w rdzeniu obwodu magnetycznego,
 przyjęto, że uzwojenie trójfazowe dla stojana jest symetryczne,
__________________________________________
* Uniwersytet Pedagogiczny im. KEN w Krakowie.
34
Wiktor Hudy, Kazimierz Jaracz
 uzwojenia wirnika klatkowego zastąpiono równoważnym uzwojeniem 3fazowym,
 sprzężenie magnetyczne pomiędzy uzwojeniami fazowymi stojana oraz
zastępczym uzwojeniem wirnika zachodzi tylko dzięki monoharmonicznemu
polu głównemu.
Przy tak dobranych założeniach model matematyczny silnika indukcyjnego
charakteryzuje się siedmioma parametrami {R1, R2, L1, L2, L12, J, D},
gdzie R1 – rezystancja fazy stojana, R2 – rezystancja fazy wirnika sprowadzona na
stronę stojana, L1 – suma indukcyjności głównej fazy stojana i indukcyjności
rozproszenia czołowego i żłobkowego fazy stojana, L2 – suma indukcyjności
głównej zastępczej fazy wirnika i indukcyjności rozproszenia czołowego i
żłobkowego fazy wirnika sprowadzona na stronę stojana, L12 – indukcyjność
wzajemna miedzy fazą stojana i zastępczą fazą wirnika sprowadzoną na stronę
stojana, D – współczynnik tarcia lepkiego, J – moment bezwładności.
3. ALGORYTM EWOLUCYJNY
W niniejszej pracy do identyfikacji parametrów modelu matematycznego
silnika indukcyjnego zastosowano jednokryterialny algorytm ewolucyjny [1, 2, 3,
5]. Ogólnie algorytmy ewolucyjne charakteryzują się następującymi
własnościami:
 pojedyncze rozwiązanie problemu nazywane jest osobnikiem - w niniejszej
pracy jest nim zbiór parametrów modelu matematycznego silnika indukcyjnego
 obliczenia dokonywane są na wielu potencjalnych rozwiązaniach
równocześnie,
 obliczenia wykonywane są w pojedynczej pętli programu – wykonanie tej pętli
nazywane jest pokoleniem,
 zbiór dostępnych rozwiązań w jednym pokoleniu nazywany jest populacją,
 zakończenie pętli (liczba pokoleń) jest w niniejszej pracy stała i jest zadana
przed rozpoczęciem obliczeń,
 algorytm naśladuje naturalną ewolucję,
 jest łatwy w implementacji,
 nie można założyć, że otrzymane rozwiązanie jest optymalne, ale przyjmuje
się, że otrzymany wynik różni się nie więcej niż 5% od rozwiązania
najlepszego.
W toku obliczeń algorytm ewolucyjny tworzy nowe potencjalne rozwiązania,
ocenia je, w razie konieczności usuwa ze swojej bazy rozwiązań zwanej populacją.
Do tworzenia nowych osobników służą operatory ewolucyjne takie jak:
 operator krzyżowania,
 operator mutacji,
 operator mutacji postępowej.
Badanie wpływu parametrów mutacji postępowej w ewolucyjnej metodzie ...
35
W celu utrzymania stałej liczby osobników w populacji służy operator selekcji.
W niniejszej pracy wykorzystano dwa operatory selekcji [1, 2, 3]:
 selekcja metodą turnieju. Metoda ta polega na wybraniu z populacji dwóch
osobników, porównaniu ich wartości funkcji oceny oraz wybraniu z tych
dwóch osobników jednego, o większej wartości funkcji oceny w przypadku
maksymalizacji wartości wskaźnika jakości lub mniejszej wartości funkcji
oceny w przypadku minimalizacji wartości wskaźnika jakości.
 selekcja metodą deterministyczną. Metoda ta polega wybieraniu do nowej
populacji tylko osobników najlepszych. W praktyce odrzuca się osobniki
najgorsze.
Podczas działania algorytmu w pojedynczym pokoleniu może działać tylko
jeden rodzaj metody selekcji. W tabeli 1 zestawiono procentowy czas działania
zastosowanych operatorów selekcji.
Tabela 1. Procentowe zestawienie czasu działania metody selekcji
Zastosowana metoda selekcji
Metoda turnieju
Metoda deterministyczna
% czasu życia populacji
70
30
W tabeli 2 przedstawiono pozostałe parametry algorytmu ewolucyjnego bez
uwzględnienia mutacji postępowej, gdyż jest ona przedmiotem badań.
Tabela 2. Parametry algorytmu ewolucyjnego
Liczba pokoleń
Liczba osobników w populacji
Liczba krzyżowań w jednym pokoleniu
Liczba mutacji w jednym pokoleniu
100 000
200
80
80
W niniejszej pracy wartość wskaźnika jakości F obliczona jest wg wzoru [1]:
k
P
1
F = ∏ 2 ∑ (w zi , j − woi , j )2
(1)
i= 1 N r j = 1
gdzie: k – liczba kryteriów cząstkowych, Nr – wartość maksymalna i-tej
charakterystyki wprowadzona w celu normalizacji danych pomiarowych,
wzi,j – wartość zmierzona w j-tej chwili czasu i-tego kryterium, woi,j – wartość
obliczona na podstawie osobnika w j-tej chwili czasu i-tego kryterium, P – liczba
dyskretnych punktów pomiarowych w których liczone jest i-te kryterium.
Kryteria cząstkowe obliczane są:
– K1 – jako sumę kwadratów błędów w dyskretnych momentach czasu między
wartościami zmierzonymi prędkości obrotowej rejestrowanej podczas rozruchu
a wartościami obliczonymi na podstawie osobnika,
36
Wiktor Hudy, Kazimierz Jaracz
– K2 – jako sumę kwadratów błędów w dyskretnych momentach czasu między
zmierzonymi wartościami skutecznego prądu fazowego rejestrowanego
podczas rozruchu, a wartościami obliczonymi na podstawie osobnika,
– K3 – jako sumę kwadratów błędów między wartościami zmierzonymi momentu
elektromagnetycznego a wartościami obliczonymi na podstawie osobnika w
wybranych punktach pomiarowych,
– K4 – jako sumę kwadratów błędów między wartościami zmierzonymi prądu
fazowego a wartościami obliczonymi na podstawie osobnika w wybranych
punktach pomiarowych.
Wskaźnik jakości F jest przez algorytm ewolucyjny minimalizowany.
4. MUTACJA POSTĘPOWA
Jak wspomniano wcześniej zastosowano trzy operatory ewolucyjne:
 operator krzyżowania (Operator wybiera losowo dwa osobniki i na podstawie
ich parametrów generuje jedno rozwiązanie potomne. Następnie nowo
wygenerowany osobnik jest oceniany wg wzoru (1) i dołączany do populacji.),
 operator mutacji (Operator wybiera losowo osobnika z populacji, modyfikuje
jego parametry zgodnie w rozkładem Gauss'a. Następnie ocenia tego osobnika
wg wzoru (1) i dołącza go do populacji.),
 operator mutacji postępowej (Operator wybiera losowo osobnika z populacji,
modyfikuje jego parametry zgodnie z rozkładem Gauss'a, ale o mniejszym
zasięgu niż wcześniej opisany operator mutacji (Tabela 4), ocenia tego
osobnika i zastępuje nim lub nie osobnika wcześniej wybranego).
W tabeli 3 zestawiono liczbę przeliczanych ilości osobników przez operatory
ewolucyjne podczas pojedynczego ich działania.
Tabela 3. Parametry operatorów ewolucyjnych
Operator ewolucyjny
Krzyżowanie
Mutacja
Mutacja postępowa
Ilość osobników
wygenerowanych przez
operator
1
1
Modyfikacja 1 osobnika
Ilość wybieranych
osobników z populacji
2
1
W tabeli 4 przedstawiono zasięg dwóch operatorów mutacji.
Tabela 4. Parametry operatorów mutacji
Zasięg
Mutacja
Mutacji postępowej
0.4 x całkowity zasięg
0.01 x całkowity zasięg
Badanie wpływu parametrów mutacji postępowej w ewolucyjnej metodzie ...




37
Badany operator mutacji postępowej:
jest operatorem jednoargumentowym, wybiera z populacji jednego osobnika O1,
tworzy nowego osobnika O2, dodając lub odejmując niewielkie wartości do
wartości współrzędnych wektora 7-mio elementowego osobnika O1,
oblicza wartości wskaźnika jakości dla nowego osobnika,
jeśli wartości wskaźnika jakości są:
 jeśli F(O1) < F(O2) – osobnik O1 jest lepszy niż osobnik O2, nie ma
wymiany O1 na O2 w populacji,
 jeśli F(O1) = F(O2) – osobnik O1 jest taki sam jak osobnik O2, nie ma
wymiany O1 na O2 w populacji,
 jeśli F(O1) > F(O2) – osobnik O2 jest lepszy niż osobnik O1, następuje
wymiana O1 na O2 w populacji.
5. BADANIA
Przeprowadzono badania wpływu liczby mutacji postępowej na jedno
pokolenie. Odpowiednie dane zawarto w tabeli 5.
Tabela 5. Zestawienie zmienności badanego parametru mutacji postępowej
Liczba mutacji na
jedno pokolenie
(M)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
80
Liczba mutacji
postępowej na
jedno pokolenie
(PM)
10
20
40
50
80
100
150
200
400
800
12.5
25
50
62.5
100
125
187.5
250
500
1000
Charakterystykę zależności miedzy liczbą mutacji postępowej (PM) a
wartością średnią kwadratową finalnego wskaźnika jakości (F) przedstawiono na
rys. 1.
38
Wiktor Hudy, Kazimierz Jaracz
Rys. 1. Zależność między średnią kwadratową wartości wskaźnika jakości F, a liczbą mutacji
postępowej na pokolenie PM
6. PODSUMOWANIE
Wartość średniej kwadratowej wskaźnika jakości F zmniejsza się wraz ze
wzrostem liczby mutacji postępowej. Wraz ze wzrostem liczby mutacji
postępowej zwiększa się czas obliczeń. Jak wynika z rys. 1 liczba mutacji
postępowej powinna wynosić PM = 100 dla realnego czasu obliczeń. Powyżej
wartości parametru PM > 100 wartość średniej kwadratowej wskaźnika jakości F
nie maleje znacząco. Z uwagi na zasięg mutacji postępowej:
 jej znaczenie jest największe w końcowym czasie życia populacji,
 ma małe znaczenie na początku ewolucji.
Można zastosować zmienną liczbę mutacji postępowej, zwiększającą się do
wartości PM = 100 na końcu życia populacji. Podczas wszystkich obliczeń
ewolucyjnych algorytm był zbieżny, a wyniki charakteryzowały się założoną
dokładnością. Ponadto z uwagi na charakter algorytmu ewolucyjnego otrzymane
wyniki nadają się przede wszystkim jako stopień wstępny dla innych metod
optymalizacyjnych.
LITERATURA
[1] Hudy W., Jaracz K.: Identification of mathematical model induction motor’s
parameters with using evolutionary algorithm and multiple criteria of quality,
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 87
NR 5/2011, Warsaw 2011, Pages 279-281.
[2] Hudy W., Jaracz K.: Identification of mathematical model slip-ring motor’s
parameters with using several figures of merit. International Carpathian Control
Conference ICCC’ 2009 Zakopane, Poland, May 24-27, 2009, p.387-390.
Badanie wpływu parametrów mutacji postępowej w ewolucyjnej metodzie ...
39
[3] Hudy W., Jaracz K.: Selection of control parameters in a control system with a DC
electric series motor using evolutionary algorithm, Archives of Electrical
Engineering, Volume 60, Number 3 / September 2011, Versita, Warsaw, ISSN 00040746 (Print) (SJR: 0.025), DOI 10.2478/v10171-011-0022-7, Pages 231-237.
[4] Jażdżyński W.: Identification of a model of induction motor with function
parameters. ICEMS2003: proceedings of the sixth International Conference on
Electrical Machines and Systems: November 9–11, Beijing, China 2003.
[5] Spears M.W. Evolutionary Algorithms. The Role of Mutation and Recombination.
Springer-Verlag, Berlin, Heidelberg, New York (2000).
[6] Chrzan P.J.: Identyfikacja parametrów silnika indukcyjnego w układzie
polowozorientowanym podczas postoju. I Krajowa Konferencja Użytkowników
MATLAB’a, AGH – Kraków, 14-15 listopada 1995.
[7] Henri Arnold: Ein Beitrag zur Identifikation der Parameter der Asynchronmaschine
im geregelten Betrieb. Dissertation, Technischen Universität Bergakademie Freiberg,
Deutschland 2005.
[8] Kovacs K.P., Racz I.: Transiente Vorgange in Wechselstrommaschinen, Vol 1 & 2,
Verlag Der Ungarischen Akademie Der Wissenschaften, Budapest 1959.
[9] Macek-Kamińska K.: Estymacja parametrów modeli matematycznych silników
indukcyjnych dwuklatkowych i głębokożłobkowych. Wyd. Wyższej Szkoły
Inżynieryjnej w Opolu, Opole 1992.
[10] Orłowska-Kowalska T., Control systems of the induction motors without sensors.
Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2003).
[11] Orłowska-Kowalska T., Lis J.: Identyfikacja parametrów silnika indukcyjnego w
stanie zatrzymanym za pomocą algorytmu ewolucyjnego. Prace Naukowe Instytutu
Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej Nr 56,
Wrocław 2004.
[12] Orłowska-Kowalska T., Szabat K., Ritter W.: Identyfikacja parametrów silnika
indukcyjnego za pomocą algorytmów genetycznych. Prace Naukowe Instytutu
Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, Nr 54,
Wrocław 2003.
[13] Plamitzer A.M., Electrical machines. WNT, vol. 4, Warszawa (1970).
[14] Rutczyńska-Wdowiak K.: Algorytmy Genetyczne w zastosowaniu do identyfikacji
parametrycznej modelu matematycznego silnika indukcyjnego – aspekty
obliczeniowe. VI Krajowa Konferencja Naukowa, SENE 2003, Łódź, 19-21 listopada
2003.
THE INFLUENCE PROGRESSIVE MUTATION FOR RESULTS OF
IDENTIFICATION OF MATHEMATICAL MODEL INDUCTION MOTOR’S
PARAMETERS WITH USING EVOLUTIONARY ALGORITHM
In this paper the method of identification of mathematical model induction motor’s
parameters is presented. To identify these parameters evolutionary algorithm was used
(EA). EA needs crossover, mutation and progressive mutation to create new individuals.
The influence progressive mutation for research results and results of research could be
find here.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Krzysztof SIEMBAB*
MODEL SILNIKA PMSM DO BADAŃ SYMULACYJNYCH
STEROWANIA TOLERUJĄCEGO USZKODZENIA
W artykule przedstawiono model matematyczny silnika PMSM wykorzystany do badań
sterowania tolerującego uszkodzenia, uwzględniający zarówno asymetrię obwodu
magnetycznego, jak i dowolny rozkład indukcji magnetycznej oraz jego implementację w
środowisku Matlab/Simulink z wykorzystaniem biblioteki simpowersys. W podsumowaniu
przeprowadzono analizę wyników badań symulacyjnych dla najczęściej występujących
uszkodzeń przekształtnika i silnika. Opracowany model symulacyjny oraz otrzymane
wyniki stanowią bazę do dalszych prac nad algorytmami sterowania odpornego na awarie.
1. WPROWADZENIE
Wzrost wymagań dotyczących niezawodności sterowania układów napędowych w
systemach, w których bezpieczeństwo jest najważniejsze, wybiega poza zakres
możliwości wielu tradycyjnych rozwiązań. W związku z powyższym aktualnym
tematem wielu prac badawczych na całym świecie jest sterowanie odporne na
uszkodzenia (ang. Fault Tolerant Control – FTC). Sterowanie to wymaga zmiany
topologii przekształtnika oraz dostosowania algorytmów sterowania do nowej
struktury. Ze względu na asymetrię zasilania, występującą podczas uszkodzenia,
konieczne staje się zastąpienie prostego modelu silnika PMSM we współrzędnych dq
złożonym modelem we współrzędnych naturalnych abc.
2. MODEL MATEMATYCZNY SILNIKA PMSM
Do badań symulacyjnych wykorzystano model matematyczny silnika PMSM,
uwzględniający zarówno asymetrię obwodu magnetycznego, jak i dowolny
rozkład indukcji magnetycznej [1]. W rozważaniach przyjęto kilka założeń
dotyczących silnika PMSM:
 rozważane są tylko silniki trójfazowe połączone w gwiazdę (Y);
 silnik nie wykazuje efektów nasycenia lub rozmagnesowania;
 wszystkie trzy fazy posiadają identyczny kształt siły elektromotorycznej
przesunięty względem siebie o 120 stopni elektrycznych;
__________________________________________
* Politechnika Poznańska.
42
Krzysztof Siembab
 rezystancja i indukcyjność uzwojeń jest taka sama dla trzech faz;
 pomija się straty w żelazie stojana i wirnika.
Uwzględniając powyższe założenia można zapisać równanie napięciowe
dla silnika PMSM w postaci:
V abc   RI abc   dΨ abc 
(1)
dt
gdzie R – macierz rezystancji uzwojeń, Vabc i Iabc – wektory napięć i prądów,
Ψabc – strumień skojarzony stojana, który można przedstawić jako:
 cos(2n  1)  

Ψ abc   Labc I abc   Ψ f  2n1 cos(2n  1)(  23 )
(2)
n 1
cos( 2n  1)(  2 ) 
3 

gdzie Ψf jest amplitudą strumienia pochodzącego od magnesów trwałych, θ – kąt
położenia wirnika, λn – współczynnik wzmocnienia n-tej harmonicznej strumienia
od magnesów trwałych. Współczynniki te są znormalizowane względem
podstawowej składowej tak, że λ1 = 1.
Macierz indukcyjności stojana Labc jest symetryczna i ma postać:

 La ( ) M ab ( ) M ac ( )
Labc   M ba ( ) Lb ( ) M bc ( ) 
 M ca ( ) M cb ( ) Lc ( ) 
(3)
Indukcyjność własna uzwojeń i wzajemna między odpowiednimi uzwojeniami
stojana dla silnika z asymetrią obwodu magnetycznego jest funkcją kąta położenia
wirnika θ i opisana jest równaniami:


L
(

)

L

Ls 2 k cos2k 

a
s0

k 1



Lb ( )  Ls 0   Ls 2k cos2k(  23 )

k 1



Lc ( )  Ls 0   Ls 2k cos2k(  23 )

k 1


M ab ( )  M ba ( )  M s 0   M s 2 k cos2k(  23 )

k 1


 M ac ( )  M ca ( )  M s 0   M s 2 k cos2k(  23 )
k 1



M
(

)

M
(

)

M

M s 2 k cos2k 

bc
cb
s
0

k 1

(4)
Model silnika PMSM do badań symulacyjnych sterowania tolerującego ...
43
gdzie Ls0 i Ms0 – odpowiednio indukcyjność własna i wzajemna uzwojeń stojana
przy symetrii obwodu magnetycznego, Ls2k i Ms2k – odpowiednio amplitudy
składowych zmiennych indukcyjności własnej i wzajemnej wywołane k-tą
harmoniczną rozkładu pola przy asymetrii magnetycznej.
Równania na moment elektromagnetyczny (Te) silnika PMSM oraz równanie
równowagi mechanicznej wyrażają się wzorem:
Te 
J
ia ea  ib eb  ic ec 
m
d m
 Te  TL  B m
dt
(5)
(6)
gdzie: ia,ib,ic – prądy w fazach A,B,C silnika, ωm – prędkość obrotowa silnika,
J – moment bezwładności, B – współczynnik tarcia, TL – moment obciążenia,
ea,eb,ec – indukowane siły elektromotoryczne opisane równaniami:
 sin( 2n  1)  
e a 



 e   Ψ 
( 2n  1) 2 n 1 sin ( 2n  1)(  23 ) 
(7)
f e
 b
n 1
2

sin (2n  1)(  )
 ec 
3 

Model silnika PMSM musi uwzględniać także możliwość podłączenia punktu
neutralnego silnika do przekształtnika, aby móc wprowadzić algorytmy sterowania
odporne na uszkodzenia [2]. Wiąże się to z wprowadzeniem do modelu
poniższych równań:

v a  v n 
Vabc   vb  vn 
 vc  v n 
in  ia  ib  ic 
gdzie vn – napięcie przyłożone do punktu neutralnego silnika, in
w przewodzie neutralnym.
(8)
(9)
– prąd
3. BADANIA SYMULACYJNE
3.1. Model symulacyjny
Badania symulacyjne algorytmów sterowania odpornych na awarię
zdecydowano się przeprowadzić w środowisku Matlab/Simulink. Dostępne
modele silnika PMSM z biblioteki simpowersys nie pozwalają na wprowadzenie
dowolnych modyfikacji równań opisujących silnik PMSM i uwzględniają tylko
symetryczną naturę uzwojeń stojana, co sprowadza model matematyczny
do prostego modelu we współrzędnych dq. Z tego powodu w prowadzonych
44
Krzysztof Siembab
badaniach nie można skorzystać z gotowych rozwiązań proponowanych w
programie Matlab.
W związku z powyższym przygotowano model symulacyjny silnika PMSM
składający się z dwóch części. Część mechaniczną modelu silnika utworzono jako
model sygnałowy z wykorzystaniem Simulinka, podczas gdy część elektryczną
modelu przygotowano z wykorzystaniem komponentów z biblioteki simpowersys
(rys. 1). W modelu części elektrycznej każda z faz silnika PMSM reprezentowana
jest przez rezystor, cewkę z uwzględnieniem indukcyjności wzajemnej między
odpowiednimi fazami stojana i sterowalne źródło napięcia. Sterowalne źródło
napięcia, reprezentujące siłę elektromotoryczną każdej z faz, opisane jest
odpowiednio równaniem (7). Część sygnałowa przygotowana z wykorzystaniem
komponentów Simulinka opisana jest równaniami (5) i (6). W tej części obliczana
jest również wartość siły elektromotorycznej odpowiedniej fazy, która następnie
przekazywana jest do sterowalnego źródła napięcia. Tak przygotowany model
umożliwia niesymetryczne zasilanie faz stojana oraz wprowadzenie do modelu
podłączenia przewodu do punktu neutralnego silnika zgodnie z równaniami (8)
i (9).
Rys. 1. Część elektryczna modelu silnika PMSM
Biblioteka simpowersys pozwala na bezproblemowe zamodelowanie
przekształtnika w strukturze odpornej na uszkodzenia z wykorzystaniem
elementów gotowych kluczy tranzystorowych. Tak zrealizowany model napędu
umożliwia łatwą i szybką symulację wszystkich uszkodzeń, zarówno przerw
w obwodach gałęzi tranzystorowych i faz silnika, a także zwarć kluczy
tranzystorowych.
3.2. Badania stanów awaryjnych
Dla opracowanego modelu przeprowadzono analizę wyników symulacji dla
różnych stanów awaryjnych przekształtnika i silnika. Opracowany model
symulacyjny oraz otrzymane wyniki badań uszkodzeń stanowią bazę wiedzy do
dalszych prac nad opracowaniem algorytmów sterowania odpornych na awarie
Model silnika PMSM do badań symulacyjnych sterowania tolerującego ...
45
oraz metod detekcji i lokalizacji uszkodzeń. Wyniki badań najczęstszych
uszkodzeń przedstawiono poniżej [3].
 Przerwa w jednej fazie silnika PMSM
Przerwa w obwodzie pojedynczej fazy silnika lub przerwanie obwodu gałęzi
przekształtnika całkowicie uniemożliwia zasilanie jednej fazy silnika. Sprawia to,
że prąd w obwodzie uzwojeń stojana może płynąć tylko w dwóch fazach silnika.
Na rysunku 2 (z lewej) pokazano przebiegi podstawowych wielkości silnika
PMSM po wystąpieniu uszkodzenia w chwili t = 0.15 s. Po awarii prąd w fazie
A spada do zera, natomiast zgodnie z pierwszym prawem Kirchhoffa dla punktu
wspólnego silnika, prąd w działających fazach B i C jest równy ib = -ic. Amplituda
zmian prądów w fazach B i C jest równa co do wartości ograniczeniu
wynikającemu z ustawień regulatora. Uszkodzenie fazy powoduje spadek
i oscylacje prędkości obrotowej oraz duże i gwałtowne zmiany momentu
obrotowego silnika. Po przeliczeniu prądów fazowych do współrzędnych dq0
widać duże i szybkie zmiany prądu w osi q oraz spore oscylacje wokół zera prądu
w osi d. Brak szybkiej reakcji na uszkodzenie może prowadzić do dalszych
uszkodzeń silnika lub przekształtnika, a nawet awarii napędzanej maszyny ze
względu na duże amplitudy prądów oraz gwałtowne zmiany momentu.
 Zwarcie w górnej gałęzi przekształtnika
Najgroźniejszymi uszkodzeniami dla przekształtnika i silnika są powstające
zwarcia. Na rysunku 2 (z prawej) pokazano przebiegi przy zwarciu tranzystora T1
w fazie A. Zwarcie to powoduje przepływ bardzo dużych prądów przez wszystkie
fazy silnika. Najgroźniejsze skutki niesie to dla fazy A, w której nastąpiło
uszkodzenie, ponieważ płynący w niej prąd jest zawsze dodatni o bardzo dużej
wartości ograniczanej tylko przez regulator. Dzięki regulatorowi prądów fazowych
prądy stojana osiągają duże wartości, ale jednak nie większe niż ustawione
ograniczenie. Natomiast podczas wysterowania dolnego tranzystora
w uszkodzonej gałęzi przekształtnika występują zwarcia powodujące przepływ
niszczących prądów o wartości kilku kiloamperów, co w większości przypadków
prowadzi do przerwania obwodu uszkodzonej gałęzi oraz dalszych uszkodzeń
przekształtnika. Awaria ta powoduje także duże oscylacje i nagły spadek
prędkości obrotowej silnika oraz szybkie i gwałtowne zmiany momentu silnika.
Brak natychmiastowej reakcji na uszkodzenia zwarciowe prowadzi zwykle do
całkowitego uszkodzenia przekształtnika.
 Przerwa w górnej gałęzi przekształtnika
Przerwanie tranzystora T1 (górny tranzystor fazy A) w przekształtniku
uniemożliwia podanie napięcia zasilania do fazy A silnika, co sprawia, że prąd w
tej fazie może płynąć tylko w jednym kierunku. Jak widać na rysunku 3 (z lewej)
prąd w fazie A płynie tylko przez połowę okresu, gdy przewodzi dolny tranzystor,
co nie wpływa znacząco na zmiany momentu obrotowego i prędkości silnika.
Natomiast przez drugą połowę okresu, gdy powinien przewodzić górny
46
Krzysztof Siembab
(uszkodzony) tranzystor, prąd w fazie A spada do zera, a prądy w fazach B i C
mają równą wartość tj. ib = -ic, co wynika z pierwszego prawa Kirchhoffa.
Powoduje to spadek prędkości obrotowej i duże skoki momentu obrotowego.
Pojawia się także prąd w osi d, a w osi q obserwujemy gwałtowne skoki prądu od
wartości 0 do kilku krotności prądu znamionowego przy zadanym momencie
obciążenia. Dalsza praca napędu może doprowadzić do eskalacji uszkodzeń w
przekształtniku lub silniku. Takie same wyniki uzyskano przy symulacji awarii
dolnego tranzystora w fazie A (przerwa w dolnej gałęzi przekształtnika).
Rys. 2. Przerwa w jednej fazie silnika (z lewej) i zwarcie w górnej gałęzi przekształtnika (z prawej)
Model silnika PMSM do badań symulacyjnych sterowania tolerującego ...
47
 Przerwa w dwóch gałęziach przekształtnika
Uszkodzenie tranzystorów T1 i T3 (górne tranzystory odpowiednio fazy A i B
w przekształtniku), podobnie jak w poprzednim przypadku, powoduje pojawienie
się prądów fazowych o bardzo dużej wartości, szybkich i dużych zmian momentu
obrotowego oraz spadku i oscylacji prędkości obrotowej (rys. 3 (z prawej)).
Awaria ta na pewno doprowadzi do dalszych uszkodzeń przekształtnika i napędu.
Rys. 3. Przerwa w górnej gałęzi (z lewej) i przerwa w dwóch gałęziach przekształtnika (z prawej)
48
Krzysztof Siembab
4. PODSUMOWANIE
Zaprezentowane wyniki badań symulacyjnych najczęstszych uszkodzeń
przekształtnika i silnika wykonano z wykorzystaniem układu sterowania z
kaskadowym regulatorem prędkości typu PI oraz histerezowymi regulatorami
prądów fazowych. Zastąpienie regulatorów histerezowych regulatorami typu PI
prądów we współrzędnych dq0 powoduje, że otrzymane przebiegi przy tym
samym uszkodzeniu różnią się od siebie. Różnice te są widoczne i wynikają z
różnych zasad działania obu regulatorów, co przekłada się na odmienne reakcje na
dane uszkodzenie. Analiza otrzymanych wyników pokazała jednak, że zachodzące
zjawiska dla obu rodzajów regulacji są identyczne, a regulatory wpływają tylko na
maksymalne wartości przebiegów [4].
W artykule zaprezentowano wykorzystywany model matematyczny i
symulacyjny silnika PMSM do badań napędów z uszkodzeniami. Przeprowadzona
analiza wyników badań symulacyjnych dla najczęściej występujących uszkodzeń
przekształtnika i silnika oraz wyciągnięte wnioski stanowią bazę do dalszych prac
nad algorytmami sterowania odpornego na awarie.
LITERATURA
[1]
[2]
[3]
[4]
Zeng, J., Degobert, P., Hautier, J., Minimum torque ripple control of permanent
magnet synchronous motor in the stationary reference frame, in Proc. 2005 IEEE
Int. Conf. Electric Machines and Drives, p. 667–673, 2005.
Gajanayake, C.J., Bhangu, B., Nadarajan, S., Jayasinghe, G., Fault tolerant control
method to improve the torque and speed response in PMSM drive with winding
faults, in Proc. 2011 IEEE Int. Conf. Power Electronics and Drive Systems (PEDS),
p. 956-961, 2011.
Doc, C., Lanfranchi, V., Friedrich, G., Inverter topology comparison for remedial
solution in transistor faulty case, in Proc. Eur. Power Electron. Appl., p. 1–8, 2007.
Errabelli, R., Mutschler, P., Fault-tolerant voltage source inverter for permanent
magnet drives, IEEE Trans. Power Electron., vol. 27, no. 2, p. 500–508, 2012.
PMSM MODEL FOR SIMULATION RESEARCH ON FAULT
TOLERANT CONTROL
This paper presents a mathematical model of PMSM motor, used for research of fault
tolerant control, which takes into account both, asymmetry of the magnetic circuit, as well
as any distribution of magnetic induction, and its implementation in Matlab/Simulink
environment with the use of simpowersys library. In the summary, an analysis of
simulation research results, for the most common failures of the inverter and motor was
conducted. The developed simulation model and obtained results form the basis for further
works on fault tolerant control algorithms.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Marcin KOWOL*
Piotr MYNAREK*
Janusz KOŁODZIEJ*
ZASTOSOWANIE ŚRODOWISKA LABVIEW
W BADANIACH SILNIKÓW Z MAGNESAMI TRWAŁYMI
W artykule przedstawiono system akwizycji i monitorowania danych, który został
zbudowany w oparciu o środowisko LabVIEW z wykorzystaniem technologii wirtualnych
przyrządów. System ten umożliwia wizualizację, rejestrację, analizę oraz przetwarzanie
sygnałów analogowych i cyfrowych. Aplikacja została przygotowana pod kątem badań
wypływu temperatury na magnesy trwałe, a tym samym na pracę silnika synchronicznego
z magnesami trwałymi
1. WSTĘP
Rosnące
wymagania
w
zakresie
projektowania
przetworników
elektromechanicznych determinują nieustający rozwój prac badawczych
dotyczących modelowania zjawisk elektromagnetycznych jak i cieplnych
w maszynach elektrycznych. Wraz z rozwojem technologii informatycznych oraz
wzrostem mocy obliczeniowej, projektanci coraz powszechniej korzystają
z narzędzi szybkiego prototypowania. Nieodzownym elementem badań jest
weryfikacja pomiarowa [3, 6]. Sprawdzenie poprawności złożonych modeli
numerycznych wymaga jednoczesnego monitorowania wielu wielkości fizycznych
na obiekcie rzeczywistym. W obecnej chwili na rynku dostępna jest szeroka gama
aparatury pomiarowej, jednak synchronizowany pomiar wielu wielkości
fizycznych wiąże się z dużymi problemami technicznymi. Rozwiązaniem tego
problemu jest zastosowanie komputera pozwalającego na obsługę oraz
synchronizację kilku kart pomiarowych [1, 4]. Korzyści, jakie wynikają
z zastosowania komputera przemysłowego wyposażonego w nowoczesne karty
pomiarowe oraz odpowiedniego środowiska programistycznego, skłoniły autorów
do wykonania kompleksowego systemu pomiarowego.
2. ŚRODOWISKO LABVIEW
LabVIEW (Laboratory Virtual Instrument Engineering Workbench) jest
graficznym środowiskiem programowania, które przeznaczone jest do tworzenia
__________________________________________
* Politechnika Opolska.
50
Marcin Kowol, Piotr Mynarek, Janusz Kołodziej
aplikacji związanych z akwizycją danych, sterowaniem i testowaniem [1, 2, 7].
Narzędzie to umożliwia szybkie nawiązanie komunikacji z urządzeniami
pomiarowymi i sterującymi, przetwarzanie i analizowanie danych oraz
udostępnianie wyników [5]. Programy stworzone w LabVIEW nazywane są
bardzo często wirtualnymi przyrządami (virtual instruments - VI). Struktura tego
środowiska składa się z trzech zintegrowanych części: panelu czołowego (Front
Panel), diagramu (Block Diagram) oraz ikony/konektora. Panel czołowy jest
graficznym interfejsem, na którym rozmieszczone są kontrolki do zadawania
wartości zmiennych oraz wskaźniki służące do wyświetlania wyników. Diagram
zawiera źródło kodu programu w postaci bloków funkcyjnych połączonych ze
sobą przewodami, natomiast ikona jest graficzną reprezentacją wirtualnego
przyrządu posiadającą dodatkowo złącze wejść i wyjść [5].
3. KONFIGURACJA SPRZĘTU POMIAROWEGO
W celu zrealizowania zadania skonfigurowano sprzęt pomiarowy składający się
z kontrolera NI PXIe-8130 oraz kart pomiarowych typu PXI-6133 i PXIe-4353
(rys. 1). Najważniejsze parametry zastosowanych kart pomiarowych zestawiono
poniżej w tabelach.
Tabela 1. Wybrane parametry karty pomiarowej NI PXI-6133
Liczba różnicowych wejść analogowych
Rozdzielczość przetwarzania dla wejść analogowych
Częstotliwość próbkowania (na kanał)
Liczba zakresów napięcia wejściowego
Linie wejść/wyjść cyfrowych
Liczba liczników/generatorów impulsów
8
14 bity
do 2,5 MS/s
4
8 @ 10MHz
2 (24 bit)
Tabela 2. Wybrane parametry karty pomiarowej NI PXIe-4353
Liczba wejść
Rozdzielczość przetwarzania
Liczba układów kompensacji temperatury spoin
odniesienia termoelementów
Częstotliwość próbkowania (na kanał)
Dokładność
32
24 bity
8
do 90S/s
do 0,30 °C
Tak przygotowany system za pomocą karty pomiarowej PXI-6133 pozwala na
rejestrację wartości chwilowych i skutecznych napięć i prądów w każdej z faz
maszyny, rejestrację prędkości obrotowej oraz momentu obciążenia. Próbki
sygnałów analogowych i cyfrowych wysyłane są do karty pomiarowej poprzez
panel BNC-2120. Dodatkowo w celu zabezpieczenia przed uszkodzeniem systemu
pomiarowego wszystkie sygnały zostały odseparowane galwanicznie od badanego
Zastosowanie środowiska LabView w badaniach silników z magnesami trwałymi
51
obiektu. Do pomiaru temperatury w wybranych przez autorów punktach
pomiarowych, zastosowano dedykowaną profesjonalną 32 kanałową kartę PXIe4353. Sygnały doprowadzone są do karty za pośrednictwem terminalu NI TB-4353
który jest wyposażony w układ kompensacji temperatury spoin odniesienia
termoelementów (cold-junction compensation). Dodatkowo temperaturę wirnika
monitorowano za pomocą pirometru zamontowanego w pokrywie silnika, przy
założeniu jednakowej temperaturze całej objętości wirnika.
Rys. 1. Struktura systemu akwizycji danych
4. APLIKACJA DO AKWIZYCJI DANYCH WIELKOŚCI
ELEKTROMECHANICZNYCH I CIEPLNYCH
Głównym zadaniem aplikacji jest rejestracja oraz analiza wybranych wielkości
elektromechanicznych i cieplnych. Wielkości te są niezbędne do weryfikacji
poprawności modeli matematycznych.
Rys. 2. Fragment interfejsu użytkownika
52
Marcin Kowol, Piotr Mynarek, Janusz Kołodziej
Opracowany interfejs użytkownika składa się z kilku zakładek (rys. 2). Pozwala on
na wybór liczby kanałów pomiarowych oraz ich pełną konfigurację. W wersji
podstawowej umożliwia użytkownikowi skorzystanie z ośmiu kanałów analogowych,
dwóch liczników oraz szesnastu kanałów do pomiaru temperatury. Liczba wejść
pomiarowych systemu wynika z założonych celów badawczych i nie stanowi
ograniczenia do rozbudowy aplikacji o kolejne kanały pomiarowe. Aplikacja pozwala
również na monitorowanie wszystkich mierzonych wielkości on-line.
Program został zbudowany w oparciu o standardową maszynę stanu (State
Machines), składającą się z pętli While Loop, rejestru przesuwnego, struktury
wyboru Case oraz stałej enumerycznej określającej dany stan (rys. 3). Zasada
działania maszyny stanu polega na wyborze w sposób programowy lub przez
użytkownika danego stanu, który może prowadzić do kolejnego stanu.
Zastosowana struktura pozwala również na łatwą rozbudowę aplikacji poprzez
dodanie nowych stanów poszerzających funkcjonalność działania programu oraz
zapewnia przejrzystość kodu programu.
Rys. 3. Struktura standardowej maszyny stanu w środowisku LabVIEW
W realizowanym zadaniu zdefiniowano siedem podstawowych stanów, które
zestawiono w tabeli 3, natomiast sposób ich realizacji zilustrowano na rysunku 4.
Tabela 3. Zdefiniowane stany maszyny
Nr
stanu
1
2
3
4
5
6
7
Opis stanu
ustawienie domyślnych wartości i parametrów kontrolek oraz wskaźników
stan oczekiwania na zdefiniowane zdarzenie na panelu czołowym
wczytanie pliku konfiguracyjnego
„uzbrojenie” procesu pomiarowego
pomiar wybranych wielkości elektromechanicznych i cieplnych
zatrzymanie procesu pomiarowego
Zamkniecie aplikacji
Zastosowanie środowiska LabView w badaniach silników z magnesami trwałymi
Rys. 4. Schemat blokowy aplikacji
Rys. 5. Diagram blokowy stanu piątego (pomiar wybranych wielkości elektromechanicznych
i cieplnych)
53
54
Marcin Kowol, Piotr Mynarek, Janusz Kołodziej
Najważniejszą rolę w programie pełni stan piąty, który odpowiedzialny jest za
pomiar, wizualizację oraz zapis danych wybranych sygnałów analogowych
i cyfrowych. Diagram blokowy wyżej wymienionego stanu pokazano na rysunku 5.
W tym przypadku zastosowano architekturę Producenta/Konsumenta
(producer/consumer design pattern), która opiera się na dwóch równolegle
działających pętlach While Loop. Pierwsza pętla Producenta odpowiedzialna jest
za wykonanie pomiaru, natomiast pętla Konsumenta odpowiedzialna jest za
analizę, wizualizację oraz zapis danych do pliku z rozszerzeniem TDMS
(Technical Data Management Streaming). Przekazywanie danych pomiędzy tymi
pętlami odbywa się za pomocą mechanizmu kolejki.
5. PODSUMOWANIE
Opracowany system pomiarowy pozwala na rejestrację sygnałów analogowych
z dużą częstotliwością próbkowania oraz umożliwia wykonanie dokładniej analizy
stanu pracy badanego przetwornika elektromechanicznego. W celu sprawdzenia
poprawności działania zbudowanego przez autorów systemu akwizycji danych
przeprowadzono testy na silniku synchronicznym z magnesami trwałymi (PMSM)
o rozruchu częstotliwościowym i mocy Pn=2 kW. Testy przeprowadzono w różnych
stanach pracy badanej maszyny. Poniżej przedstawiono na rys. 6-8 przykładowe
zarejestrowane przebiegi wielkości elektrycznych oraz przyrosty temperatury
w wybranych punktach pomiarowych.
400
300
200
u [V]
100
0
-100
-200
-300
u
u
-400
u
9.876
9.878
9.88
9.882
t [s]
9.884
9.886
u-v
u-w
w-v
9.888
Rys. 6. Przykładowe przebiegi napięć po scałkowaniu na biegu jałowym, nN=2200 obr/min
Zastosowanie środowiska LabView w badaniach silników z magnesami trwałymi
55
3
2
i [A]
1
0
-1
-2
i
v
-3
i
u
iw
9.936
9.938
9.94
9.942
9.944
9.946
t [s]
Rys. 7. Przykładowe przebiegi prądów w silniku na biegu jałowym, nN=2200 obr/min
T =5 Nm
T =7 Nm
l
55
T =8.7 Nm
l
T =7 Nm
l
l
silnik
T =5 Nm wył.
l
50
45
 [C]
40
35
30
25
20
Żłobek
Połączenia czołowe
Wirnik
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
t [h]
Rys. 8. Przyrosty temperatur w wybranych punktach pomiarowych w zmiennych warunkach
obciążenia przy nN=2200 obr/min
Zarejestrowane przebiegi można zapisać w postaci pliku tekstowego, co
pozwala na analizę otrzymanych wyników za pomocą innych narzędzi
informatycznych. Przedstawiony system stanowi efektywne narzędzie pomiarowe.
Architektura oprogramowania została zbudowana w oparciu o standardowe
techniki programowania w środowisku LabVIEW, dzięki czemu kod źródłowy jest
czytelny dla innych programistów, chcących rozbudować aplikację o kolejne
funkcjonalności.
56
Marcin Kowol, Piotr Mynarek, Janusz Kołodziej
Piotr Mynarek jest stypendystą projektu Stypendia doktoranckie - inwestycja w kadrę
naukową województwa opolskiego współfinansowanego przez Unię Europejską w ramach
Europejskiego Funduszu Społecznego
LITERATURA
[1] Baltaci K., Yildiz F., NI LabView data acquisition system design using hydrogen fuel
cell. Application of Information and Communication Technologies, Baku, 2009.
[2] Hua Z., Application of LabVIEW in the design of data acquisition and signal
processing system of mechanical vibration. International Conference on Mechatronic
Science, Electric Engineering and Computer, Jilin, China, 2011, pp.2551-2554.
[3] Jagadeesh Chandra A. P., Venugopal C. R., Novel Design Solutions for Remote
Access, Acquire and Control of Laboratory Experiments on DC Machines. IEEE
Transactions on Instrumentation and Measurement, vol. 61, no. 2, February 2012, pp.
349-357.
[4] Jie C., Ru L., Xiangdong L., Zhen Ch., Kai T., Mengye G., Research on synchronous
data acquisition and remote monitoring techniques in the valve test system. Control
Conference (CCC), 2010 29th Chinese, pp. 5717-5721.
[5] NATIONAL INSTRUMENTS; LabVIEW: User manual; November 2003 Edition.
[6] Sun J.,Wang Y., Bai F., Sun F., Design of transient characteristic measuring system
for switched reluctance drive based on LabVIEW. Interactional Conference on
Measurement, Information and Control (MIC) Harbin, China, 2012, pp. 278-281.
[7] Zhigao H., Mingbao X., Xiaojun Z., Research for rotor monitoring system based on
virtual instrument technology. The 6th International Conference on Computer
Science & Education (ICCSE 2011), Singapore, 2011, pp. 508-511.
APPLICATION OF LABVIEW ENVIRONMENT FOR PERMANENT MAGNET
SYNCHRONOUS MOTOR TESTING
The paper presents a dedicated data acquisition and monitoring system based on the
LabView environment using virtual instruments technology. The software allows the
visualization, registration, processing and analysis of many analog signals received from
the sensors. The prepared application is used especially for the analysis of the thermal
processes and their influence on the permanent magnets synchronous motor performance
characteristics.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Piotr MYNAREK*
Marcin KOWOL*
Marian ŁUKANISZYN*
ZASTOSOWANIE METODY ELEMENTÓW
SKOŃCZONYCH DO WYZNACZANIA PARAMETRÓW
ELEKTROMAGNETYCZNYCH SILNIKA PMSM
W pracy przedstawiono obliczenia parametrów elektromagnetycznych silnika
synchronicznego z magnesami trwałymi (PMSM). Analizę przeprowadzono za pomocą
trójwymiarowego modelu numerycznego, zbudowanego w programie Flux 3D, który bazuje na
metodzie elementów skończonych. Za pomocą opracowanego modelu wyznaczono rozkład
indukcji magnetycznej, moment zaczepowy w funkcji kąta obrotu wirnika oraz siłę
elektromotoryczną jaka indukuje się w uzwojeniu silnika. Wyniki obliczeń zostały
zweryfikowane z pomiarami wykonanymi na obiekcie rzeczywistym silnika.
1. WSTĘP
W ostatnim czasie można zauważyć znaczący wzrost zainteresowania silnikami
synchronicznymi z magnesami trwałymi (PMSM z ang. Permanent Magnet
Synchronous Motor). Jest to spowodowane przede wszystkim gwałtownym
rozwojem technologii materiałów magnetycznych z pierwiastków ziem rzadkich
(NdFeB) oraz dynamicznym rozwojem układów energoelektronicznych. Silniki
PMSM swoją popularność zawdzięczają przede wszystkim wysokiej sprawności,
dużej gęstości mocy, niezawodności ruchowej oraz szerokiemu zakresowi
prędkości obrotowej [5]. Poza tym maszyny te charakteryzują się dużą
przeciążalnością momentu, co w połączeniu z stosunkowo niskim momentem
bezwładności wirnika zapewnia dobre właściwości dynamiczne. Dzięki tym
wszystkim zaletom coraz częściej można zaobserwować, że silniki z magnesami
neodymowymi w szczególności PMSM zastępują silniki indukcyjne w napędach
dedykowanych do pracy ciągłej np. napędach pomp i wentylatorów [1, 6].
Dodatkowo silniki PMSM stosowane są coraz chętniej także w układach
napędowych robotów przemysłowych oraz obrabiarek [2].
Przestrzenny charakter zjawisk elektromagnetycznych zachodzących w
przetwornikach elektromechanicznych z magnesami trwałymi sprawia, że wartości
__________________________________________
* Politechnika Opolska.
58
Piotr Mynarek, Marcin Kowol, Marian Łukaniszyn
parametrów silnika zmieniają się także w zależności od kąta położenia wirnika, a
także od wartości prądu. Dlatego też, tradycyjne metody obwodowe analizy
maszyn elektrycznych stają się nieefektywne. Coraz częściej dzięki znacznemu
rozwojowi technik komputerowych oraz gwałtownemu wzrostowi mocy
obliczeniowej komputerów dostępnych dla przeciętnego użytkownika stosowana
jest analiza polowa. W artykule przedstawiono zastosowanie metody elementów
skończonych (MES) 3D do wyznaczania parametrów elektromagnetycznych
silnika PMSM.
2. MODEL MATEMATYCZNY
W pracy jako obiekt badań przyjęto silnik SMKwsg90M8 o rozruchu
częstotliwościowym i parametrach przedstawionych w tabeli 1. W celu
przeanalizowania parametrów elektromagnetycznych ww. maszyny został
zbudowany model polowy w środowisku Flux, bazującym na metodzie elementów
skończonych. Naturalnym podejściem podczas budowy modeli polowych
przetworników elektromechanicznych jest stosowanie warunków brzegowych
pozwalających ograniczyć do minimum obszar obliczeniowy. Dlatego też autorzy
podczas budowy modelu polowego analizowanego silnika zastosowali warunki
periodyczne, ograniczając w ten sposób obszar obliczeniowy do 1/4 objętości całej
maszyny. Zabieg ten pozwolił w znaczący sposób zredukować koszt numeryczny
potrzebny do rozwiązanie zagadnienia. W modelu przyjęto następujące załażenia
upraszczające: pominięto histerezę magnetyczną i zjawisko prądów wirowych.
Tabela 1. Wybrane parametry badanej maszyny
Wielkość
Wartość
Un [V]
400
In [A]
3,7
Pn [kW]
2
nn [obr/min]
2200
Rys. 1. Wygenerowana siatka dyskretyzacyjna w przekroju silnika
ɳ [%]
91
Zastosowanie metody elementów skończonych do wyznaczania parametrów ...
59
3. WYNIKI OBLICZEŃ
Dla opracowanego modelu polowego przeprowadzono szereg symulacji
komputerowych. W pierwszej etapie badań wyznaczono rozkład indukcji
magnetycznej i linii pola w analizowanej maszynie. Na rys. 2 przedstawiono linie
pola magnetycznego dla kąta obrotu wirnika α = 14,25º oraz zerowej wartości
prądu w uzwojeniach silnika I = 0 A. Położenie to odpowiada maksymalnej
wartości momentu zaczepowego.
Rys. 2. Linie pola magnetycznego dla wybranego położenia wirnika (α = 14,25º, I = 0 A)
Zmienność momentu zaczepowego (Tz) w funkcji kąta położenia wirnika
obrazuje rys. 3. Wielkość ta została wyznaczona w zakresie od 0º do 45º, przy
zmianach położenia wirnika względem stojana o 0,25º. Okres zmian momentu
zaczepowego wynosi 15º.
1.5
1
T [Nm]
z
0.5
0
-0.5
-1
-1.5
0
5
10
15
20
25
30
35
40
45
 []
Rys. 3. Zależność momentu zaczepowego (Tz) od kąta położenia wirnika – obliczenia
60
Piotr Mynarek, Marcin Kowol, Marian Łukaniszyn
Wartość maksymalna Tz jaką otrzymano z przeprowadzonych obliczeń
wynosiła Tzmax obl = 1,26 Nm, natomiast z pomiarów otrzymano Tzmax pom=1,31 Nm.
W programie Flux 3D moment zaczepowy wyznaczono wykorzystując metodę
pracy wirtualnej (VW) [4]. Moment oblicza się jako pochodną koenergii (W’)
względem kąta obrotu wirnika przy zerowej wartości prądu:
W 
Tz  
(1)
I 0

H

0



gdzie: W    B  dH dV , α - kąt obrotu wirnika względem stojana.
 
V
W kolejnym etapie badań wyznaczono siłę elektromotoryczną indukującą się
w uzwojeniu silnika, dla różnych wartości prędkości obrotowych wirnika. Siłę tą
obliczono przy założeniu zerowych wartości prądu w uzwojeniu i zadanej
prędkości obrotowej wirnika. Na rys. 4 przedstawiono przebieg SEM przy
znamionowej prędkości obrotowej silnika n = 2200 obr/min. Wyniki symulacji
komputerowych zostały zweryfikowane z pomiarami. Wartość maksymalna siły
elektromotorycznej jaką otrzymano z przeprowadzonych obliczeń wynosiła
Eobl = 296 V, natomiast z pomiarów otrzymano Epom = 304,9 V. Błąd pomiędzy
obliczeniami a pomiarami wynoszący 3% można uznać za zadawalający
i świadczy o poprawności zbudowanych modeli.
400
Obliczenia
Pomiar
300
200
E [V]
100
0
-100
-200
-300
-400
0
10
20
30
40
50
60
70
80
90
 []
Rys. 4. Przebieg fazowej siły elektromotorycznej indukowanej w uzwojeniu analizowanego silnika
W następnej kolejności autorzy przeprowadzili analizę zawartości wyższych
harmonicznych w indukowanej w uzwojeniu fazowym sile elektromotorycznej. Na
podstawie otrzymanego przebiegu SEM obliczono współczynnik zawartości
wyższych harmonicznych (THD z ang. Total Harmonic Distortion) zgodnie
z zależnością (2).
Zastosowanie metody elementów skończonych do wyznaczania parametrów ...
61
n
U
2
k
k 2
 100%
(2)
U1
gdzie: U1 – wartość skuteczna napięcia składowej podstawowej, Uk – wartość
skuteczna napięcia k-tej harmonicznej
Obliczona wartość współczynnika THD w badanym przetworniku
elektromechanicznym wynosi 16,1%. Wartość współczynnika THD jest niezwykle
istotna z punktu widzenia poprawnej pracy silnika synchronicznego [3]. Przebieg
siły elektromotorycznej powinien być zbliżony jak najbardziej do sinusoidy.
Odkształcenie SEM od pierwszej harmonicznej jest zjawiskiem niepożądanym.
Zbyt duża wartość współczynnika THD skutkuje zniekształceniem przebiegów
prądu
silnika
jak
i
wprowadza
dodatkowe
pulsacje
momentu
elektromagnetycznego.
THD 
4. WNIOSKI
W pracy przedstawiono wyniki jakie otrzymano z przeprowadzonej analizy
polowej synchronicznego silnika z magnesami trwałymi. Otrzymane wyniki
zweryfikowano z pomiarami wykonanymi na obiekcie rzeczywistym. Małe różnice
pomiędzy wynikami symulacji komputerowych a pomiarami świadczą
o poprawności zbudowanego modelu numerycznego silnika. Za pomocą
zbudowanego modelu polowego można w szybki sposób, a zarazem z dostateczną
dokładnością,
wyznaczyć
wybrane
parametry
elektromagnetyczne
synchronicznego silnika z magnesami trwałymi. W celu pełnej analizy konstrukcji
silnika należy dodatkowo przeprowadzić analizę stanów dynamicznych silnika jak
zachodzących w nim zjawisk cieplnych, co będzie dalszym etapem prac autorów.
Piotr Mynarek jest stypendystą projektu Stypendia doktoranckie - inwestycja w kadrę
naukową województwa opolskiego współfinansowanego przez Unię Europejską w ramach
Europejskiego Funduszu Społecznego
LITERATURA
[1]
Barański M., Szeląg W., Jędryczka C., Mikołajewicz J., Analiza silnika
synchronicznego o rozruchu bezpośrednim i magnesach w wirniku rozłożonych
w kształcie litery U. Prace Naukowe Instytutu Napędów i Pomiarów Elektrycznych
Politechniki Wrocławskiej Nr 66, Wrocław 2012, s.78-85.
62
[2]
[3]
[4]
[5]
[6]
Piotr Mynarek, Marcin Kowol, Marian Łukaniszyn
Brock S., Pajchrowski T., Bezczujnikowy i energooszczędny napęd wentylatora
z silnikiem PMSM. Prace Naukowe Instytutu Napędów i Pomiarów Elektrycznych
Politechniki Wrocławskiej Nr 66, Wrocław 2012, s.98-104.
Hafner M., Schoning M., Hamayer K., Automated sizing of permanent magnet
synchronous machine with respect to electromagnetic and thermal aspects.
COMPEL-The International Journal for Computation and Mathematics in Electrical
and Electronic Engineering, 2010, Vol. 29, No5.
Henrotte F., Hameyer K., Computation of electromagnetic force densities: Maxwell
stress tensor vs. virtual work principle. Journal of Computational and Applied
Mathematics, 2004, 168 pp. 235–243
Król E., Porównanie efektywności energetycznej silników z magnesami trwałymi i
silników indukcyjnych . Zeszyty Problemowe – Maszyny Elektryczne Nr 78/2007,
s.75-78.
Tudorache T., Trifu I., Permanent-Magnet Synchronous Machine Cogging Torque
Reduction Using a Hybrid Model. IEEE Transactions on Magnetics, vol. 48, no. 10,
October 2012, pp. 2627-2632.
APPLICATION OF FINITE ELEMENTS METHOD FOR DETERMINING
ELECTROMAGNETIC PARAMETERS OF PMSM
This paper presents the calculation of the electromagnetic parameter of the permanent
magnet synchronous motor. The analysis was performed using three-dimensional
numerical model, which was built in Flux 3D environment, based on the finite element
method. The magnetic flux density distribution, cogging torque as a function of the
rotational angle of the rotor and electromotive force in the motor winding were calculated
using the presented field model. Simulation results are successfully verified by
measurements performed on the physical model of the motor.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Bogdan FABIAŃSKI*
NAPĘD Z SILNIKEM RELUKTANCYJNYM
PRZEŁĄCZALNYM Z MATERIAŁÓW PROSZKOWYCH –
PORÓWNANIE PARAMETRÓW PRACY Z KONSTRUKCJĄ
KONWENCJONALNĄ
W artykule przedstawiono wyniki badań porównawczych napędu silnika
reluktancyjnego przełączalnego. Zdefiniowano tezę o poprawie właściwości
energetycznych napędu SRM poprzez wprowadzenie nowoczesnego materiału konstrukcji
obwodu magnetycznego z domieszkowanego, sproszkowanego żelaza w odniesieniu do
klasycznej konstrukcji z izolowanych, walcowanych blach. Określono cel i motywację
badań bazując na ogólnych opisach właściwości porównywanych materiałów
magnetycznych. Przedstawiono strukturę autorskiego napędu wraz z osiągnięciami w
implementacji algorytmów sterowania implikujących możliwość obiektywnego porównania
jako tematu niniejszej publikacji. Opisano stanowisko badawcze, metodologię badań oraz
dokonano opracowania wyników badań z naciskiem na aspekt energetyczny w zakresie
charakterystyk statycznych oraz dynamicznych. W podsumowaniu podjęto próbę określenia
słuszności postawionej tezy oraz zakreślono obszar dalszych prac badawczych.
1. WPROWADZENIE
1.1. Cel i motywacja
Współczesne publikacje w dziedzinie napędów elektrycznych traktowanych
jako połączenie silnika elektrycznego (SE) oraz przekształtnika energii
elektrycznej (PE) koncentrują się przede wszystkim na tym drugim. Dynamicznej
analizie podlegają: struktury przekształtników oraz sterowanie w zakresie poprawy
dynamiki (High Performance), niezawodności (Fault Tolerant) oraz sterowania
bezczujnikowego (Sensorless Control). Niniejszy artykuł wychodząc naprzeciw tej
tendencji przedstawia wstępne wyniki porównania napędu z silnikiem
reluktancyjnym przełączalnym (ang. Switched Reluctance Motor - SRM)
bazującym na materiale proszkowym obwodu magnetycznego z konwencjonalnym
odpowiednikiem złożonym z walcowanych blach.
Analiza kompletnego napędu elektrycznego w aspekcie materiału konstrukcji
samego silnika elektrycznego – choć wydaje się niepotrzebną komplikacją – jest tutaj
uzasadnione. Silnik SRM jest maszyną synchroniczną prądu stałego – nie jest więc
__________________________________________
* Politechnika Poznańska.
64
Bogdan Fabiański
możliwe jego bezpośrednie zasilanie z sieci energetycznej. Co więcej w praktycznych
zastosowaniach [1] ze względu na znaczne ograniczenia zakresu charakterystyki
mechanicznej proste sterowanie napięciowe w układzie otwartym (bez sprzężenia
zwrotnego) nie jest spotykane [2]. Wobec powyższego porównanie materiałów
konstrukcyjnych samego silnika powinno odbywać się dla kompletnego napędu
stanowiącego funkcjonalną całość toru przetwarzania energii elektrycznej w
mechaniczną. Dla podkreślenia zasadności przeprowadzonych prac, dalszych
badań i oczekiwań związanych z analizą ich wyników, w kolejnym punkcie
zostaną scharakteryzowane materiały magnetyczne użyte w porównaniu.
1.2. Materiały magnetyczne mocy
Magnetyki miękkie stosuje się przede wszystkim w maszynach elektrycznych do
transformacji energii elektrycznej - także zamiany w energię mechaniczną (właściwą dla
silników elektrycznych). Pożądanymi cechami dobrego materiału magnetycznie
miękkiego są [3]: duża przenikalność magnetyczna, odpowiednio mała wartość pola
koercji, jak najmniejsza stratność, duża wartość indukcji nasycenia, (pozwalająca na
uzyskanie jak największej siły mechanicznej w silnikach), duża rezystywność,
wytrzymałość mechaniczna, stabilność parametrów przy zmiennej temperaturze,
odporność na zewnętrze warunki, łatwość kształtowania gotowych wyrobów, niska cena.
Ze względu na szybki ubytek zasobów energii pierwotnej i wysokich kosztów
energii elektrycznej ważnym jest ciągłe doskonalenie właściwości materiałów
magnetycznych, a szczególnie obniżania ich stratności.
Największej wielkości domeny, a co za tym idzie najbardziej bezwładne, znajdują
się w blachach (obwód konwencjonalny). Choć właściwości zależą od szczegółowego
składu chemicznego, grubości blachy i kierunku jej walcowania, to można określić
ogólne cechy charakterystyczne takich materiałów: niska częstotliwość pracy, duża
indukcja nasycenia (rzędu 1,5 [T]), stosunkowo duże straty mocy powodowane przez
indukowane prądy wirowe oraz niska cena.
Drugim rodzajem materiału magnetycznego użytego w porównaniu jest
sproszkowane żelazo (obwód proszkowy). Zmielone na małe drobiny, zmieszane w
niektórych przypadkach z pewnymi „ulepszaczami” zostaje poddane (wraz z
wypełniaczem organicznym) sprasowaniu pod dużym ciśnieniem w odpowiedniej
formie. Forma nadaje materiałowi magnetycznemu kształt rdzenia. Po sprasowaniu
takiego materiału, pomiędzy drobinami żelaza pozostają przerwy tworząc tak zwaną
rozproszoną szczelinę występującą w całej objętości rdzenia.
Zwykłe rdzenie wykonane z czystego proszku żelaza należą do najtańszych i
najbardziej popularnych materiałów z indukcją nasycenia rzędu 1,2 [T] oraz
maksymalna częstotliwością pracy około 80 [kHz]. Wadą rdzeni proszkowych jest
podatność na proces starzenia się występujący przy pracy w wysokich temperaturach.
Zalecana jest więc praca wszystkich rdzeni proszkowych w temperaturze do 363 [K].
Napęd z silnikiem reluktancyjnym przełączalnym z materiałów ...
65
2. BADANIA
2.1. Struktura napędu
Silnik SRM jest najstarszym typem silnika elektrycznego zastosowanego w
praktyce, a historyczne znaczenie SRM wynika z prostoty jego konstrukcji.
Najważniejszą z cech silnika SR jest monolityczna budowa wirnika skutkująca
dużą niezawodnością pracy. Z drugiej strony jego nieliniowość powoduje
konieczność stosowania złożonych algorytmów sterowania oraz mechanizmów
pomiaru położenia/prędkości obrotowej.
Parametry pracy stosowanego w badaniach silnika są następujące: moc
znamionowa PN=250[W], prędkość maksymalna ωMAX=10000[obr/min], napięcie
znamionowe UZ=220[V]. Topologia silnika to 12/8 (trzy fazy po dwie pary
biegunów stojana oraz osiem zębów wirnika). Model wzorcowy pochodzi z pralki
Maytag Neptune oferowanej w Stanach Zjednoczonych.
Rys. 1. Stojan oraz wirnik silnika SRM – konstrukcja z blach (z lewej)
oraz z materiału proszkowego (z prawej)
Na rysunku 1 (z lewej strony) przedstawiono konwencjonalną, fabryczną
konstrukcję silnika (osobno: stojan oraz wirnik z łożyskami) z walcowanych blach,
z prawej strony natomiast konstrukcję opartą na materiałach proszkowych.
Niestandardowa, autorska konstrukcja przekształtnika była przedmiotem publikacji
z zakresu: rozwiązań układowych w topologii mostka asymetrycznego [5], natury
sygnału sprzężenia zwrotnego oraz koncepcji synchronizacji fazowej [6],
złożonym sterowaniu silnikiem SR [7] oraz ogólnym właściwościom napędu [8].
Wymienione artykuły dają szczegółowy obraz prac nad konstrukcją napędu,
algorytmami sterowania w niedrogim systemie wbudowanym opartym na
mikrokontrolerze STM32F1. Jedną z większych trudności w sterowaniu silnikiem
okazał się asymetryczny charakter sygnału sprzężenia zwrotnego[6].
Na rysunku 2 przedstawiono strukturę sterownika SRM. Wyszczególniono w
nim cztery zasadnicze elementy: silnik wraz z czujnikiem położenia wału, mostek
66
Bogdan Fabiański
asymetryczny, układ separacji galwanicznej oraz system mikroprocesorowy.
Sygnały sterujące tranzystorów górnych (A+, B+, C+) pracują w układzie
sterowania prędkością obrotową, tranzystory dolne (A-, B-, C-) odpowiadają za
procesy komutacyjne faz silnika.
Rys. 2. Struktura układu sterowania silnikiem SRM
System mikroprocesorowy złożony jest z następujących bloków: KPZ –
kontroler przerwań zewnętrznych wyzwalanych zboczami sygnału sprzężenia
zwrotnego. KPZ zadaje sygnał synchronizacji dla pętli PPLL – programowej pętli
fazowej, której licznik (CNT) jako wejście bloku komutacji (KOM) wraz z
sygnałem przesunięcia fazowego (O) oraz kątem wyprzedzenia wysterowania
tranzystora (F) zadaje odpowiednie sygnały sterujące tranzystorami A-, B-, C- i
samym procesem komutacji.
Pętla regulacji prędkości obrotowej składa się z: bloku wyznaczania prędkości
obrotowej na podstawie sygnałów impulsatora (BWP), kaskadowego regulatora PI:
prędkości (REGW) oraz prądu fazowego (REGI). Prędkość obrotowa zadawana
była potencjometrem wbudowanym w panel sterowania przekształtnika. Drugi z
potencjometrów służył do płynnego ustawiania: przesunięcia fazowego pętli PLL
względem sygnału referencyjnego (O) oraz kąta wyprzedzenia (F) – rysunek 2.
2.2. Stanowisko badawcze
Na rysunku 3 przedstawiono obraz stanowiska badawczego. Składa się ono z:
komputera PC umożliwiającego bieżącą zmianę parametrów oraz monitoring pracy
programu mikrokontrolera, dwóch oscyloskopów: Tektronix DPO3014 oraz
MSO3014 dla rejestracji przebiegów odpowiednio: sygnałów właściwych dla pracy
silnika SRM (prądy fazowe, prędkość obrotowa, moment obciążenia, sygnał
impulsatora) oraz sieci zasilającej (prąd, napięcie, moc). Autotransformator
zastosowano celem zmiany napięcia zasilającego dla części silnoprądowej
przekształtnika. Centralne miejsce stanowił autorski przekształtnik SRMd.
Widoczny jest moduł pomiarowy parametrów zasilania (wartości skuteczne prądu,
napięcia, mocy) oraz miernik MW2006-3S dla momentomierza MT-3Nm-15.
Silnik SRM obciążano przy pomocy sprzęgła wiroprądowego.
Napęd z silnikiem reluktancyjnym przełączalnym z materiałów ...
67
Rys. 3. Stanowisko badawcze z zaznaczeniem ważniejszych elementów składowych
2.3. Charakterystyki statyczne
Implementacja programowej pętli PLL oraz synchronizacja procesu
rozruchowego silnika SRM w dedykowanym napędzie umożliwiły wymierne
porównanie konstrukcji konwencjonalnej oraz proszkowej poprzez kompensację
niedokładności orientacji tarczy czujnika położenia względem rozkładu zębów
wirnika. Niewłaściwe ustawienie skutkowało błędnym procesem komutacji faz
silnika prowadzącym do spadku dynamiki i właściwości energetycznych napędu.
Rozwinięcie algorytmów sterowania w oparciu o pętlę PLL skutkowały
możliwością zmiany kąta wyprzedzenia i znacznego poszerzenia zakresu pracy
napędu w zakresie osiągalnych prędkości obrotowych oraz momentów obciążenia.
Przed właściwymi badaniami dla zadanej konstrukcji silnika ustalano kąty
komutacji w taki sposób, aby na biegu jałowym i napięciu zasilania około 50 [V]
osiągano jak największą prędkość obrotową świadczącą o optymalnym ustawieniu
dla zadanych warunków pracy. Dalsze porównanie obu konstrukcji odbywało się
przy identycznych parametrach pracy (algorytm sterowania, napięcie zasilania).
Na rysunku 4 przedstawiono przebiegi zależności poboru mocy napędu dla
różnych prędkości obrotowych na biegu jałowym. Widać z nich, że napęd
konwencjonalny w badanym zakresie prędkości obrotowej wykazuje znacznie
niższy pobór energii. Nie jest to jednak wynikiem natury gorszych właściwości
energetycznych proszkowego obwodu magnetycznego, ale przede wszystkim
odczuwalnie większych oporów toczenia łożysk wirnika. Mając na względzie
tendencje przedstawionych funkcji z wykorzystaniem ich aproksymacji
wielomianowej daje się zauważyć, iż istnieje punkt przecięcia (11340 [obr/min]),
powyżej którego napęd proszkowy mógłby wykazywać lepsze właściwości
energetyczne (mniejsze straty biegu jałowego).
Wyciągając wnioski z wykresów z rysunku 5 zdecydowano się na analizę
zależności poboru mocy z sieci przez napęd w zależności od momentu obciążenia
dla niskiej prędkości obrotowej (1000 [obr/min]), dla której to różnice oporów
toczenia są stosunkowo niewielkie.
68
Bogdan Fabiański
Rys. 4. Przebiegi zależności poboru mocy napędu w funkcji prędkości obrotowej
na biegu jałowym (P=f(ω))
Rys. 5. Przebiegi zależności poboru mocy napędu w funkcji momentu obciążenia (P=f(MO))
Jak wynika z przebiegów z rysunku 5, początkowe różnice wynikające przede
wszystkim ze strat biegu jałowego dla momentu 0,25 [Nm] zrównują się, powyżej
tego punktu przewaga energetyczna konstrukcji proszkowej pogłębia się. Wydaje
się, że źródeł tej przewagi należy szukać w mniejszych stratach wewnętrznych
proszkowego obwodu magnetycznego. Stosując regresję liniową można wyznaczyć
współczynniki nachylenia charakterystyk odpowiednio: 253 [W/Nm] dla
konstrukcji klasycznej oraz 218 [W/Nm] dla konstrukcji ze spiekanego proszku
żelaza.
2.4. Parametry dynamiczne
Rysunek 6 prezentuje względne porównanie konstrukcji dla wybranych
procesów dynamicznych. Procesami tymi są skokowe zmiany wartości prędkości
zadanej w warunkach zdefiniowanych jak przedstawiono w tabeli 1. Względne
zmiany kąta wyprzedzenia odniesione są do szerokości kąta fazy demagnetyzacji,
tj. dla 100% kąta wyprzedzenia faza zostałaby wyłączona dopiero w momencie
załączenia kolejnej (bez przerw w wysterowaniu).
Napęd z silnikiem reluktancyjnym przełączalnym z materiałów ...
69
Tabela 1. Zestawienie parametrów prób dynamicznych
procesu regulacji prędkości obrotowej
Rys. 6. Przebiegi zależności poboru mocy napędu w funkcji prędkości obrotowej
na biegu jałowym (P = f(ω))
Porównanie z rysunku 6 obrazowane jest w skali względnej. Wynika z nich, że
w próbach o mniejszym wpływie oporów toczenia (niskie prędkości obrotowe)
napęd z silnikiem o obwodzie z materiału proszkowego wykazuje lepsze
właściwości dynamiczne (stwierdzono krótsze czasy regulacji).
3. PODSUMOWANIE
W artykule przedstawiono wstępne wyniki badań napędu z proszkowym obwodem
magnetycznym silnika reluktancyjnego przełączalnego w odniesieniu do klasycznej
konstrukcji z izolowanych, walcowanych blach. Na wstępie zdefiniowano tezę o
poprawie właściwości energetycznych napędu SRM poprzez wprowadzenie
nowoczesnego materiału konstrukcji z domieszkowanego, sproszkowanego żelaza.
Osiągnięcia na innych polach techniki użytkowej – głównie transformatorów
impulsowych oraz analiza porównawcza samych materiałów magnetycznych mocy
pozwoliły na wstępne uzasadnienie i odpowiednią motywację realizacji badań
weryfikujących słuszność przedstawionej tezy.
Opisano osiągnięcia w implementacji algorytmów sterowania – w szczególności
w zakresie programowej pętli fazowej (SPLL) implikującej dalszy rozwój
oprogramowania przekształtnika i umożliwiającą możliwość obiektywne
porównanie konstrukcji poprzez kompensację niedoskonałości mechanicznych
czujnika położenia wału. Przedstawiono konstrukcję stanowiska badawczego – w
tym głównych narzędzi pomiarowych oraz metodologię prowadzonych badań.
70
Bogdan Fabiański
Opracowano wyniki badań z naciskiem na właściwości energetyczne napędu w
zakresie charakterystyk statycznych oraz dynamicznych. Pomimo różnic natury
mechanicznej spowodowanych znacznymi oporami toczenia łożysk wirnika dla
konstrukcji proszkowej zestawienia uwidaczniają poprawę parametrów energetycznych
przy zastosowaniu nowoczesnego obwodu magnetycznego w konstrukcji silnika.
Wnikliwa analiza otrzymanych danych potwierdza założoną tezę. Wydaje się
słuszne, aby sprawdzić powtarzalność wyników także dla sieciowych napięć
zasilających (230 [V] wobec 115 [V] użytych podczas badań) oraz dla zbliżonych
charakterystyk stosowanych łożysk w obu konstrukcjach.
LITERATURA
[1] Murphy A. , Design of a Switched Reluctance Machine Drive for Automotive
Applications, p.12, p.19, p.30-34, School of Electronic Engineering Dublin City
University, 2008.
[2] Krishnan R., Switched reluctance motor drives, r.1.4, r.5.2, CRC Press, 2001.
[3] Wac-Włodarczyk A., Materiały magnetyczne - Modelowanie i zastosowania, p.16-17,
p.33-34, Wydawnictwo Politechniki Lubelskiej, 2012.
[4] Szyćko T., Indukcyjności, Elektronika Praktyczna 1/2005, p. 96-99, 2005.
[5] Fabiański B., Przekształtnik napędu silnika reluktancyjnego przełączalnego,
materiały konferencyjne SENE CD ISBN: 978-83-7283-439-3, Łódź 2011.
[6] Fabiański B., Synchronizacja fazowa silnika reluktancyjnego przełączalnego na
podstawie asymetrycznego sygnału sprzężenia zwrotnego, Studia z Automatyki i
Informatyki, Tom 36, p. 15-26, ISSN 0867-3977, PTPN, Poznań 2011.
[7] Fabiański B., Algorytm sterowania silnikiem reluktancyjnym przełączalnym w
szerokim zakresie prędkości obrotowej z wykorzystaniem pojedynczego, binarnego
sygnału czujnika położenia wału, Academic Journals: Poznan University of
Technology, WPP, 2012.
[8] Fabiański B., Konstrukcja i właściwości napędu z silnikiem reluktancyjnym
przełączalnym z materiałów proszkowych, Studia z Automatyki i Informatyki, Tom
37, p.35-46, ISSN 0867-3977, PTPN, Poznań 2012.
SWITCHED RELUCTANCE MOTOR MADE FROM IRON POWDER COMPARISON WITH STANDARD CONSTRUCTION
In the article, there were presented comparison results of switched reluctance motor drive made
from different materials. There was an assumption made that energy efficiency could be increased
by new magnetic circuit material introduction. This modern, innovative material based on iron
powder was in the opposite to the classic, standard construction made from stack of metal sheets.
There were goals and motivation described in the article as the general properties of compared
magnetic materials were. Structure of the original drive and control algorithms achievements were
shown. Introduced, dedicated control system was the base for objective comparison. Research
methodology was described as the research stand with its components was. Comparison results in
the range of static and dynamic drive performance were analyzed. Conclusions were provided and
increase of the energy efficiency in the new magnetic circuit material of SRM was confirmed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Piotr SOBAŃSKI*
Teresa ORŁOWSKA-KOWALSKA*
ANALIZA SYMPTOMÓW USZKODZEŃ ŁĄCZNIKÓW
TRANZYSTOROWYCH FALOWNIKA NAPIĘCIA
W NAPĘDZIE INDUKCYJNYM
W artykule zaprezentowano wybrane wyniki badań symulacyjnych dotyczących
uszkodzeń polegających na braku przewodzenia prądu łączników IGBT falowników
napięcia stosowanych w układach napędowych z silnikiem indukcyjnym. Zwrócono
szczególną uwagę na trudności występujące podczas analizy symptomów awarii złożonych
układów napędowych o sterowaniu wektorowym. W pracy wskazano sposób postępowania
pozwalający na wybór użytecznych sygnałów diagnostycznych oraz ocenę wpływu
przyjętej strategii sterowania na proces ekstrakcji symptomów uszkodzeń.
1. WSTĘP
Awarie półprzewodnikowych łączników układów falownikowych stosowanych
w napędach indukcyjnych o regulowanej prędkości kątowej stanowią istotny
problem ze względu na nagły oraz postępowy charakter. Uszkodzenie jednego
z tranzystorów falownika napięcia, w krótkim czasie może przyczynić się do
nieprawidłowości pracy innych łączników, prowadząc tym samym do znacznego
obniżenia jakości pracy napędu elektrycznego bądź uniemożliwienia jej dalszego
kontynuowania [1]. Symptomy uszkodzeń w przypadku zamkniętych układów
sterowania zwykle przyjmują niejednoznaczny charakter, co w dużym stopniu
utrudnia proces poprawnej identyfikacji cech sygnałów diagnostycznych
świadczących o wystąpieniu analizowanego typu awarii. Z uwagi na to,
projektowanie systemów monitorujących stan napędów elektrycznych
o zaawansowanej strukturze regulacji często poprzedzone jest badaniami
w otwartych układach sterowania, co pozwalana na wyselekcjonowanie
użytecznych sygnałów diagnostycznych oraz wstępny dobór właściwych metod
ekstrakcji symptomów awarii.
Obrazy hodografów is  f is  wektora prądu stojana stanowią bogate źródło
informacji na temat kondycji napędów elektrycznych. W pracach [2]-[4]
zaprezentowano metody diagnostyczne, w których zastosowano techniki ekstrakcji
__________________________________________
* Politechnika Wrocławska.
72
Piotr Sobański, Teresa Orłowska-Kowalska
symptomów uszkodzeń tranzystorów falowników napięcia, oparte na analizie
przebiegu wektora prądu stojana is na płaszczyźnie zespolonej   .
W niniejszym artykule dokonano analizy porównawczej obrazów hodografów
wektora prądu stojana podczas uszkodzeń jednego, bądź dwóch łączników
tranzystorowych falownika napięcia pracującego w otwartej strukturze regulacji
skalarnej U/f =const., z wybranymi wynikami badań układu o sterowaniu
wektorowym. Wskazano również na wpływ nastaw regulatora prądu w osi prądu
isy na kształt obrazów wspomnianych hodografów. Zaprezentowane wyniki badań
zostały uzyskane na drodze symulacyjnej, przy wykorzystaniu pakietu
MATLAB/Simulink oraz biblioteki SimPower System.
2. ANALIZOWANA STRUKTURA STEROWANIA
Zaprezentowane w artykule wyniki badań zostały uzyskane za pomocą modeli
symulacyjnych dwóch napędów indukcyjnych różniących się przyjętą metodą
sterowania prędkością silnika. W pierwszej kolejności zastosowano metodę
regulacji skalarnej U/f = const. bez sprzężeń zwrotnych, a następnie technikę
sterowania wektorowego DFOC (ang. Direct Field Oriented Control). Schemat
blokowy układu napędowego dla przykładu DFOC przedstawiono na rysunku 1.
Falownik napięcia sterowany techniką SVPWM (ang. Space Vector Pulse Width
Modulation) zasilany jest napięciem stałym z prostownika PWM ze stabilizacją
napięcia w obwodzie pośredniczącym [5].
Symulacji uszkodzeń dokonano poprzez podanie sygnału logicznego o stałej
wartości 0 na bramki wybranych tranzystorów. Zaproponowany sposób
modelowania awarii odpowiada sytuacji, kiedy dochodzi do nieprawidłowości
pracy układów dopasowujących napięcie sterujące bramek tranzystorów IGBT
(ang. gate pre-drivers), bądź do uszkodzenia samych łączników IGBT. W obu
przypadkach diody zwrotne uszkodzonych modułów tranzystorowych są sprawne
oraz zdolne do przewodzenia prądu elektrycznego.
Parametry badanego silnika podano w tabeli 2.1.
Tabela 2.1. Parametry znamionowe silnika indukcyjnego
Moc PN [kW]
Napięcie zasilające UN [V]
Prąd stojana IN [A]
Prędkość obrotowa nN [obr/min]
Moment obciążenia mo [Nm]
Moment bezwładności J [kgm2]
Częstotliwość napięcia zasilającego fN [Hz]
1,1
220/380
2,9/5
1400
7,5
0,0026
50
Analiza symptomów uszkodzeń łączników tranzystorowych falownika ...
73



Rys. 1. Schemat układu bezpośredniego sterowania polowo zorientowanego
dla napędu indukcyjnego
3. WYNIKI BADAŃ SYMULACYJNYCH
Na kolejnych rysunkach 2-3 pokazano obrazy hodografów wektora prądu
stojana is podczas uszkodzeń jednego bądź dwóch łączników tranzystorowych
falownika
napięcia pracującego w otwartej strukturze regulacji skalarnej
U/f =const. Nieprawidłowo funkcjonujące łączniki oznaczono na rysunkach
odpowiednio T1uszk., T2uszk.,...,T5,4uszk. W celu ułatwienia analizy wyników badań,
płaszczyznę   podzielono na obszary opisane wartością kąta zakreślanego od
osi  . Badania wykonano dla różnych wartości prędkości obrotowej silnika n
oraz momentu obciążenia mo. Symulacji uszkodzeń dokonywano w trakcie
ustalonej pracy układu napędowego.
Przeprowadzone badania wykazały, że każde z analizowanych uszkodzeń może
zostać zlokalizowane na podstawie charakterystycznego kształtu hodografów
wektora prądu stojana. Na rysunku 4 przedstawiono modelowe obrazy
hodografów is  f is  , opracowane na podstawie uzyskanych wyników
symulacyjnych. Obszary płaszczyzny   , w których zawarty jest wykres
zależności is  f is  zostały opisane za pomocą wartości odpowiednich kątów.
Piotr Sobański, Teresa Orłowska-Kowalska
T1uszk.
90
120
150
180
0
210
0
330
240
150
180
0
210
-5
10
T4uszk.
90
120
0
180
0
210
0
330
240
T1,4uszk.
150
30
0
210
300
0
i
s
0
180
120
0
i
-15
10
120
20
0
0
210
330
240
300
270
-10
0
i
[A]
10
[A]
s
T4,6uszk.
40
90
60
150
180
120
20
60
150
30
[A]
s
0
30
180
90
30
180
0
60
150
-10
T5,3uszk.
40
60
150
s
T5,2uszk.
120
0
0
30
180
0
i
i s [A]

0
300
270
-10
5
-5
330
240
10
[A]
90
10
0
210
-15
10
0
s
15
60
30
90
20
300
i
150
5
[A]
T1,3uszk.
40
330
[A]
s
T3,6uszk.
-10
270
-10
210
270
120
-5
330
240
-15
0
-10
-10
90
10
180
-5
-5
10
15
60
i s [A]

i s [A]

i
90
-10
180
240
0
[A]
120
0
30
300
-10
-10
10
15
5
0
60
150
270
0
10
5
330
240
T2uszk.
90
120
0
210
10
[A]
s
10
60
30
270
s
T6uszk.
6
180
-5
0
i
150
300
i
270
90
5
30
-10
-10
300
-10
-10
10
120
150
-5
330
240
[A]
s
10
60
i s [A]

i s [A]

5
0
210
-5
0
i
30
180
300
-10
-10
10
[A]
s
0
270
0
i
60
4
150
2
330
240
270
-10
-10
5
30
300
T5uszk.
90
120
i s [A]

-5
5
30
10
60
i s [A]

0
T3uszk.
90
120
i s [A]

i s [A]

5
10
60
i s [A]

10
i s [A]

74
210
-20
210
330
240
-20
300
210
330
240
270
-40
-40
-20
0
i
s
240
300
270
300
270
20
[A]
-20
330
40
-40
-40
-20
0
20
is [A]
40
-40
-40
-20
0
i
s
20
40
[A]
Rys. 2. Obrazy hodografów wektora prądu stojana podczas uszkodzeń łączników tranzystorowych
falownika napięcia w układzie napędowym o otwartej strukturze regulacji U/f = const
Analiza symptomów uszkodzeń łączników tranzystorowych falownika ...
T2,6uszk.
40
T1,5uszk.
40
90
20
30
180
0
210
330
240
0
-20
60
150
180
0
210
300
330
240
20
-10
120
-30
30
180
0
210
300
0
i s [A]

0
-10
-30
T5,6uszk.
150
150
5
180
0
210
330
240
300
0
0
20
[A]
300
0
0
-10
-30
-30
20
T1,2uszk.
150
30
180
0
210
330
240
300
270
-20
0
180
0
210
330
240
300
0
20
[A]
T5,4uszk.
10
0
-10
120
-30
60
150
30
5
180
0
210
330
240
-20
270
20
[A]
s
90
20
30
s
60
150
30
60
i
T3,4uszk.
i
90
120
-20
0
40
90
[A]
s
20
[A]
120
-20
270
-20
10
-10
330
240
0
s
30
30
210
-20
270
s
10
-20
20
180
20
30
i
300
i
60
30
60
-20
330
[A]
s
i
90
120
-20
0
-30
20
30
20
210
-40
-40
40
T2,3uszk.
[A]
s
0
240
20
120
-20
270
-20
10
-10
330
240
i
10
i s [A]

150
-20
-20
90
20
60
i s [A]

i s [A]

0
180
270
0
30
90
20
-20
i
T1,6uszk.
30
10
-40
-40
40
[A]
s
30
270
0
i
0
60
150
300
i s [A]

-20
20
30
270
-40
-40
120
i s [A]

150
-20
90
120
i s [A]

0
60
i s [A]

i s [A]

20
T4,2uszk.
40
90
120
75
300
270
-20
0
i
s
20
[A]
Rys. 3. Obrazy hodografów wektora prądu stojana podczas uszkodzeń łączników tranzystorowych
falownika napięcia w układzie napędowym o otwartej strukturze regulacji U/f =const.
76
Piotr Sobański, Teresa Orłowska-Kowalska
Rys. 4. Modelowe obrazy hodografów wektora prądu stojana w trakcie uszkodzeń łączników
tranzystorowych falownika napięcia
Zdolność do kontynuowania pracy napędu zależy od lokalizacji uszkodzenia
oraz od punktu pracy napędu, tzn. prędkości oraz momentu obciążenia. Badania
wykazały, że w przypadku uszkodzenia dwóch tranzystorów należących do tej
samej grupy, tzn. katodowej (T1, T3, T5) bądź anodowej (T4, T6, T2) prawidłowe
funkcjonowanie obciążonego napędu w pełnym zakresie prędkości jest
nieosiągalne, ponieważ silnik utyka, natomiast na biegu jałowym możliwe jest jej
kontynuowanie. Zależność ta jest słabo widoczna na przedstawionych
hodografach. W przypadku pozostałych uszkodzeń średnia wartość prędkości
mierzonej silnika jest stała, różna od zera.
Na rysunku 5 przedstawiono wybrane obrazy hodografów wektora prądu stojana
uzyskane na podstawie badań układu regulacji ze sterowaniem polowo zorientowanym
DFOC. W trakcie symulacji przeanalizowano wpływ nastaw regulatora prądu isy na
wykres zależności is  f is  . Zakres oraz warunki przeprowadzonych badań były
analogiczne jak we wcześniej zaprezentowanych wynikach symulacyjnych
dotyczących otwartej struktury regulacji.
Jak wcześniej wspomniano dobór nastaw regulatora prądu isy w znacznym
stopniu wpływa na kształt obrazów hodografów wektora prądu stojana podczas
uszkodzeń tranzystorów falownika. Na rysunkach 6a,c,e pokazano obrazy
hodografów is uzyskane w trakcie badań struktury sterowania z wartością
wzmocnienia kp członu proporcjonalnego regulatora prądu typu PI o 30% wyższą
niż w przypadku analizy, której wyniki pokazano odpowiednio na rysunku 6b, d, f.
Optymalizacja nastaw regulatorów napędów przeprowadzana jest często za
pomocą różnego rodzaju algorytmów minimalizujących funkcję celu (błąd
Analiza symptomów uszkodzeń łączników tranzystorowych falownika ...
77
regulacji). Wymagane jest więc ustalenie wartości Wg funkcji celu przy której
proces optymalizacji zostanie zakończony. Przyjęcie bardzo małej wartości Wg, na
pewnym etapie procesu optymalizacji prowadzi do dalszego zwiększania
wzmocnień regulatorów przy uzyskaniu nieistotnej poprawy regulacji.
W analizowanym przypadku zmniejszenie wartości wzmocnienia członu
proporcjonalnego regulatora prądu isy prowadzi do uzyskania wykresów zależności
is  f is  zbliżonych do zaobserwowanych w otwartej strukturze sterowania,
jednocześnie nie powodując zauważalnego obniżenia jakości regulacji.
Należy dodać, że w przeciwieństwie do układu sterowania U/f =const.,
w przebadanych przypadkach napęd sterowany metodą wektorową nie utyka.
a)
c)
T1uszk.
20
e)
T1,4uszk.
20
90
60
30
180
0
210
-10
330
240
150
0
180
0
210
-10
s
0
-10
90
120
-30
30
180
0
210
330
240
300
-20
0
i
s
20
[A]
270
-20
0
s
20
[A]
f)
10
0
-10
-30
30
120
150
0
210
330
300
0
i
s
20
[A]
30
10
0 180
-10
0
210
-20
270
-20
60
150
30
180
T2,6uszk.
20
60
240
90
120
90
-20
270
300
i
T1,4uszk.
20
60
150
-20
330
240
[A]
30
i s [A]
10
210
-30
20
d)
T1uszk.
30
i s [A]

0
i
b)
20
0
-20
300
-20
-20
20
[A]
s
0 180
270
0
i
30
10
-10
330
240
270
-20
-20
150
30
300
60
20
i s [A]
0
10
T2,6uszk.
90
120
60
i s [A]

150
120
i s [A]

i s [A]
10
30
90
120
-30
330
240
300
270
-20
0
i
s
20
[A]
Rys. 5. Obrazy hodografów wektora prądu stojana podczas uszkodzeń tranzystorów:
T1 (a,b), T1 i T4 (c,d) oraz T2 i T6 (e,f)
4. PODSUMOWANIE
Analiza symptomów uszkodzeń tranzystorów falownika napięcia napędu
elektrycznego o złożonej strukturze sterowania, poprzedzona badaniami
w otwartym układzie regulacji, znacznie upraszcza identyfikację cech
charakterystycznych dla uszkodzeń danych łączników przebiegów sygnałów
78
Piotr Sobański, Teresa Orłowska-Kowalska
diagnostycznych. Informacje uzyskane na podstawie testów symulacyjnych
w układzie sterowania U/f = const. mogą zostać wykorzystane przy projektowaniu
systemów monitorujących stan tranzystorów falownika złożonych napędów pod
warunkiem przeprowadzenia odpowiedniej optymalizacji parametrów regulatora prądu isy.
Praca została wykonana z wykorzystaniem Infrastruktury PL-Grid.
LITERATURA
[1]
[2]
[3]
[4]
[5]
Sobański P., Orłowska-Kowalska T., Wpływ uszkodzenia tranzystora IGBT
falownika napięcia na przebiegi zmiennych stanu silnika indukcyjnego ze
sterowaniem wektorowym, Przegląd Elektrotechniczny, vol. 89, nr 2b,162-165, 2013.
Sleszynski W., Nieznanski J., Cichowski A., Real-time fault detection and localization
vector-controlled induction motor
drives, Proc. 11th Eur. Conf. on Pow. Electr. and
Appl., 2-8, 2005.
Zidani F., Diallo D., El Hachemi Benbouzid M., Nait-Said R., A Fuzzy-Based
Approach for the Diagnosis of Fault Modes in a Voltage-Fed PWM Inverter Induction
Motor Drive, IEEE Trans. Ind. Electr. Appl., vol. 55, no.2, 586-593, 2008.
Peuget R., Courtine S., Rognon, J.-P., Fault detection and isolation on a PWM inverter
by knowledge-based model, IEEE Trans. Ind. Appl., vol. 34, no.6, 1318-1326, 1998
Knapczyk M., Pieńkowski K., Polowo zorientowane układy napędowe z silnikiem
indukcyjnym, falownikiem napięcia i przekształtnikiem sieciowym AC/DC
o dwukierunkowym przepływie energii, Prace Naukowe Instytutu Maszyn, Napędów
i Pomiarów Elektrycznych Politechniki Wrocławskiej, nr 66, 2004.
AN ANALYSIS OF THE TRANSISTOR FAULTS FOR A VOLTAGE INVERTERFED INDUCTION MOTOR DRIVE
In this paper same simulation results of IGBTs open-circuit faults for two level voltage
inverter-fed induction motor drives were presented. The special focus of the investigation
has been on problems in an analysis of the considering transistors failures symptoms for
the complex vector controlled motor drives. In this article, an approach leading to the
selection of useful diagnostic signals and the associated with the applied control method
of the induction drive a failure features extraction procedure was proposed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Łukasz NIEWIARA*
Krzysztof ZAWIRSKI*
AUTO-STROJENIE REGULATORA TYPU PID
Z WYKORZYSTANIEM LOGIKI ROZMYTEJ
Zagadnienia związane z automatycznym doborem nastaw regulatorów typu PID znane
są już od kilkunastu lat. W niniejszym artykule opisano koncepcję auto-strojenia
wykorzystującego Blok Logiki Rozmytej, który w całym procesie pełni rolę układu
nadrzędnego, reprezentującego wiedzę ekspercką. Opisano tutaj zalety zastosowania logiki
rozmytej, strukturę zaprojektowanego układu symulacyjnego, algorytm strojenia, sposób
zmiany nastaw oraz przedstawiono wyniki badań symulacyjnych wykonanych w
środowisku MatLab.
1. WSTĘP
Proces auto-strojenia regulatorów typu PID pozwala na minimalizację wpływu
czynnika ludzkiego przy doborze jego nastaw, ogranicza się on do uruchomienia
procesu i ewentualnego jego nadzorowania. W świetle szybkości rozwoju postępu
technologicznego oraz przemysłu zastosowanie algorytmów „auto tuningu” daje
możliwość szybszej realizacji projektów. Konwencjonalne podejście do procesu
doboru nastaw regulatora jest często procesem żmudnym i czasochłonnym,
dodatkowo proces ten jest ograniczony dostępnością kryteriów. Procesy samostrojenia realizują się według ściśle określonego algorytmu, w trakcie kolejnych
cykli iteracyjnych. Procesem kieruje odpowiedni sterownik, który znacznie
szybciej analizuje otrzymane dane procesowe, aniżeli człowiek. Dzięki temu
uzyskuje się znaczne przyspieszenie procesu strojenia, co pozwala na szybszy
rozwój aplikacji przemysłowych.
Zastosowanie logiki rozmytej do przeprowadzenia procesu strojenia pozwoliło
na jego bardziej ogólny opis, gdzie częściowo uniezależniono się od ściśle
matematycznego opisu algorytmu. Podejście to wykorzystuje zalety
nieprecyzyjnego opisu wskaźników jakości procesu regulacji za pomocą
odpowiednich zmiennych lingwistycznych oraz baz reguł. Blok Logiki Rozmytej
(BLR) w zaprojektowanym algorytmie nie wpływa bezpośrednio na proces
regulacji, odpowiada on jedynie za aktualizację nastaw regulatora. Takie podejście
pozwoliło na zastosowanie tradycyjnego algorytmu regulacji PID, gdzie BLR jest
blokiem nadrzędnym odpowiadającym wiedzy eksperckiej.
__________________________________________
* Politechnika Poznańska.
80
Łukasz Niewiara, Krzysztof Zawirski
2. OPIS SYMULOWANEGO UKŁADU
Proces samo-strojenia symulowano przy pomocy środowiska MatLab stosując
utworzone w tym celu m-skrypty, gdzie model układu regulacji zbudowano w
Simulinku.
W procesie symulacji auto-strojenia przyjęto układ kaskadowo połączonego
regulatora z przekształtnikiem jako członem wykonawczym oraz modelem obiektu
regulacji w domkniętej pętli ujemnego sprzężenia zwrotnego (Rys. 1).
Rys. 1. Schemat blokowy struktury układu sterowania
Blok regulatora zaprojektowano tak, aby w zależności od klasy modelu obiektu
sterowania możliwy był wybór jego pracy w trybach: PD, PI oraz PID.
Rys. 2. Schemat bloku PID wykorzystanego do symulacji
Proces aktualizacji wartości nastaw regulatora realizowany był przez
odpowiedni algorytm. Rola czynnika ludzkiego ogranicza się w tym przypadku do
wstępnego doboru nastaw regulatora, określenia wymagań w stosunku do
wskaźników jakości oraz uruchomienia procesu.
Kierunek zmian nastaw regulatora uzależniono od wartości wskaźników jakości
odpowiedzi układu na wymuszenie skokowe, przyjęto następujące wskaźniki jakości:
 maksymalne przeregulowanie ε,
 znormalizowany czas regulacji Tw dla 2% toru regulacji,
Tr
Tw 
(1)
100T p
Auto-strojenie regulatora typu PID z wykorzystaniem logiki rozmytej
81
Wartości zmian nastaw wyliczano przy pomocy BLR na podstawie wskaźników
jakości.
Rys. 3. Blok rozmyty – dane wejściowe i wyjściowe
Zmiany nastaw regulatora realizowano według następujących zależności:
K p ( i  1 )  K p ( i )C K P
(2)
TI ( i  1 )  T I ( i )C TI
(3)
TD ( i  1 )  T DI ( i )C TD
(4)
gdzie: C – podstawa potęgi determinująca szybkość zmian nastaw, Kp(i+1) – nowa
wartość wzmocnienia regulatora, TI(i+1) – nowa wartość czasu całkowania
regulatora, TD(i+1) – nowa wartość czasu różniczkowania regulatora, ΔKP, ΔTI,
ΔTD – obliczone wartości przyrostów nastaw regulatora dla i-tej iteracji.
Każdą zmienną lingwistyczną opisano przy pomocy odpowiedniej zależności
funkcyjnej, jej kształt i strukturę wyznaczono eksperymentalnie. Dla wskaźników
jakości procesu regulacji określono po 4 funkcje reprezentowane przez następujący
zbiór wartości lingwistycznych: {Z, S, M, B}, odpowiednio: Z – Zero, S – Small,
M – Medium, B – Big.
Rys. 4. Budowa zaprojektowanego układu auto-strojenia
Dziedzinę zmiennej „Przeregulowanie” przyjęto w zakresie <0, 0.65>, jako
procentową wartość przeregulowania, zaś dla zmiennej „Czas regulacji” przyjęto
zakres <0, 800>.
Wyjściowym wartościom przyporządkowano po 5 funkcji zmiennych
lingwistycznych: {NB, NS, Z, PS, PB}, odpowiednio: NB – Negative Big, NS –
82
Łukasz Niewiara, Krzysztof Zawirski
Negative Small, Z – Zero, PS – Positive Small, PB – Positive Big. Dla wszystkich
zmiennych przyjęto dziedzinę w zakresie <-1, 1>.
Wnioskowanie rozmyte (bazy reguł) zdefiniowano przy pomocy opracowanych
zmiennych lingwistycznych.
3. BADANIA SYMULACYJNE
Na wejście podawano sygnał skokowy o amplitudzie równej 100. Następnie
badano odpowiedź układu i określano wskaźniki jakości procesu regulacji.
Zatrzymanie procesu następowało po osiągnięciu odpowiednich kryteriów przez
odpowiedź układu lub po osiągnięciu limitu ilości iteracji.
Wybrane wyniki badań przedstawiono na rysunkach 5 – 8. Rysunki ilustrują
proces samo-strojenia dla czterech różnych obiektów regulacji. Z ilustracji tych
wynika, że po kilku lub kilkunastu krokach procesu strojenia osiąga się poprawny
proces regulacji tj. bez przeregulowania i względnie krótkim czasem regulacji.
Rys. 5. Przebieg symulacji strojenia nr 1 – PD obiekt astatyczny
Rys. 6. Przebieg symulacji strojenia nr 2 – PI obiekt astatyczny
Auto-strojenie regulatora typu PID z wykorzystaniem logiki rozmytej
83
Rys. 7. Przebieg symulacji strojenia nr 3 – PI obiekt statyczny
Rys. 8. Przebieg symulacji nr 4 – PID obiekt statyczny
4. PODSUMOWANIE
Badania symulacyjne zaprojektowanego układu auto-strojenia wraz ze
zdefiniowanymi funkcjami przynależności oraz bazami reguł okazały się pomyślne i
zgodne z założeniami. Po podaniu wstępnych nastaw regulatora proces modyfikował
je, aż do osiągnięcia odpowiedzi układu spełniającej postawione jej kryteria.
Wyniki badań pokazują, że proces przebiega pomyślnie dla różnego typu klasy
modeli obiektów sterowania, a w przypadku wystąpienia oscylacji na wyjściu, po
kilku iteracjach jest w stanie je wyeliminować, otrzymując ostatecznie łagodny
przebieg odpowiedzi.
84
Łukasz Niewiara, Krzysztof Zawirski
LITERATURA
[1]
[2]
[3]
R. Kaula „Podstawy automatyki” Wydawnictwo Politechniki Śląskiej, 2005.
A. Piegat „Modelowanie i sterowanie rozmyte” Akademicka Oficyna Wydawnicza
EXIT, Warszawa 1999.
Ł. Niewiara „Samostrojenie regulatora PID dla obiektu o nieznanych parametrach z
wykorzystaniem logiki rozmytej”, Politechnika Poznańska, Praca magisterska,
216/Z2/2012.
AUTOTUNING OF PID CONTROLLER BASED ON FUZZY LOGIC
Issues related to the automatic selection of the PID controller settings have been known
for several years. This article describes the concept of autotuning using fuzzy logic block,
which in the process serves as the master. It describes the advantages of the application of
fuzzy logic simulation system designed structure, algorithm tuning, how to change the
settings and the results of simulation studies carried out in MatLab environment.
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS
No 75
Electrical Engineering
2013
Piotr DERUGO*
Mateusz DYBKOWSKI*
Krzysztof SZABAT*
ANALIZA ADAPTACYJNEGO NEURONOWO ROZMYTEGO
REGULATORA Z WYKORZYSTANIEM
KONKURENCYJNYCH WARSTW TYPU PETRIEGO
W STEROWANIU SILNIKIEM PRĄDU STAŁEGO
W artykule przedstawiono zagadnienia związane z zastosowaniem adaptacyjnej
struktury sterowania z przestrajalnym regulatorem neuronowo - rozmytym, dla układu
napędowego o nieznanym momencie bezwładności. Zastosowano adaptacyjną strukturę
sterowania z modelem odniesienia. Regulator neuronowo – rozmyty zmodyfikowano
poprzez wprowadzenie konkurencyjnej warstwy Petriego. Zmiana taka pozwoliła na
poprawę właściwości dynamicznych układu napędowego z silnikiem prądu stałego
w porównaniu do klasycznego regulatora neuronowo - rozmytego. Rozważania teoretyczne
zostały potwierdzone przez badania symulacyjne wykonane w pakiecie SimPower system.
1. WSTĘP
W większości rzeczywistych aplikacji przemysłowych, wykorzystywane układu
napędowe są systemami wielomasowymi, w których występuje połączenie
sprężyste. Coraz większe wymagania, co do jakości sterowania, stawiane
nowoczesnym układom napędowym, każą uwzględniać rzeczywiste parametry
połączeń, oraz tłumić wynikające z nich drgania skrętne. Nietłumione oscylacje
występujące na wale maszyny, mogą prowadzić do wahań prędkości, a w
skrajnych przypadkach nawet do utraty stabilności napędu.
Istnieje wiele sposobów na kompensowanie wpływu drgań skrętnych na prędkość
maszyny roboczej, szeroki opis stanu zagadnienia został przedstawiony w [1].
Celem niniejszej publikacji jest zaprezentowanie możliwości wykorzystania sieci
Petriego w układach napędowych. Temat ten po raz pierwszy przedstawiono w [6]. W
pracy tej wykorzystano Sieć Petriego w połączeniu z regulatorem neuronowo rozmytym do sterowania silnikiem indukcyjnym w strukturze wektorowej.
Modyfikacja, w stosunku do klasycznego rozwiązania przedstawionego w [1] polega
na zastosowaniu konkurencyjnej warstwy typu Periego zarówno do selekcji sygnałów
otrzymanych po fuzyfikacji w pierwszej warstwie rozmytego adaptacyjnego
regulatora Mamdaniego [2], jak i do selekcji sygnałów adaptacji wag.
__________________________________________
* Politechnika Wrocławska.
86
Piotr Derugo, Mateusz Dybkowski, Krzysztof Szabat
2. MODEL MATEMATYCZNY UKŁADU NAPĘDOWEGO
Do badań, w niniejszej pracy, wykorzystano obcowzbudny silnik prądu stałego.
Przyjęto stałą wartość strumienia wzbudzenia Ψf. Silnik taki można opisać za
pomocą równań w jednostkach względnych [3].
di
Te a  ia  K t ( ua  f m )
(1)
dt
d M
  f ia  mL  m f
(2)
dt
gdzie: Te stała elektromagnetyczna, TM stała mechaniczna.
Schemat blokowy silnika DC, opracowany na podstawie równań (1) i (2),
przedstawiono na Rys. 2.1.
TM
Rys. 2.1. Schemat blokowy silnika prądu stałego
Rys. 2.2. Schemat układu sterowania
Układ sterowania składa się z dwóch kaskadowo połączonych regulatorów
(Rys. 2.2). W pętli zewnętrznej zastosowano regulator prędkości mający na celu
skompensowanie stałem mechanicznej układu, będącej największa stałą czasową
układu. W pętli wewnętrznej użyty został regulator prądowy niwelujący wpływ
mniejszych stałych czasowych występujących w układzie.
Analiza adaptacyjnego neuronowo rozmytego regulatora ...
87
Podczas badań pierwszej kolejności, jako układ odniesienia zastosowano
klasyczny regulator prędkości typu PI z nastawami zgodnymi z kryterium modułu.
Następnie regulator ten został zamieniony na neuronowo rozmyty regulator
adaptacyjny z warstwami Petriego.
3. ADAPTACYJNY NEURONOWO - ROZMYTY REGULATOR
Z KONKURENCYJNĄ WARSTWĄ PETRIEGO
Schemat ideowy adaptacyjnego regulatora rozmytego z konkurencyjną warstwą
Petriego przedstawiono na Rys. 3.1.
Sygnałami wejściowymi regulatora są błąd odtwarzania prędkości e(k), oraz
jego pochodna e(k) sygnałem wyjściowym jest natomiast sygnał sterujący u(k)
lub u(k). Regulator ten jest regulatorem typu PI, jeżeli istnieje w nim blok
całkowania na wyjściu obiektu. W przypadku braku bloku całowania jest to
regulator typu PD [4], [5].
W pracy [6] zaproponowana została neuronowo rozmyta sieć z wykorzystaniem
warstwy konkurencyjnej typu Petriego. W niniejszej publikacji, rozważono
implementację analogicznej warstwy dla przypadku regulatora o 9 regułach oraz
trójkątnych funkcjach aktywacji.
Selekcja odbywa się pomiędzy warstwą rozmywania, a wnioskowania.
Konkurencyjna warstwa Petriego spośród zadanej ilości sygnałów wejściowych
podaje na wyjścia jedynie k sygnałów o największej wartości, zgodnie z równiami:


A  max_ k sort we 
(3)
k 1...N d  n  i 1...n 
 wy i  wei
(4)
 wy i  0
(5)
wei A
i 1...n
wei A
i 1...n
gdzie: A- wektor k wartości maksymalnych z pośród wartości wektora
wejściowego, max_k – operator wyboru k wartości maksymalnych spośród wektora
wejściowego, sort - operator sortowania wartości malejąco według wartości ich
modułów, we - wektor wejściowy, wyi – i-ta wartość wektora wyjściowego,
Nd - zadana ilość wartości maksymalnych mających pozostawać aktywnymi,
n - liczność wektorów wejściowego oraz wyjściowego.
88
Piotr Derugo, Mateusz Dybkowski, Krzysztof Szabat
Rys. 3.1. Adaptacyjny neuronowo rozmyty regulator z dwoma warstwami Petriego
W przypadku regulatora neuronowo-rozmytego o 9 regułach oraz dwóch
zmiennych wejściowych, na wyjściu warstwy fuzyfikacji uzyskuje się 6 sygnałów,
natomiast na wyjściu każdej z kolejnych warstw 9 sygnałów. W związku z zasadą
działania logiki rozmytej, przy funkcjach przynależności zdefiniowanych jako
trójkątne, dowolny sygnał nie może jednocześnie przynależeć do więcej niż dwóch
reguł. Oznacza to, że na wyjściu warstwy rozmywania, co najmniej dwa sygnały są
zawsze zerowe, a pozostałe cztery przyjmują wartości niezerowe. Wprzypadkach
skrajnych dwa sygnały mają wartość maksymalną, a pozostałe przyjmują wartości
zerowe. Możliwe są także sytuacje, gdy wszystkie cztery sygnały przyjmują takie
same wartości.
W algorytmie doboru wartości maksymalnych uwzględniono możliwość
zaistnienia faktu równości dwóch lub więcej sygnałów co do modułu ich wartości.
Jeżeli przez warstwę miałby przejść, co najmniej jeden z takich sygnałów,
wówczas przechodzą wszystkie, nawet pod rygorem przekroczenia ilości sygnałów
akceptowanych. Rozwiązanie takie jest szczególnie istotne z punktu widzenia
stabilności układu.
Analiza adaptacyjnego neuronowo rozmytego regulatora ...
89
4. BADANIA SYMULACYJNE
W niniejszym rozdziale przedstawiono wybrane wyniki badań symulacyjnych
układu sterowania silnikiem prądu stałego z regulatorem neuronowo – rozmytym
w torze regulacji prędkości kątowej z warstwą Petriego.
Na Rys. 4.1 przedstawiono przebieg regulacji prędkości, oraz wartości wag, dla
adaptacyjnego regulatora rozmytego o 9 regułach, bez wykorzystania warstwy
konkurencyjnej typu Petriego.
a)
b)
Rys. 4.1. (a) Przebiegi prędkości zadanej, modelu oraz silnika, (b) przebiegu wartości wag regulatora
adaptacyjnego dla regulatora bez warstwy Petriego
Wszystkie wagi regulatora w chwili czasowej t = 0 mają wartości zerowe.
Wynika to z faktu założenia nieznajomości obiektu sterowania uniemożliwiającej
oszacowanie koniecznych nastaw wstępnych.
W chwili czasowej t = 0.2 sekundy sygnał prędkości zadanej zmienia się po
rampie wartość z 0 na 0.5 prędkości znamionowej. Szczególnie w pierwszych
chwilach widać duże oscylacje prędkości wokół prędkości zadanej. W czasie tym
następuje drastyczna zmiana wartości poszczególnych współczynników
wagowych. Obciążenie silnika jest proporcjonalne do chwilowej prędkości, w
chwili czasowej następuje skokowa zmiana obciążenia. W tym czasie regulator
dostroił już swoje nastawy, przez co uchyb spowodowany skokiem obciążenia jest
niewielki.
Na Rys. 4.2 przedstawiono odpowiedz układu regulacji oraz przebieg wartości
wag dla układu z zastosowaniem konkurencyjnej Warstwy Petriego [WP]
pomiędzy blokiem fuzyfikacji oraz interferencji (warstwa Petriego 1. Rys. 3.1),
analogiczne rozwiązanie w swoich pracach nad liniowym silnikiem indukcyjnym
zaproponowano w pracy [6]. Na WP podawanych jest 6 sygnałów, z czego co
najmniej 2 są zawsze zerowe. Co za tym idzie odrzucanie jednego lub dwóch
90
Piotr Derugo, Mateusz Dybkowski, Krzysztof Szabat
sygnałów o najmniejszych wartościach nie spowoduje zmiany działania układu.
Z racji konieczności posiadania na wejściu warstwy interferencji co najmniej
dwóch sygnałów niezerowych, których iloczyn w dalszych warstwach byłby
niezerowy, należy akceptować co najmniej 2 sygnały o wartościach maksymalnych
co do modułu. Z tych powodów postanowiono przebadać układ akceptujący 2 oraz
3 wagi o największej wartości co do modułu. Akceptacja 4 sygnałów daje układ
odniesienia. Na podstawie symulacji, stwierdzono, że akceptacja jedynie dwóch
sygnałów prowadzi do okresowych oscylacji prędkości, co jest zjawiskiem
niepożądanym.
a)
b)
Rys. 4.2. a)Przebiegi prędkości zadanej, modelu oraz silnika, (b) przebiegu wartości wag regulatora
adaptacyjnego dla regulatora z warstwą Petriego za warstwą interferencji
Z tych też powodów na Rys. 4.2 przedstawiono przebiegi dla układu
z konkurencyjną WP akceptującą 3 największe sygnały co do modułu, a tym
samym zerującą jeden z sygnałów o najmniejszej, niezerowej wartości modułu,
oraz nie wpływają na pozostałe sygnały o wartościach zerowych.
Jak widać z przebiegów układ taki działa lepiej w pierwszych fazach dostrajania
regulatora, jednak w dalszym toku działania zauważalne jest minimalnie większe
przeregulowania prędkości przy skokowej zmianie obciążenia.
Na Rys. 4.3 przedstawiono przebiegi błędów sterowania dla układów
z regulatorami z oraz bez warstwy Petriego. Wyraźnie widoczne jest znacznie
szybsze dostosowanie się regulatora z konkurencyjną WP do nieznanego obiektu.
Proces wstępnego dostrajania wag zajmuje około 3.5s zamiast 4.5s w przypadku
układu z regulatorem bez WP. Widoczne są też mniejsze uchyby prędkości
w stanach o wysokiej dynamice. Pewną wadą rozwiązania jest dłuższy czas
ustalania się odpowiedzi w przypadku stanów o niskiej dynamice.
Najprawdopodobniej istniałaby możliwość zniwelowania tej wady poprzez
Analiza adaptacyjnego neuronowo rozmytego regulatora ...
91
wprowadzenia nieliniowych współczynników skalujących sygnały wejściowe
regulatora w zależności od aktualnie wymuszanej dynamiki.
Rys. 4.3 Porównanie wartości błędów regulacji dla regulatora z oraz bez warstwy Petriego
5.WNIOSKI
Jak pokazały badania symulacyjne, zastosowanie konkurencyjnej warstwy
Petriego dla warstwy fuzyfikacji adaptacyjnego neuronowo rozmytego regulatora
rozmytego o dziewięciu trójkątnych funkcjach aktywacji, pozwoliło na poprawę
jego właściwości, w szczególności dynamicznych.
Układ taki szybciej, startując z zerowymi wagami, adaptuje się do nieznanego
obiektu sterowania. Efekt ten jest skutkiem autonomizacji obszarów płaszczyzny
sterowania względem układu bez konkurencyjnej warstwy Petriego. Co ważne
zerując pewne wagi uzyskujemy przyśpieszenie działania algorytmu poprzez
uproszczenie obliczeń.
Należy pamiętać o konieczności analizy układu pod względem stabilności,
odrzucanie zbyt dużej ilości sygnałów może doprowadzić jej utraty.
LITERATURA
[1]
[2]
Krzysztof Szabat; Struktury sterowania elektrycznych układów napędowych
z połączeniem sprężystym; Oficyna wydawnicza Politechniki Wrocławskiej;
Wrocław 2008.
Simone Bova, Pietro Codara, Daniele Maccari and Vincenzo Marra; A logical
analysis of Mamdani-type fuzzy inference, I theoretical bases; Conference Location:
Barcelona; Date of Conference: 18-23 July 2010; Print ISBN: 978-1-4244-6919-2.
92
[3]
[4]
[5]
[6]
Piotr Derugo, Mateusz Dybkowski, Krzysztof Szabat
Orlowska-Kowalska Teresa, Szabat Krzysztof, Jaszczak Krzysztof, The influence of
parameters and structure of PI-type fuzzy-logic controller on DC drive system
dynamics, Fuzzy Sets and Systems 131 (2002) 251 – 264.
T. Orłowska-Kowalska, M. Dybkowski, K. Szabat, Adaptive neuro-fuzzy control of
the sensorless induction motor drive system, 12th International Power Electronics
and Motion Control Conference. EPE-PEMC 2006 pp. 1836-1841.
G. Zhang, J. Furusho, Speed Control of Two-Inertia System by PI/PID Control,
IEEE Trans. on Industrial Electronics, vol. 47, no.3, pp. 603-609, 2000.
Wai Rong-Jong, Chu Chia-Chin; ‘Motion Control of Linear Induction Motor via
Petri Fuzzy Neural Network’; IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, VOL. 54, NO. 1, FEBRUARY 2007 p. 281-295.
Praca finansowana przez Narodowe Centrum Nauki w ramach projektu Adaptacyjne
sterowanie rozmyte złożonego układu napędowego o zmiennych parametrach, 2012-2015,
2011/03/B/ST7/02517
ANALYSIS OF USAGE OF ADAPTIVE NEURO FUZZY CONTROLLER
WITH COMPETITIVE PETRI LAYERS IN THE CONTROL OF DC MOTOR
The article presents the issues associated with the use of adaptive control structure with
adaptive fuzzy controller for the drive system with unknown moment of inertia. Adaptive
control structure with a reference model has been used. Competitive Petri layer was
introduced to the fuzzy controller. This has allowed the improvement of the dynamic
properties of the system as compared to the classic fuzzy controller. Theoretical
considerations were confirmed by simulation.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Wiesław ŁYSKAWIŃSKI*
Łukasz KNYPIŃSKI*
Lech NOWAK*
OBWODOWO-POLOWA OPTYMALIZACJA
TRANSFORMATORA IMPULSOWAGO
W artykule zaprezentowano nową strategię projektowania transformatora impulsowego
polegającą na jego dwuetapowej optymalizacji. W pierwszym etapie obliczeń
przeprowadzono optymalizację parametrów strukturalnych obwodu magnetycznego
transformatora na podstawie modelu obwodowego zjawisk przy narzuconych wymaganiach
funkcjonalnych. Optymalizację parametrów urządzenia przeprowadzono przy użyciu
algorytmu genetycznego. Ograniczenia uwzględniono poprzez dodanie do funkcji celu
składnika reprezentującego karę za ich przekroczenie. Parametry zaprojektowanego w ten
sposób transformatora spełniającego zadane przy projektowaniu wymagania, należy
wykorzystać jako dane początkowe do optymalizacji konstrukcji w ujęciu polowym.
Przedstawiono i omówiono wybrane wyniki obliczeń symulacyjnych i optymalizacyjnych.
1. WSTĘP
Strukturę projektowanego transformatora dobiera się odpowiednio do postulowanej
mocy, napięcia i prądu wejściowego oraz wyjściowego. Metody wstępnego doboru
wymiarów głównych obwodu magnetycznego transformatorów impulsowych oraz sposób
wyznaczania parametrów konstrukcyjnych i elektrycznych uzwojeń przedstawiono w
pracach [1, 9, 13]. Na podstawie wstępnie przyjętych wymiarów głównych transformatora
oraz parametrów uzwojeń, oblicza się pozostałe wymiary obwodu magnetycznego i
uzwojeń, potrzebne do jednoznacznego określenia struktury transformatora, a następnie
wyznacza się jego parametry funkcjonalne. W literaturze do wyznaczania tych parametrów
są proponowane dwa ujęcia. W pierwszym z nich wykorzystuje się model obwodowy
zjawisk. Występujące w równaniach tego modelu indukcyjności, pojemności i rezystancje
wyznacza się analitycznie [3, 9] lub na podstawie pomiarów impedancji w funkcji
częstotliwości [4, 11], a także metodami numerycznymi na podstawie analizy rozkładu
pola w transformatorze [2, 10, 12]. Jednak w procesie optymalizacji z uwagi na dużą
czasochłonność obliczeń polowych, dogodnie jest przeprowadzić je przed przystąpieniem
do projektowania. Tworzy się charakterystyki ujmujące zależność poszukiwanych
współczynników równań modelu obwodowego transformatora od zmieniających się w
__________________________________________
* Politechnika Poznańska.
94
Wiesław Łyskawiński, Łukasz Knypiński, Lech Nowak
ustalonym zakresie, wybranych parametrów struktury. Potrzebne w obliczeniach
projektowych parametry modelu, dla aktualnie ustalonej struktury i przy danych
wymuszeniach, oblicza się na podstawie utworzonych charakterystyk za pomocą procedur
interpolacyjnych. Proces projektowania kończy się, jeśli uzyskany projekt spełnia
wszystkie wymagania określone w zbiorze danych.
Przy projektowaniu transformatora impulsowego, ze względu na bardzo dużą
czasochłonność wyznaczania parametrów funkcjonalnych metodą polową, celowe jest
przeprowadzenie obliczeń najpierw przy wykorzystaniu mniej dokładnego modelu
obwodowego zjawisk. Parametry zaprojektowanego w ten sposób transformatora
spełniającego sformułowane przy projektowaniu wymagania można wykorzystać jako
dane początkowe do syntezy konstrukcji w ujęciu polowym. Taka strategia
projektowania transformatora impulsowego polegająca na jego dwuetapowej
optymalizacji pozwala znacznie zredukować czas obliczeń.
W wyniku wielokrotnego powtarzania algorytmu projektowania można uzyskać
zbiór projektów spełniających zadane wymagania. Wówczas do oceny projektów
transformatora i wybrania najlepszego rozwiązania wykorzystuje się kryteria oceny, do
których należą np.: masa transformatora, sprawność, koszt produkcji czy koszty
eksploatacji. Do rozstrzygnięcia problemu wyboru rozwiązania optymalnego
wykorzystuje się metody poszukiwania ekstremum funkcji wielu zmiennych, przy
nieliniowej funkcji celu i nieliniowych funkcjach ograniczeń.
2. SFORMUŁOWANIE ZADANIA OPTYMALIZACJI OBWODU
MAGNETYCZNEGO TRANSFORMATORA
W procesie optymalizacji dogodnie jest posługiwać się unormowanymi
zmiennymi decyzyjnymi [5], które powinny być bezwymiarowe i mieć
porównywalne wartości. W celu unormowania tych zmiennych wprowadza się
bezwymiarowe wielkości xi według zależności
s s
xi  i id
(1)
sig  sid
gdzie sid oraz sig oznaczają odpowiednio dolną i górną granicę przedziału
spodziewanych wartości każdej ze zmiennych si. Wyznaczone w ten sposób
zmienne decyzyjne przyjmują wartości z przedziału <0,1>.
Przy optymalizacji autorzy proponują przyjmować jako parametry si: średnicę
środkowej kolumny rdzenia s1 = dFe oraz s2 = ht wysokość i szerokość s3 = bt okna
transformatora. Ostatnie dwie wielkości muszą zapewniać dostateczną przestrzeń na
umieszczenie uzwojeń i wymaganej izolacji. Określona na ich podstawie minimalna
powierzchnia okna transformatora, zapewniająca minimum masy rdzenia, jest równa
polu powierzchni przekroju izolacji i miedzi zajmowanej przez uzwojenia. Na
podstawie pola powierzchni miedzi i założonej gęstości prądu w przewodach oraz
przekładni obliczana jest liczba zwojów uzwojenia pierwotnego i wtórnego.
Obwodowo-polowa optymalizacja transformatora impulsowego
Po wielu obliczeniach testowych autorzy artykułu
multiplikatywną kompromisową funkcję celu w postaci:
a1
95
zaproponowali
a2
 m x   Px  
(2)
F x    c  

 mc 0sr   P0sr 
gdzie mc, P – odpowiednio masa materiałów czynnych i straty mocy transformatora,
mc0sr, P0sr – średnie wartość masy i strat mocy transformatora uzyskane w algorytmie
genetycznym w procesie inicjacji, a1, a2 – współczynniki wagowe, x = [x1, x2, x3]T –
wektor zmiennych decyzyjnych.
W trakcie procesu optymalizacji uwzględniono ograniczenia nierównościowe dotyczące:
- ustalonego przyrostu temperatury uzwojeń u
u x 
g1 x  
1  0
(3)
umax
- mocy wyjściowej P transformatora
Px 
g 2 x   1 
0
(4)
Pn
Powyższe ograniczenia uwzględniono wykorzystując metodę funkcji kary
zewnętrznej. Za przekroczenie powyższych ograniczeń dodawana jest kara do funkcji
celu. W obliczeniach przyjęto następujące dane: napięcie zasilające znamionowe
U1n = 230 V, częstotliwość napięcia zasilającego fn = 100 kHz, znamionowa średnia
wartość napięcia wyjściowego U2n = 24 V oraz wyznaczona z mocy znamionowej Pn
wartość prądu obciążenia I2n = 10 A.
Przy optymalizacji transformatora, ze względu na bardzo dużą czasochłonność
obliczeń parametrów funkcjonalnych na podstawie polowego modelu zjawisk,
zaproponowano koncepcję dwuetapowej syntezy projektowanego obiektu [4]. Najpierw,
opierając się na mniej dokładnym modelu obwodowym zjawisk, a następnie w etapie
drugim wykorzystuje się parametry struktury uzyskane z pierwszego etapu optymalizacji
transformatora, jako dane początkowe do syntezy konstrukcji w ujęciu polowym.
3. OPTYMALIZACJA Z WYKORZYSTANIEM MODELU
OBWODOWEGO TRANSFORMATORA
Dla potrzeb optymalizacji obwodu magnetycznego transformatora impulsowego
opracowano oprogramowanie składające się z procedur optymalizacyjnych
wykorzystujących algorytm genetyczny oraz procedur zawierających obwodowy model
zjawisk transformatora [8]. Badano wpływ liczby osobników, liczby pokoleń i
prawdopodobieństwa mutacji na zbieżność procesu optymalizacyjnego. Na rysunku 1
pokazano zmianę wartości kryterium opisanego zależnością (1) oraz kryteriów
cząstkowych w kolejnych pokoleniach. Przyjęto liczbę osobników równą 200, a
96
Wiesław Łyskawiński, Łukasz Knypiński, Lech Nowak
prawdopodobieństwo mutacji równe 0,05%. Dla liczby pokoleń większej od 30 zmiana
wartości poszczególnych kryteriów była mniejsza niż 0,01%.
a)
F(x)
1,2
1,13
1,06
L
S
0,99
0,92
G
liczba pokoleń
0,85
0
b)
10
20
30
40
1,22
mc0śr/mc(x)
1,12
G
1,02
S
0,92
0,82
liczba pokoleń
0,72
L
0
10
20
30
40
1,55
c)
Pc0śr/Pc(x)
L
S
1,35
1,15
0,95
0,75
G
liczba pokoleń
0,55
0
10
20
30
40
Rys. 1. Zależność kryterium oceny (a) oraz kryteriów cząstkowych (b) i (c) od liczby pokoleń
(L - najlepiej przystosowanego osobnika, G - najgorzej przystosowanego osobnika,
S - średnia pokolenia)
Na podstawie przeprowadzonych badań symulacyjnych sformułowano wytyczne do
optymalnego doboru parametrów algorytmu genetycznego mających duży wpływ na
zbieżność obliczeń. Należą do nich liczba osobników, liczba pokoleń i
Obwodowo-polowa optymalizacja transformatora impulsowego
97
prawdopodobieństwo mutacji. Parametry te dobrano w taki sposób, aby minimalizować
liczbę wywołań funkcji celu. Przeprowadzone obliczenia optymalizacyjne cechowały się
dobrą zbieżnością dla następujących parametrów numerycznych algorytmu: liczba
osobników nie mniejsza niż 100, liczba pokoleń co najmniej większa od 40, a
prawdopodobieństwo mutacji mieszczące się w zakresie 0,3 – 0,05 %.
W tabeli 1 przedstawiono otrzymane w wyniku obliczeń wartości wymiarów ht, bt,
dFe rozpatrywanego transformatora, dla których uzyskuje się ekstremum funkcji celu.
Zgodnie z ideą algorytmu genetycznego, zestaw rozwiązań początkowych uzyskano w
wyniku losowego doboru wartości zmiennych decyzyjnych z przestrzeni rozwiązań
dopuszczalnych. W pierwszym wierszu zestawiono wyniki optymalizacji dla liczby
zwojów wynikającej z wymiarów okna transformatora. Uzyskana w ten sposób liczba
zwojów jest liczbą rzeczywistą. Ze względu na wykonalność uzwojenia liczba zwojów
powinna być liczbą całkowitą. W kolejnych dwóch wierszach zamieszczono wyniki
obliczeń otrzymane przy założeniu stałej szerokości okna transformatora i zaokrągleniu
liczby zwojów z1 w górę i w dół do najbliższej liczby całkowitej. Założona szerokość
okna wynika z przyjętych wymiarów przewodów nawojowych i odstępów izolacyjnych.
Tabela 1. Wyniki pierwszego etapu optymalizacji
z1
35,34
36
35
ht [mm]
28,96
29,50
28,75
bt [mm] dFe[mm]
7,74
14,25
7,80
14,71
7,80
14,05
 [%]
97,62
97,32
97,52
mc [g]
273,26
299,51
266,02
Ze względu na wymiary rdzenia zbliżone do standardowego rdzenia ETD-44 do
dalszych rozważań przyjęto wariant przedstawiony w drugim wierszu tabeli 1. Takie
rozwiązanie umożliwia łatwą weryfikację pomiarową na zbudowanych modelach
transformatorów. Udokładnioną syntezę tego wariantu wykonano, wykorzystując
polowy model zjawisk. Rozpatrzono wpływ na sprawność parametrów odwzorowanych
w sposób przybliżony w modelu obwodowym takich jak długość szczeliny izolacyjnej
między uzwojeniami , rozmieszczenie uzwojeń.
4. SYNTEZA TRANSFORMATORA W UJĘCIU POLOWYM
Ujecie polowe umożliwia dokładniejsze wyznaczanie parametrów funkcjonalnych niż przy
wykorzystaniu modelu obwodowego [8]. Z tego względu dalszą optymalizację transformatora
wykonano z wykorzystaniem kompleksowego polowego modelu zjawisk [7, 8], w którym
uwzględniono nieliniowe i histerezowe właściwości obwodu magnetycznego, prądy wirowe w
rdzeniu i uzwojeniach oraz procesy cieplne i straty dielektryczne.
Przy projektowaniu transformatora metodą polową jako dane początkowe
wykorzystano parametry transformatora uzyskane w procesie optymalizacji z
zastosowaniem modelu obwodowego zjawisk (tab. 1). Na podstawie wykonanych badań
98
Wiesław Łyskawiński, Łukasz Knypiński, Lech Nowak
symulacyjnych stwierdzono, że konfiguracja uzwojeń w istotny sposób wpływa na
parametry funkcjonalne transformatora. Z tego względu skupiono się nad optymalizacją
konfiguracji uzwojeń, aby uzyskać możliwie jak największą sprawność [7]. Z
przeprowadzonych obliczeń symulacyjnych wybrano dwa warianty rozmieszczenia
uzwojeń. W pierwszym uzwojenie pierwotne jest umieszczone bliżej środkowej
kolumny rdzenia, a na nim nawinięte jest uzwojenie wtórne (uzwojenia niedzielone). W
drugim uzwojenie wtórne umieszczono między dwoma połówkami uzwojenia
pierwotnego (dzielone uzwojenie pierwotne). Optymalizowano długość szczeliny
izolacyjnej między uzwojeniami  tak aby straty w uzwojeniach i rdzeniu były jak
najmniejsze. Stwierdzono, przy  = 0,5 mm sprawność jest największa.
Na rysunku 2 przedstawiono porównanie sprawności transformatora z uzwojeniami
niedzielonymi w funkcji prądu obciążenia. Uzyskane charakterystyki wyznaczono na
podstawie modelu polowego s i obwodowego o. Wartości obliczone porównano
następnie z wynikami pomiarów p. Duża zgodność wyników pomiarów i obliczeń
symulacyjnych świadczy o właściwym wyborze modelu polowego do projektowania
transformatora impulsowego. Sprawność o obliczona przy wykorzystaniu modelu
obwodowego różni się znacznie od wyników pomiarów ze względu na małą dokładność
odwzorowania w nim zjawisk elektromagnetycznych i cieplnych. Przy obciążeniu
znamionowym 10 A sprawność o jest prawie o 3% większa od p. W celu zwiększenia
dokładności modelu obwodowego należałoby parametry tego modelu wyznaczyć
metodami polowymi lub określić je na podstawie pomiarów.
100
h [% ]
o
95
s
90
p
85
80
I [A]
75
0
2
4
6
8
10
Rys. 2. Sprawność transformatora impulsowego z uzwojeniami niedzielonymi
w funkcji prądu obciążenia
Przeprowadzono również badania transformatora modelowego z dzielonym
uzwojeniem pierwotnym. Wyznaczone z wykorzystaniem modelu polowego
transformatora wartości sprawności w funkcji obciążenia porównano z wynikami
pomiarów (rys. 3).
Obwodowo-polowa optymalizacja transformatora impulsowego
99
100
 [%]
95
s
90
p
85
80
I [A]
75
0
2
4
6
8
10
Rys. 3. Sprawność transformatora impulsowego z dzielonym uzwojeniem pierwotnym
w funkcji prądu obciążenia
W wariancie transformatora z uzwojeniami dzielonymi przy obciążeniu
znamionowym tego transformatora uzyskano sprawność o 1,5% większą od
sprawności transformatora z uzwojeniami niedzielonymi. Świadczy to o poprawnie
przeprowadzonej optymalizacji rozpatrywanego transformatora i przydatności
opracowanego modelu do projektowania tego typu transformatorów.
5. WNIOSKI
Przy optymalizacji transformatora impulsowego, ze względu na bardzo dużą
czasochłonność obliczeń parametrów funkcjonalnych na podstawie polowego modelu
zjawisk, zaproponowano dekompozycję zadania optymalizacji na dwa etapy.
Najpierw, bazując na mniej dokładnym modelu obwodowym zjawisk, a następnie w
etapie drugim wykorzystuje się parametry struktury transformatora zaprojektowanego
w etapie pierwszym, jako dane początkowe do syntezy konstrukcji w ujęciu polowym.
Takie podejście pozwala znacznie zredukować czas obliczeń.
Opracowane oprogramowanie do optymalizacji transformatora impulsowego
umożliwia określenie wymiarów obwodu magnetycznego, liczby zwojów i
właściwości zastosowanych materiałów przy ekstremalizacji przyjętej funkcji celu.
Dobra zgodność rezultatów obliczeń polowych z wynikami pomiarów potwierdza
przydatność opracowanego oprogramowania do projektowania i optymalizacji
transformatorów impulsowych. Zastosowanie oprogramowania umożliwi m.in.
obniżenie kosztów modernizacji istniejących i opracowanie nowych konstrukcji dzięki
ograniczeniu liczby budowanych prototypów.
100
Wiesław Łyskawiński, Łukasz Knypiński, Lech Nowak
LITERATURA
[1] Billings K.H., Switchmode power supply handbook, McGraw-Hill 1999.
[2] Jianyong Lou, Yitong Chen, Deliang Liang, Lin Gao, Fei Dang, Fangjun Jiao, Novel network
model for dynamic stray capacitance analysis of planar inductor with nanocrystal
magnetic core in high frequency, Proceedings of the 14th IEEE Conference on
Electromagnetic Field Computation, CEFC 2010, Biennial 2010.
[3] Kazimierczuk M.K., High-Frequency Magnetic Components, John Wiley & Sons Ltd.,
2009.
[4] Knypiński Ł., Nowak L., Jędryczka C., Kowalski K., Algorytm optymalizacji
magnetoelektrycznych silników synchronicznych z uwzględnieniem polowego modelu
zjawisk elektromagnetycznych, Przegląd Elektrotechniczny, nr 2/2013, s. 143 - 147.
[5] Knypiński Ł., Nowak L., Sujka P., Radziuk K., Application of a PSO algorithm for
identification of the parameters of Jiles-Atherton hysteresis model, Archives of
Electrical Engineering, Vol. 30, No. 2, June 2012, pp. 139 – 148.
[6] Laouamri K., Keradec J.-P., Ferrieux J.-P., Barbaroux J., Dielectric losses of capacitor
and ferrite core in an LCT component, IEEE Transactions on Magnetics, 2003,Vol. 39,
No. 3, s. 1574-1577.
[7] Łyskawiński W., Polowa analiza wpływu konfiguracji uzwojeń na straty mocy
w transformatorze impulsowym, Przegląd Elektrotechniczny, nr 4/2010, s. 201-204.
[8] Łyskawiński W., Analiza stanów pracy i synteza transformatora impulsowego w ujęciu
polowym, WPP, Poznań 2011.
[9] McLyman W.T., Transformer and inductor design, handbook, 3rd edn., Marcel Dekker,
New York 2004.
[10] Moreau O., Michel R., Chevalier T., Meunier G., Joan M., Delcroix J.B., 3-D high
frequency computation of transformer R, L parameters, IEEE Transactions on
Magnetics, 2005, Vol. 41, No. 5, s. 1364-1367.
[11] Schellmanns A., Berrouche K., Keradec J.-P., Multiwiding transformers: a successive
refinement method to characterize a general eqiuvalent circiut, IEEE Transactions on
Instrumentation and Measurement, 1998, Vol. 47 No. 5, s. 1316-1321.
[12] Stadler A., Albach M., The influence of the winding layout on the core losses and the
leakage inductance in high frequency transformers, IEEE Transactions on Magnetics,
2006, Vol. 42, No. 4, s. 735-738.
[13] Tomczuk K., Parchomik M., Projektowanie transformatora impulsowego w programie
MATLAB-SIMULINK, Wiadomości Elektrotechniczne, nr 3/2010, s. 39-41.
CIRCUIT-FIELD OPTIMIZATION OF PULSE TRANSFORMER
The paper presents the new design strategy of pulse transformer consisting of his twostage optimization. In the first stage, the optimization process is based on less accurate
circuit model of phenomena on functional requirements formulated. The genetic algorithm
has been applied for optimization. In order to include to constrains, the penalty function has
been adopted. The transformer parameters designed in such method may be used as initial
data in second stage of design process. In the second stage the field model has been
employed. The selected results have been presented and discussed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Jacek HORISZNY*
ANALIZA WPŁYWU NIEJEDNOCZESNOŚCI ZAMYKANIA
BIEGUNÓW ŁĄCZNIKA NA PRĄDY ZAŁĄCZENIOWE
TRANSFORMATORA W STANIE JAŁOWYM
W artykule przedstawiono wyniki obliczeń symulacyjnych prądów załączeniowych
transformatora dla różnych sekwencji zamykania biegunów łącznika. Sekwencje różniły
się kolejnością łączenia faz oraz czasami opóźnienia w zamykaniu biegunów. Rozważono
także kilka wariantów stanu namagnesowania szczątkowego rdzenia. Na podstawie analizy
wyników stwierdzono, że przy jednoczesnym zamykaniu biegunów łącznika, właściwy
dobór chwili załączenia pozwala na ograniczenie prądów załączeniowych do wartości nie
mniejszych niż prąd znamionowy transformatora. Wprowadzenie odpowiednich opóźnień
w zamykaniu biegunów daje możliwość znacznie skuteczniejszego zmniejszenia tych
prądów. Obliczone optymalne czasy opóźnień pozwoliły zmniejszyć prądy włączania do
poziomu charakterystycznego dla prądu biegu jałowego. Stwierdzono, że ten efekt jest
osiągalny dla wszystkich wziętych pod uwagę stanów namagnesowania rdzenia.
1. UWAGI WSTĘPNE
Prąd załączeniowy transformatora jest prądem płynącym w uzwojeniu
pierwotnym, po doprowadzeniu do zacisków tego uzwojenia napięcia
zasilającego. W ogólnym przypadku ma charakter przebiegu nieustalonego, a
obwód elektryczny transformatora, jak i obwód magnetyczny, znajduje się w tym
czasie w stanie przejściowym. Na kształt przebiegu prądu załączeniowego, a w
szczególności na jego wartości ekstremalne, mają wpływ różne czynniki. Należy
do nich zaliczyć m. in. stan pracy transformatora, czyli to, czy włączenie zasilania
nastąpiło w stanie jałowym, w stanie obciążenia czy w stanie zwarcia.
Najpoważniejsze skutki włączenia napięcia mogą wystąpić w stanie jałowym.
Wynika to stąd, że strumień magnetyczny w rdzeniu jest wtedy największy. W
pozostałych dwóch stanach, znaczny prąd w stanie obciążenia, czy bardzo duży w
stanie zwarcia, indukują w rdzeniu strumień magnetyczny osłabiający strumień
całkowity.
W każdym z wymienionych powyżej stanów pracy, wartość szczytowa prądu
załączeniowego zależy przede wszystkim od kąta fazowego włączenia napięcia
zasilającego i wartości strumieni szczątkowych w uzwojonych kolumnach rdzenia
__________________________________________
* Politechnika Gdańska.
102
Jacek Horiszny
transformatora. Przy rozważaniu wpływu momentu zamknięcia łącznika należy
wziąć pod uwagę opóźnienie, jakie występuje między momentami zamknięcia
biegunów poszczególnych faz [3]. Określenie związków między powyższymi
czynnikami a wartością szczytową prądu załączeniowego umożliwia opracowanie
algorytmów załączania, dzięki którym wartości maksymalne prądu
załączeniowego zostają zmniejszone do poziomu, przy którym nie wywołują
reakcji systemów zabezpieczeń [2].
2. MODEL SYMULACYJNY
W celu przeprowadzenia obliczeń symulacyjnych przebiegów prądów
włączania przygotowano model obwodowy układu zasilania z transformatorem
energetycznym. Jako narzędzie wykorzystano program ATP/EMTP, będący
głównym składnikiem wyspecjalizowanego pakietu aplikacji, przeznaczonego do
modelowania i analizy układów elektrycznych w stanach przejściowych [1].
Ogólną strukturę analizowanego układu przedstawiono na rys. 1.
Rys. 1. Struktura układu, w którym obliczano prądy załączeniowe transformatora
Obliczenia przeprowadzono dla stanu jałowego transformatora, dlatego strona
wtórna pozostawała nie obciążona. Modelowany obwód tworzyły następujące
elementy:
 system zasilający SZ,
 linia zasilająca transformator LT,
 transformator T,
 łącznik Q.
Model układu zasilania w analizowanym obwodzie przyjęto w postaci układu
zastępczego, w którym występuje idealne trójfazowe symetryczne źródło
napięciowe. Szeregowo ze źródłem umieszczono układy RL modelujące
wewnętrzną impedancję układu zastępczego.
Do modelowania linii zasilającej wykorzystano model biblioteczny programu
ATP/EMTP w postaci układu elementów skupionych. W takim modelu nie są
możliwe do uwzględnienia zjawiska falowe w linii, które jednak z założenia
zostały pominięte w przeprowadzonej analizie. Uproszczenie takie uzasadnia
bardzo duża dysproporcja w szybkości zachodzenia tych zjawisk i procesów
związanych z magnesowaniem rdzenia transformatora. W modelu są brane pod
uwagę sprzężenia magnetyczne i elektryczne między przewodami fazowymi linii.
Analiza wpływu niejednoczesności zamykania biegunów łącznika na prądy ...
103
Transformator był reprezentowany przez model biblioteczny programu
ATP/EMTP, ale uzupełniony o dodatkowe gałęzie zewnętrzne, umożliwiające
wprowadzenie do modelu charakterystyki magnesowania w postaci pętli histerezy.
Biblioteka programu ATP/EMTP zawiera dość rozbudowaną listę modeli
łączników. W żadnych z nich jednak nie uwzględniono modelu łuku
elektrycznego, który może mieć znaczący wpływ na przebieg prądu w obwodzie.
Może zarówno ograniczyć wartość tego prądu, jak i wpłynąć na moment jego
przerwania. Z tego powodu model łącznika z biblioteki programu uzupełniono o
wcześnie opracowany obwodowy model łuku elektrycznego, pozwalający na
uwzględnienie jego wpływu na procesy komutacyjne [6].
3. BADANIA SYMULACYJNE
3.1. Jednoczesne zamknięcie biegunów łącznika
W pierwszej części badań przeprowadzono obliczenia symulacyjne przebiegów
prądów włączania transformatora przy założeniu, że bieguny zamykają się
jednocześnie. Przeprowadzono szereg symulacji dla zmieniającego się kąta
załączenia napięcia oraz dla różnych wartości strumieni szczątkowych objętych
uzwojeniami poszczególnych faz. Kąt włączenia napięcia przyjmowano w taki
sposób, aby opóźnienie zamknięcia łącznika w stosunku do fazy napięcia
zmieniało się co 1ms w przedziale od zera do 20 ms. Dobór wartości strumieni
szczątkowych oparto o wyniki symulacji przedstawione w [5]. Przyjęte zestawy
strumieni, określające ich wartości w poszczególnych kolumnach, znajdują się w
tabeli 1. Ich wartości podano w procentach wartości maksymalnej strumienia przy
pracy znamionowej transformatora.
Tabela 1. Zestawy strumieni szczątkowych określone na drodze symulacji [5]
nr
1
2
3
4
5
6
faza L1
-23,9%
48,2%
70,7%
23,9%
-48,4%
-70,7%
faza L2
-47,3%
-71,1%
-22,0%
47,3%
71,2%
22,1%
faza L3
71,2%
22,9%
-48,6%
-71,2%
-22,8%
48,6%
Na rys. 2 przedstawiono wybrane spośród wszystkich obliczonych,
przykładowe przebiegi prądów załączeniowych. Oś odciętych tych wykresów jest
wyskalowana w jednostkach równych okresowi napięcia zasilającego, natomiast
104
Jacek Horiszny
oś rzędnych jest wyskalowana w jednostkach względnych prądu, gdzie wartością
odniesienia jest prąd znamionowy transformatora po stronie pierwotnej.
Rys. 2. Obliczone prądy załączeniowe dla zestawów strumieni szczątkowych z tabeli 1 i różnych faz
załączenia napięcia: a) zestaw strumieni nr 3, faza załączenia 72°; b) zestaw strumieni nr 4, faza
załączenia 18°; c) zestaw strumieni nr 6, faza załączenia 342°
Rys. 3. Wartości szczytowe obliczonych prądów załączeniowych dla różnych zestawów strumieni
szczątkowych z tabeli 1, przedstawione w funkcji fazy załączenia napięcia: a) dla zestawu strumieni
nr 1; b) dla zestawu strumieni nr 2; c) dla zestawu strumieni nr 3; d) dla zestawu strumieni nr 4;
e) dla zestawu strumieni nr 5; f) dla zestawu strumieni nr 6
Analiza wpływu niejednoczesności zamykania biegunów łącznika na prądy ...
105
Na podstawie tych wykresów można stwierdzić, że charakter zmian
przedstawionych przebiegów w każdym z pokazanych przypadków jest podobny,
natomiast różnice zachodzą przede wszystkim w wartościach maksymalnych i
fazach początkowych. Niewątpliwie wpływ na to mają główne parametry, przy
zmienności których uzyskano przedstawione wyniki.
Zależność między tymi parametrami i wartościami prądów w sposób pełny
przedstawia rys. 3. Pokazano na nim wykresy wartości szczytowych prądów
poszczególnych faz w funkcji kąta załączenia napięcia. Każdy rysunek dotyczy
innego zestawu wartości strumieni szczątkowych wziętego z tabeli 1. Można na
nich zaobserwować, że wartości minimalne w każdym z przypadków są położone
prawie w tym samym miejscu osi odciętych i w pobliżu dolnej granicy przedziału
wartości funkcji. To spostrzeżenie jest dość istotne. Wynika stąd, że dla każdego z
rozważanych zestawów strumieni szczątkowych można określić taki kąt
załączenia napięcia, przy którym prądy załączeniowe osiągają wartości szczytowe
najmniejsze, porównywalne z prądem znamionowym transformatora. Przebiegi
prądów dla takiej sytuacji przedstawia rys. 2c. Może to stanowić prostą metodę
zmniejszania prądów załączeniowych. Jednak zasadniczą trudność stanowi tutaj
określenie strumieni szczątkowych, których znajomość jest głównym warunkiem
właściwego doboru momentu zamknięcia styków łącznika zasilającego.
3.2. Niejednoczesne zamknięcie biegunów łącznika
W tej części badań przeprowadzono obliczenia symulacyjne przebiegów
prądów włączania transformatora przy założeniu, że biegun jednej z faz zamyka
się z późnieniem w stosunku do pozostałych dwóch, zamykających się
jednocześnie. Obliczenia przeprowadzono w dwóch etapach:
a) W pierwszym transformator był zasilany dwufazowo (uzwojenie pierwotne w
połączeniu w trójkąt) – łączniki w dwóch fazach zamykały się w chwili tz1.
Obliczono prąd płynący w obwodzie i wyznaczono wartość szczytową dla
różnych wartości czasu włączenia z przedziału (0, 20 ms).
b) W etapie drugim obliczono prądy trzech faz i wyznaczono ich wartości
szczytowe w sytuacji, gdy te same dwa łączniki, co w etapie (a), zamknęły się
w optymalnym momencie tz1, a następnie trzeci zamykał się w momencie tz2.
Czas tz1 wybrano na podstawie wyników obliczeń etapu (a) jako ten, dla
którego uzyskano najmniejszą wartość szczytową prądu. Czas tz2 zmieniano
identycznie jak tz1 w etapie (a).
Obliczenia w obu etapach przeprowadzono dla określonego zestawu strumieni
szczątkowych. Końcowym celem obliczeń było określenie czasów tz1 i tz2, przy
których wartości szczytowe prądów w trzech fazach są najmniejsze dla danego
zestawu strumieni szczątkowych. Dla przypadku, w którym wszystkie strumienie
szczątkowe są zerowe, przeanalizowano trzy warianty zamykania styków łącznika:
106
Jacek Horiszny
A) w chwili tz1 zamykają się styki w fazach L1 i L2, po nich, w chwili tz2,
zamykają się styki w fazie L3,
B) w chwili tz1 zamykają się styki w fazach L2 i L3, po nich, w chwili tz2,
zamykają się styki w fazie L1,
C) w chwili tz1 zamykają się styki w fazach L1 i L3, po nich, w chwili tz2,
zamykają się styki w fazie L2.
Rys. 4 przedstawia wyniki obliczeń przeprowadzonych w etapie (a), dla
wariantu (A) zamykania styków łącznika, w skali obejmującej cały przedział
wartości czasu tz1 oraz w skali rozszerzonej. Przedstawiono na nim wartości
szczytowe prądu, wyznaczone na podstawie otrzymanych przebiegów. Na rys. 5,
przedstawiono wyniki obliczeń w etapie (b) dla wariantu (A). Zamieszczono na
nim wyznaczone wartości szczytowe prądów we wszystkich fazach. Analogiczne
obliczenia przeprowadzono dla etapów (a) i (b) w wariancie (B) oraz w wariancie
(C) pracy łącznika. W każdym przypadku poszukiwano minimum wartości
szczytowej prądu i odpowiadających mu wartości tz1 i tz2.
Rys. 4. Wartości szczytowe prądu załączeniowego obliczone w etapie (a), dla wariantu (A)
pracy łącznika: a) w skali pełnej, b) w skali rozszerzonej wokół pierwszego minimum
Rys. 5. Wartości szczytowe prądów załączeniowych obliczone w etapie (b) dla wariantu (A)
pracy łącznika: a) w skali pełnej, b) w skali rozszerzonej
W tabeli 2 zamieszczono wartości optymalnych czasów tz1 i tz2 wyznaczone w
opisany powyżej sposób dla wymienionych trzech wariantów pracy łącznika.
Przebiegi prądów podczas załączania z niejednoczesnym zamykaniem styków i
czasami opóźnień zamieszczonymi w tabeli przedstawiono na rys. 6. Wartości
prądów odniesiono do wartości znamionowej prądu transformatora. Można
zauważyć, że we wszystkich przypadkach uzyskano efekt znacznego zmniejszenia
prądów. Wartości szczytowe nie przekroczyły 5%.
Analiza wpływu niejednoczesności zamykania biegunów łącznika na prądy ...
107
Przedstawioną powyżej metodą obliczono optymalne czasy tz1 i tz2 dla
wszystkich zestawów strumieni szczątkowych z tabeli 1. Wyniki tych obliczeń
przedstawiono w tabeli 3. Oprócz wartości tz1 i tz2 znajdują się w niej wartości
szczytowe prądów fazowych płynących w obwodzie przy takich czasach
opóźnienia zamykania styków. Można zauważyć, że otrzymane wartości
szczytowe mieszczą się w przedziale od 1,5% do 4,5% wartości znamionowej
prądu.
Tabela 2. Optymalne czasy załączania biegunów łącznika przy braku strumieni
szczątkowych
wariant
załączania
A
B
C
tz1
[ms]
3,3
0,0
6,7
tz2
[ms]
9,0
5,8
12,3
Rys. 6. Przebiegi prądów podczas załączania z niejednoczesnym zamykaniem styków i czasami
opóźnień z w tabeli 3: a) dla wariantu (A), b) dla wariantu (B), c) dla wariantu (C)
Tabela 3. Optymalne czasy załączania biegunów łącznika dla strumieni szczątkowych
z tabeli 2
nr zestawu
strumieni
tz1
[ms]
tz2
[ms]
1
2
3
4
5
6
2,6
4,9
5,8
4,1
1,7
0,9
6,5
6,9
9,3
10,1
10,0
8,4
I1m
In
0,029
0,024
0,015
0,030
0,034
0,029
I 2m
In
0,025
0,016
0,015
0,029
0,033
0,034
I 3m
In
0,020
0,028
0,015
0,035
0,045
0,030
108
Jacek Horiszny
4. WNIOSKI KOŃCOWE
Na podstawie uzyskanych rezultatów można sformułować następujące wnioski:
 Załączanie z niejednoczesnym zamykaniem biegunów łącznika pozwala
ograniczyć prąd załączeniowy we wszystkich fazach do poziomu wartości
porównywalnych z prądem biegu jałowego.
 Efekt ograniczenia prądów jest osiągalny dla wszystkich stanów
namagnesowania rdzenia.
 Ograniczenie prądów jest możliwe w sytuacji, gdy znane są strumienie
szczątkowe w rdzeniu i można osiągnąć precyzyjne nastawianie chwil
zamknięcia poszczególnych biegunów łącznika.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
ATP Role Book, Lueven EMTP Center 1987, www.eeug.org.
Blume L. F., Camilli G., Farnham S. B., Peterson H. A., Transformer Magnetizing
Inrush Currents and influence on system operation, AIEE Trans. Power. App. Syst.,
Vol 70, pp.323-327, Jan. 1951.
Brunke J. H., Frohlich K. J., Elimination of transformer Inrush Currents by
Controlled Switching – Part I: Theoretical Considerations, IEEE Transactions on
Power Delivery, Vol. 16, No.2, January 2001.
Brunke J. H., Frohlich K. J., Elimination of transformer Inrush Currents by
Controlled Switching – Part II: Application and Performance Considerations, IEEE
Transactions on Power Delivery, Vol. 16, No.2, January 2001.
Horiszny J., Aftyka W., Numerical calculation of three-phase transformer’s residual
flux in ATP and PSpice programs, XII International Symposium on Theoretical
Electrical Engineering ISTET’ 03, Warszawa 2003.
Horiszny J., Modelowanie nieliniowej charakterystyki łącznika w obwodzie
elektrycznym. XXVII Międzynarodowa Konferencja z Podstaw Elektrotechniki i
Teorii Obwodów. IC-SPETO 2004. Gliwice – Niedzica 2004, Materiały
konferencyjne, Politechnika Śląska.
NUMERICAL ANALYSIS OF THE IMPACT OF ASYNCHRONOUS SWITCH
POLES CLOSING ON THE TRANSFORMER INRUSH CURRENT
This paper presents the results of numerical calculations of a transformer inrush currents
for different sequences of the breaker poles closing. The sequences differed in the order of
phases closing and in the delays of the poles closing. Also several variants of the residual
magnetization of the core were considered. Basing on the analysis results, it was found that
while the switch poles are closing simultaneously, proper selection of the closing time
allows us to limit the inrush current to not less than the rated current of the transformer. A
significant improvement in the inrush current reduction is possible if the appropriate delays
in closing of the poles are inserted. The optimal delays were calculated to allow currents to
reduce to the magnetizing current level. It was found that this effect is possible for all
magnetization states of the core taken into account.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Ryszard NAWROWSKI*
Zbigniew STEIN*
Maria ZIELIŃSKA*
OBLICZANIE WPŁYWU NIESYMETRYCZNYCH
OBCIĄŻEŃ TRANSFORMATORÓW SN/NN
NA WSPÓŁCZYNNIKI NIESYMETRII NAPIĘĆ
W SIECI NISKIEGO NAPIĘCIA
Stopień niesymetrii napięć w sieci elektroenergetycznej jest ograniczony a jego
wartość określają przepisy. Niesymetrię napięć wyjściowych transformatorów
energetycznych w największym stopniu wymuszają obciążenia niesymetryczne. W
referacie przeanalizowano wpływ różnego rodzaju niesymetrii obciążeń na wartość tego
współczynnika. Do analizy wykorzystano program Mathcad.
1. WPROWADZENIE
W oparciu o Ustawę z dnia 10 kwietnia 1997 r. Prawo Energetyczne, tekst
jednolity z późniejszymi zmianami, wraz z aktami wykonawczymi a w
szczególności z rozporządzeniem Ministra Gospodarki z dnia 4 maja 2007 roku w
sprawie szczegółowych warunków funkcjonowania systemu elektroenergetycznego
(Dz.. U. z 2007 r. nr 93, poz. 623 wraz z późniejszymi zmianami) do parametrów
jakościowych energii elektrycznej należy między innymi wymaganie, by w ciągu
każdego tygodnia 95 % ze zbioru 10 minutowych średnich wartości skutecznych
składowej symetrycznej kolejności przeciwnej napięcia zasilającego mieściło się w
przedziale od 0 % do 2 % wartości składowej zgodnej. To wymaganie nie tylko nie
jest powszechnie znane ale zwykle jest lekceważone, bowiem praktycznie dotyczy
tylko obwodów zasilanych napięciem trójfazowym czyli sieci zasilających
odbiorniki trójfazowe, zwłaszcza silniki. Przy okazji warto zwrócić uwagę, że
normy dotyczące maszyn synchronicznych wymagają, by w napięciu sieci do
której przyłączane są maszyny synchroniczne stosunek składowej symetrycznej
kolejności przeciwnej napięcia do składowej zgodnej nie przekraczał wartości 1 %,
czyli wymaganie podane w normie jest ostrzejsze niż podane w rozporządzeniu
Ministra. W praktyce eksploatacyjnej sieci elektroenergetycznych maszyny
synchroniczne stosunkowo rzadko są przyłączane bezpośrednio do sieci niskiego
__________________________________________
* Politechnika Poznańska.
110
Ryszard Nawrowski, Zbigniew Stein, Maria Zielińska
napięcia w których stopień niesymetrii napięć jest stosunkowo wysoki. Stopień
niesymetrii napięć w sieci wysokiego napięcia, do których zwykle są przyłączane
maszyny synchroniczne, jest na ogół mniejszy niż w sieci niskiego napięcia. Duży
stopień niesymetrii napięć w sieci wysokiego napięcia występuje w tych
przypadkach, gdy do sieci są przyłączone dużej mocy odbiorniki jedno (dwu)
fazowe. Przypadki takie dotyczą najczęściej zasilania np. pieców indukcyjnych,
rzadziej łukowych. Duże obciążenia niesymetrycznej występują w trakcji
kolejowej prądu przemiennego 25 kV, w której z trójfazowej sieci
elektroenergetycznej bezpośrednio jest zasilana sieć trakcyjna. W takich
przypadkach, nawet w sieci o napięciu 110 kV, z której są zasilane sieci trakcyjne,
stopień niesymetrii napięć jest stosunkowo duży. Niesymetria napięć z tej sieci,
przenosi się poprzez transformatory, na inne sieci zwłaszcza o niższym napięciu..
Na razie w Polsce nie przewiduje się, w najbliższej przyszłości, budowy sieci
trakcji kolejowej prądu przemiennego o napięciu 25 kV.
W przypadkach transformatorów SN/nn, nawet przy symetrii napięć
pierwotnych (średniego napięcia), obciążenia niesymetryczne wymuszają po
stronie wtórnej niesymetrię napięć, której współczynniki niesymetrii zwykle
przekraczają wartości dopuszczone przez przepisy. Na niesymetrię napięć
zasilających bardzo wrażliwe są silniki trójfazowe, które przy większych
niesymetriach napięć, ze względu na możliwość przegrzania, nie mogą być
obciążane mocą znamionową, Również prędkość obrotowa tych silników jest
mniejsza od znamionowej przez co wydajność urządzeń napędzanych przez te
silniki maleje.
2. RÓWNANIA WYJŚCIOWE DO ANALIZY ZAGADNIENIA
Dla analizy zagadnienia posłużono się, w zastosowaniu do maszyn
elektrycznych i transformatorów, metodą składowych symetrycznych przy
wykorzystaniu programu obliczeniowego Mathcad. Współczynniki niesymetrii
napięć wyjściowych transformatorów, jako stosunek składowej symetrycznej
kolejności przeciwnej napięcia do składowej zgodnej, lub składowej kolejności
zerowej do składowej kolejności zgodnej, wyznaczano po uprzednim obliczeniu
napięć wyjściowych transformatorów dla założonych niesymetrycznych
impedancji obciążenia (odbiorników). Dla przyjętych wartości impedancji
obciążenia poszczególnych faz zapisanych w postaci
Z odb u , v, w  k 1, 2, 3
Z odn exp j0.1072 / 3
gdzie literami u, v, w oznaczono kolejne fazy. Impedancje poszczególnych faz:


j0.107 2 
3 
Z zu (k 1 )   k 1 Z odn e



Obliczanie wpływu niesymetrycznych obciążeń transformatorów SN/NN …
111


jk 2 0.107 2 
3 
Z zv (k 2 )   Z odn  1.1  e





 j0.107 2 
3 
Z zw (k 3 )   k 3  0.8  Z odn e



Na podstawie tych impedancji
obliczano impedancje składowych
symetrycznych kolejności zgodnej, Z1(k1,k2,k3)= 1/3(Zu(k1) + a·Zv(k2) + a2·Zw(k3)),
przeciwnej
Z2(k1,k2,k3)=
1/3(Zu(k1) + a2·Zv(k2) + a·Zw(k3)), i zerowej
Z0(k1,k2,k3)= 1/3(Zu(k1) + Zv(k2) + Zw(k3)),
Impedancje składowych symetrycznych w zapisie macierzowym przyjmują
postać:
 Z1   1 1 1   Zu 
   2
 1 
 Z2    a a 1     Zv 
3
Z  
 
2 
0
a
a
1
  
  Zw 
Po rozłożeniu napięć zasilających oraz prądów i impedancji odbiornika na
składowe symetryczne oraz po przekształceniu równań typu U = IZ na równania
odwrotne typu I = Y·U
otrzymuje się równania prądów składowych
symetrycznych w postaci:
 I1   M 11
  
 I 2    M 21
I  M
 0   01
M 12
M 22
M 02
M 10   U 1 
1 
M 20   U 2 
D
M 00   U 0 
D 1 (k 1 , k 2 , k 3 )  ( Z 0 (k 1 , k 2 , k 3 )  Z z )(Z 0 (k 1 , k 2 , k 3 )  Z z )(Z 0 (k 1 , k 2 , k 3 )  Z  0 )
D 2 (k 1 , k 2 , k 3 )   Z1 (k 1 , k 2 , k 3 ) Z 2 (k 1 , k 2 , k 3 )[3Z 0 (k 1 , k 2 , k 3 )  (Z z  Z z  Z  0 )]
D 3 (k 1 , k 2 , k 3 )  Z1(k 1 , k 2 , k 3 ) 3  Z 2 (k 1 , k 2 , k 3 ) 3
D( k 1 , k 2 , k 3 )  D 1 ( k 1 , k 2 , k 3 )  D 2 ( k 1 , k 2 , k 3 )  D 3 ( k 1 , k 2 , k 3 )
M 11 (k 1 , k 2 , k 3 )  ( Z z  Z 0 (k 1 , k 2 , k 3 ))(Z 0 (k 1 , k 2 , k 3 )  Z  0 )  Z1 ( k 1 , k 2 , k 3 ) Z 2 (k 1 , k 2 , k 3 )
M 12 (k 1 , k 2 , k 3 )  Z1 (k 1 , k 2 , k 3 ) 2  Z 2 (k 1 , k 2 , k 3 )(Z  0  Z 0 (k 1 , k 2 , k 3 ))
M 10 (k 1 , k 2 , k 3 )  Z 2 (k 1 , k 2 , k 3 ) 2  Z1 (k 1 , k 2 , k 3 )( Z 0 ( k 1 , k 2 , k 3 )  Z z )
M 21 (k 1 , k 2 , k 3 )  Z 2 (k 1 , k 2 , k 3 ) 2  Z1 (k 1 , k 2 , k 3 )( Z 0 ( k 1 , k 2 , k 3 )  Z  0 )
M 20 (k 1 , k 2 , k 3 )  Z1 ( k 1 , k 2 , k 3 ) 2  Z 2 (k 1 , k 2 , k 3 )( Z 0 (k 1 , k 2 , k 3 )  Z z )
M 01 (k 1 , k 2 , k 3 )  Z1 (k 1 , k 2 , k 3 ) 2  Z 2 (k 1 , k 2 , k 3 )(Z 0 (k 1 , k 2 , k 3 )  Z z )
M 02 (k 1 , k 2 , k 3 )  Z 2 (k 1 , k 2 , k 3 ) 2  Z1 ( k 1 , k 2 , k 3 )(Z 0 (k 1 , k 2 , k 3 )  Z z )
112
Ryszard Nawrowski, Zbigniew Stein, Maria Zielińska
M 00 (k 1 , k 2 , k 3 )  (Z z  Z 0 (k 1 , k 2 , k 3 )) 2  Z1 ( k 1 , k 2 , k 3 ) Z 2 (k 1 , k 2 , k 3 ))
M 22 (k 1 , k 2 , k 3 )  ( Z 0 (k 1 , k 2 , k 3 )  Z z )( Z 0 (k 1 , k 2 , k 3 )  Z  0 )  Z1 (k 1 , k 2 , k 3 ) Z 2 (k 1 , k 2 , k 3 )
Jeżeli przyjąć, że w napięciu zasilającym uwzględnia się tylko składową
kolejności zgodnej, to składowe symetryczne prądów strony wtórnej
transformatora opisują wzory:
 składowa prądu kolejności zgodnej
I1 (k 1 , k 2 , k 3 )  M 11 (k 1 , k 2 , k 3 )U ntf
1
D( k 1 , k 2 , k 3 )
 składowa prądu kolejności przeciwnej
I 2 (k 1 , k 2 , k 3 )  M 21 (k 1 , k 2 , k 3 ) U ntf
1
D( k 1 , k 2 , k 3 )
 składowa prądu kolejności zerowej
I 0 (k 1 , k 2 , k 3 )  M 01 (k 1 , k 2 , k 3 ) U ntf
1
D( k 1 , k 2 , k 3 )
Prądy fazowe oblicza się wg wzorów:
 I a (k 1 , k 2 , k 3 )   1

  2
 I b (k 1 , k 2 , k 3 )    a
 I (k , k , k )   a
 c 1 2 3  
1
a
a2
1 I1 (k 1 , k 2 , k 3 ) 


1 I 2 (k 1 , k 2 , k 3 ) 
1 I 3 (k 1 , k 2 , k 3 ) 
Prąd w przewodzie neutralnym opisuje wzór:
I po (k 1 , k 2 , k 3 )  I a (k 1 , k 2 , k 3 )  I b (k 1 , k 2 , k 3 )  I c (k 1 , k 2 , k 3 )
Napięcia fazowe opisują związki:
U a (k 1 , k 2 , k 3 )  I a (k 1 , k 2 , k 3 ) Z zu (k 1 )
U b (k 1 , k 2 , k 3 )  I a (k 1 , k 2 , k 3 ) Z zv (k 2 )
U c (k 1 , k 2 , k 3 )  I c (k 1 , k 2 , k 3 ) Z zw (k 3 )
Natomiast składowe symetryczne napięć strony wtórnej transformatora
można obliczać wg wzorów:
1
U 1 (k 1 , k 2 , k 3 )  ( U a (k 1 , k 2 , k 3 )  aU b (k 1 , k 2 , k 3 )  a 2 U c (k 1 , k 2 , k 3 ))
3
1
U 2 (k 1 , k 2 , k 3 )  ( U a ( k 1 , k 2 , k 3 )  a 2 U b (k 1 , k 2 , k 3 )  aU c (k 1 , k 2 , k 3 ))
3
1
U 0 ( k 1 , k 2 , k 3 )  ( U a (k 1 , k 2 , k 3 )  U b (k 1 , k 2 , k 3 )  U c (k 1 , k 2 , k 3 ))
3
Współczynniki niesymetrii napięć strony wtórnej transformatora opisują
związki: współczynnik niesymetrii napięcia składowej przeciwnej do zgodnej
Ku = U2/U1
Obliczanie wpływu niesymetrycznych obciążeń transformatorów SN/NN …
K u (k 1 , k 2 , k 3 ) 
113
| U 2 (k 1 , k 2 , k 3 ) |
| U 1 (k 1 , k 2 , k 3 ) |
współczynnik niesymetrii napięcia składowej zerowej do zgodnej Ku0 = U0/U1
K u 0 (k 1 , k 2 , k 3 ) 
| U 0 (k 1 , k 2 , k 3 ) |
| U 1 (k 1 , k 2 , k 3 ) |
Dla praktyki eksploatacyjnej sieci elektroenergetycznych do obliczania
współczynnika niesymetrii napięć składowej symetrycznej kolejności przeciwnej
do składowej kolejności zgodnej najwygodniejszy jest wzór:
2
( U ab
 U 2bc  U 2ca )
Ku  6
2
( U ab  U bc  U ca ) 2
We wzorze występują tylko napięcia międzyprzewodowe Uab, Ubc oraz Uca.
3. PRZYKŁADOWE OBLICZENIA
Posługując się parametrami transformatora o mocy 800 kVA i napięciach
15000V/420- 242,5 V oraz napięciu zwarcia 5.6 % obliczono charakterystyczne
wielkości wyjściowe istotne dla tytułu referatu. Na rysunkach przedstawiono w
postaci graficznej niektóre wyniki obliczeń. Obliczenia przeprowadzono na
przykładzie odbiornika o następujących parametrach:


j0.107 2 
3 
Z zu (k 1 )   k 1 Z odn e





jk 2 0.307 2 
3 
Z zv (k 2 )   Z odn 1.2e





 j0.207 2 
3 
Z zw (k 3 )   k 3  0.8Z odn e



Dla przyjętych niesymetrycznych impedancji obciążenia obliczano
współczynniki niesymetriii. Otrzymano następujące przykładowe wyniki:
Ku( 1  1 1)  1  0.022
Ku( 0.9 1 1)  1  0.025
Ku( 1  0.85 0.9)  1  0.025
Łatwo zauważyć, że dla rozpatrywanego przypadku współczynniki
niesymetrii przekraczają dopuszczalną wartość. Zmienność wartości
współczynników w zależności od wskaźników niesymetrii pozwalają śledzić
rysunki 1- 3. Na rys. 4, 5 i 6 przedstawiono wpływ wskaźników niesymetrii na
114
Ryszard Nawrowski, Zbigniew Stein, Maria Zielińska
wartości napięć fazowych. Na rysunkach łatwo zauważyć, jak różne są wartości
napięć fazowych.
Na rys. 7, 8 oraz 9 przedstawiono wpływ niesymetrii napięć zasilających
silnik indukcyjny na jego wybrane właściwości eksploatacyjne. W tym
przypadku pokazano wpływ niesymetrii napięć na charakterystyki momentu w
funkcji prędkości obrotowej oraz, na rys. 9, na możliwości wykorzystania mocy
znamionowej silnika.
0.05

K u k1  1  1
0.04

 0.03

Ku k1  0.9  1.2

Ku0 k1  1  1

0.02
0.01
0
0
0.5
1
1.5
2
k1
Rys. 1. Zależność współczynników niesymetrii od wskaźnika k1
0.05

K u 1  k2  1

0.04


K u 0.9  k 2  0.8
0.03

K u0 1  k 2  1

0.02
0.01
0
1.25
2.5
3.75
5
k2
Rys. 2. Zależność współczynników niesymetrii od wskaźnika k2
Obliczanie wpływu niesymetrycznych obciążeń transformatorów SN/NN …
0.1


Ku 1  0.7  k3 0.075

 0.05


Ku 0.9  0.8  k3
Ku 0.8  0.8  k3
0.025
0
0
1
2
3
4
k3
Rys. 3. Zależność współczynników niesymetrii od wskaźnika k3
1


Ua k1  1  1
0.9
Untf


Ub k1  1  1
0.8
Untf


Uc k1  1  1
0.7
Untf
0.6
0
1
2
3
4
k1
Rys.4. Zależność napięć fazowych od wskaźnika k1
0.95


U a 1  k2  1
0.94
Untf


U b 1  k2  1
Untf

0.93

U c 1  k2  1
Untf
0.91
0.9
0
1
2
3
4
k2
Rys. 5. Zależność napięć fazowych od wskaźnika k2
115
116
Ryszard Nawrowski, Zbigniew Stein, Maria Zielińska
1

Ua 1  1  k3

0.9
Untf


Ub 1  1  k 3
0.8
Untf

Uc 1  1  k3

0.7
Untf
0.6
0
1
2
3
4
k3
Rys. 6. Zależność napięć fazowych od wskaźnika k3
0.3

M st nn  1  ku1  0
0.25

0.2

 0.15
M st nn  1  ku1  0.02


M st nn  1  ku1  0.1
0.1
0.05
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
ku1
Rys. 7. Zależność charakterystyk momentu silnika indukcyjnego od wskaźnika k1
3
M st ( n  1  1  0)
2.4
M st ( n  1  0.9  0.02)
1.8
M st ( n  1  0.9  0)
1.2
M st ( n  1  0.8  0.02)
0.6
0
0
250
500
750
1000
1250
1500
n
Rys. 8. Zależność charakterystyk momentu silnika indukcyjnego od prędkości obrotowej dla
różnych wartości współczynników niesymetrii napięć zasilających U1 = 1,0.9 oraz 0.8
oraz U2 = 0 i 0.02
Obliczanie wpływu niesymetrycznych obciążeń transformatorów SN/NN …
117
250

200

p nn  1  ku1  0.02


p 1400  1  ku1  0.02


p nn  1  ku1  0.2
150
100
50
0
0
0.25
0.5
0.75
1
1.25
1.5
ku1
Rys. 9. Zależność względnej wartości mocy użytecznej silnika indukcyjnego od współczynnika k1
przy dwóch różnych wartościach składowej symetrycznej kolejności przeciwnej napięcia zasilającego
U2 = 0.02 oraz U2 = 0.2
5. PODSUMOWANIE I WNIOSKI
W sieci elektroenergetycznej zasilającej odbiorniki trójfazowe, a zwłaszcza
silniki indukcyjne, zależy kontrolować wartości napięć, zwłaszcza
międzyfazowych, by nie przekraczać dopuszczonych przez przepisy stopni
niesymetrii napięć. Przy dużych niesymetriach napięć, w silnikach nie tylko
niesymetryczne są natężenia prądów w poszczególnych fazach ale przede
wszystkim, z powodu dużej wartości składowej kolejności przeciwnej napięcia,
obniża się wartość składowej kolejności zgodnej przez co zmniejsza się, możliwa
do wykorzystania, moc użyteczna silnika.
LITERATURA
[1] Stein Z. Eksploatacja maszyn elektrycznych. Rozdz. 5.6 w Poradniku Inżyniera
Elektryka, WNT, Warszawa 2007.
[2] Stein Z. Zielińska M. Wykorzystanie programu MCAD do badania wykorzystania
mocy znamionowej silników indukcyjnych w warunkach niesymetrii 3-fazowego
układu napięć. Materiały ZKwE, Poznań.
CALCULATION OF THE EFFECT OF ASYMMETRIC LOADS
OF MV/LV TRANSFORMERS ON THE VOLTAGE UNBALANCE FACTORS
IN LOW VOLTAGE NETWORK
Degree of voltage asymmetry in electric power network is restrained to the value
determined by proper regulations. Asymmetry of output voltage of a power transformer is
caused chiefly by asymmetric loads. The paper presents analysis of the effect of various
kinds of load asymmetry on the value of the factor. The analysis was carried out with the
help of the Mathcad software.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Eugeniusz KORNATOWSKI*
WIBROAKUSTYCZNA DIAGNOSTYKA
TRANSFORMATORÓW W STANIE NIEUSTALONYM
W artykule przedstawiono wibroakustyczną metodę diagnozowania stanu
mechanicznego części aktywnej transformatora. Proponowana metoda opiera się na
analizie zmian w dziedzinie czasu znormalizowanej wartości przyspieszenia drgań
zarejestrowanych na powierzchni kadzi. Analizie podlega przy tym stan nieustalonej pracy
nieobciążonego transformatora w czasie kilku pierwszych sekund od załączenia zasilania.
Metodę oparto na algorytmie obliczania modułu sygnału analitycznego dla rzeczywistego
sygnału reprezentującego zarejestrowane przyspieszenie drgań. Prezentowaną metodę
przetestowano w warunkach laboratoryjnych i przemysłowych. Badania wykazały
szczególną przydatność prezentowanej metody w połączeniu z metodą FRA (Frequency
Response Analysis) do diagnozowania defektów uzwojeń.
1. WSTĘP
Rzetelna i szczegółowa diagnostyka transformatorów dużej mocy jest jednym z
podstawowych elementów sprawnego funkcjonowania systemu energetycznego
kraju. Tylko pełna informacja o stanie technicznym populacji transformatorów,
wraz z wiedzą dotyczącą poszczególnych urządzeń, gwarantuje ekonomiczne i
technicznie uzasadnione zarządzanie systemem. Problem w Polsce jest tym
bardziej istotny, ponieważ czas eksploatacji większości transformatorów osiągnął
graniczną wartość 30. lat [2] i przy jednoczesnym braku inwestycji w nową
infrastrukturę skutkuje coraz większym ryzykiem awarii.
Jednym z bardzo ważnych pól implementacji metod diagnostycznych jest
ocena stanu części aktywnej transformatora, tzn.: uzwojeń, rdzenia i przepustów.
Stosuje się w tym przypadku całe spektrum metod pomiarowych: od
elektrycznych (pomiar rezystancji uzwojeń, przekładni, impedancji zwarcia itd.),
przez termowizyjne badanie stanu przepustów do chemicznych (analiza gazów
rozpuszczonych w oleju transformatorowym).
Niektóre ze stosowanych współcześnie metod diagnostycznych są jeszcze w
fazie rozwoju. Do tej grupy można zaliczyć detekcję deformacji uzwojeń metodą
analizy odpowiedzi częstotliwościowej FRA (Frequency Response Analysis) i
metodę wibroakustycznej oceny stanu technicznego rdzenia i uzwojeń. Metody te
__________________________________________
* Zachodniopomorski Uniwersytet Technologiczny w Szczecinie.
120
Eugeniusz Kornatowski
stosowane autonomicznie nie gwarantują postawienia diagnozy ze stuprocentową
pewnością, ale konfrontacja wyników pomiarów uzyskanych tymi dwiema
metodami znacząco zwiększa pewność wniosków. Szczególnie dynamicznie w
ostatnich latach rozwijana jest diagnostyka wibroakustyczna przy czym, jak do tej
pory, brak jest ustalonego poglądu na temat standardu technologii wykonywania
pomiarów oraz norm świadczących o stanie technicznym części aktywnej
transformatora. Co prawda, przed trzydziestu laty [9], podjęto próbę ujęcia normami
wibroakustyczną diagnostykę transformatorów, ale jak wykazują współczesne
badania, zalecenia zawarte w cytowanej literaturze są zbyt „liberalne” i ich
praktyczne stosowanie nie gwarantuje zapobiegania awariom katastrofalnym.
Większość proponowanych współcześnie metod wibroakustycznego
diagnozowania transformatorów opiera się na analizie widma drgań rdzenia lub
kadzi w stanie pracy ustalonej z obciążeniem lub w stanie jałowym. Natomiast
przedmiotem niniejszej pracy jest metoda analizy drgań kadzi transformatora w
stanie nieustalonym, w ciągu kilku pierwszych sekund od załączenia
nieobciążonego transformatora. Dzięki takiemu badaniu możliwe jest oszacowanie
stanu technicznego rdzenia i uzwojeń łącznie. Skuteczność proponowanej metody
została zweryfikowana eksperymentalnie, co opisano w końcowej części artykułu.
2. METODA WIBROAKUSTYCZNEGO DIAGNOZOWANIA
STANU KONSTRUKCJI MECHANICZNEJ
TRANSFORMATORÓW
Wibroakustyczne badanie stanu mechanicznego transformatora, w tym
rejestrowanie drgań na powierzchni kadzi, jest źródłem podstawowych informacji
o mechanicznym stanie uzwojeń i rdzenia [5]. Analiza wibroakustyczna może być
komplementarną techniką w stosunku do FRA, stosowaną on-line w okresach
między kolejnymi przeglądami konserwacyjnymi lub w ich trakcie, umożliwiając
skuteczne zapobieganie awariom katastrofalnym. W publikacjach z ostatnich kilku
lat szeroko dyskutuje się metody analizy drgań wibroakustycznych
transformatorów dużej mocy. W pracach [3] i [1] poddano analizie różne modele
drgań (sygnałów) wibroakustycznych kadzi transformatora z uwzględnieniem
zmiennych warunków pracy, takich jak np. prąd obciążenia i temperatura. W
publikacji [5], w oparciu o badania laboratoryjne transformatora wyłączonego z
eksploatacji, dyskutuje się właściwości częstotliwościowego widma drgań
konstrukcji transformatora w stanie nieustalonym.
2.1. Przyczyny drgań kadzi transformatora
Wewnątrz transformatora siły elektrodynamiczne i spowodowane zjawiskiem
magnetostrykcji działają na uzwojenia i rdzeń powodując ich drgania
mechaniczne. Drgania te, przenoszone przez olej transformatorowy, powodują
Wibroakustyczna diagnostyka transformatorów w stanie nieustalonym
121
wibracje ścian kadzi. Poluzowanie uzwojeń i blach rdzenia stanowi bezpośrednią
przyczynę powstawania wyższych częstotliwości harmonicznych rejestrowanych
na powierzchni kadzi transformatora [4, 8].
Bezpośrednią przyczyną drgań rdzenia jest zjawisko magnetostrykcji, efektem
którego jest zmiana rozmiarów geometrycznych materiału magnetycznego
umieszczonego w polu magnetycznym. Wielkość pola magnetycznego w rdzeniu
umieszczonym wewnątrz uzwojenia zależy od napięcia zasilającego uzwojenie.
Opierając się na prawie Faradaya można wykazać, że zmiana długości rdzenia (blach
transformatorowych) umieszczonego wewnątrz cewki jest wprost proporcjonalna do
kwadratu napięcia zasilającego. Można zatem słusznie wnioskować, że podstawowa
częstotliwość harmoniczna drgań rdzenia wynosi 100 Hz.
Drgania
konstrukcji
transformatora
rejestrowane
akcelerometrem
przytwierdzonym do kadzi są superpozycją wyżej opisanych drgań rdzenia oraz
drgań uzwojeń. Te ostatnie podlegają działaniu sił elektrodynamicznych
proporcjonalnych do kwadratu płynącego przez nie prądu. Ponieważ siła jest
wprost proporcjonalna do przyspieszenia, to również w przypadku drgań uzwojeń
podstawowa częstotliwość harmoniczna wibracji wynosi 100 Hz.
2.2. Założenia metody diagnostycznej
Proponowana metoda polega na rejestracji, a następnie analizie sygnału drgań
zarejestrowanego na powierzchni kadzi transformatora w czasie pierwszych kilku
sekund od załączenia nieobciążonego transformatora.
200
U [mv]
150
100
50
0
Stan nieustalony
Stan ustalony
-50
-100
-150
-200
0
4
8
12
t [s]
16
20
24
Rys. 1. Przykładowy sygnał drgań zarejestrowany akcelerometrem na powierzchni kadzi
transformatora
Po załączeniu zasilania początkowa amplituda prądu płynącego przez
uzwojenia zasilające może osiągać wartości kilkakrotnie większe od prądu
znamionowego [6]. Czas trwania tego udaru prądowego zawiera się w przedziale
122
Eugeniusz Kornatowski
ok. 300 ms, poczym amplituda prądu w uzwojeniach zasilających ulega
stabilizacji, osiągając wartość pomijalną w stosunku do prądu znamionowego.
Przykładowy sygnał drgań kadzi pokazano na rysunku 1.
Stan drgań nieustalonych dla przykładowego transformatora występuje w
czasie ok. 7 s. Jeżeli udar prądowy, który można traktować jako testowy sygnał
wymuszenia zanika po czasie ok. dwudziestokrotnie krótszym, można zatem
słusznie zakładać, że analiza stanu nieustalonego doprowadzi do wniosków o
stanie technicznym układu mechanicznego, jaki tworzą uzwojenia i rdzeń. Warto
przy tym zauważyć, że w stanie nieustalonym największy wpływ na drgania kadzi
będą miały wibracje uzwojeń, ponieważ w czasie ok. 1/3 s od załączenia
występuje udar prądowy. Wpływ drgań rdzenia, wywołany zjawiskiem
magnetostrykcji, będzie zdecydowanie mniejszy, bowiem amplituda napięcia
zasilającego praktycznie jest stała. Drgania rdzenia spowodowane
magnetostrykcją będą w stanie nieustalonym podobne do tych, które występują w
stanie ustalonym. Oczywiście udar prądowy spowoduje dodatkowe wibracje
rdzenia, lecz drgania te będą wynikiem oddziaływania sił elektrodynamicznych
występujących między poluzowanymi elementami rdzenia.
W niniejszej pracy proponuje się wykorzystanie do analizy stanu nieustalonego
transformacji Hilberta i dalej - analizę w dziedzinie czasu.
Z definicji, ciągła transformacja Hilberta ciągłego w czasie i rzeczywistego
sygnału xre(t) dana jest w następującej postaci [10]:
1  x (τ )
xim (t )  H x re (t )   re dτ
(1)
π  t  τ
Wartości obliczone na mocy (1) są wartościami rzeczywistymi. Mając dany
rzeczywisty sygnał xre(t) i obliczony xim(t) można utworzyć sygnał o wartościach
zespolonych, tzw. sygnał analityczny:
x(t )  xre (t )  j  xim (t )
(2)
Z punktu widzenia teorii sygnałów, obserwacja zmian w czasie modułu zależności
(2) umożliwia śledzenie obwiedni analizowanego sygnału xre(t). Jeżeli zatem wziąć
pod uwagę sygnał drgań kadzi w stanie nieustalonym (xre(t)), to uzyskany przebieg
arz(t)=|x(t)|, po odfiltrowaniu wyższych częstotliwości harmonicznych, będzie
odzwierciedlać proces ustalania się drgań rdzenia i uzwojeń łącznie.
W prezentowanej metodzie diagnostycznej analizowany sygnał reprezentujący
drgania xre jest dyskretny. Wykorzystując właściwości transformacji Hilberta dla
sygnałów dyskretnych i wynikający z nich filtr cyfrowy o transmitancji
częstotliwościowej:
Wibroakustyczna diagnostyka transformatorów w stanie nieustalonym
123
 1, k  0
 2, k  1...( N / 2  1)

jωk
H d (e )  
(3)
 1, k  N / 2
 0, k  ( N / 2  1 )...( N  1)
oraz odwrotną szybką transformatę Fouriera FFT – wyznaczono wprost moduł
sygnału analitycznego:


a rz ( n)  Ψ FFTN-1 H d (e jωk )  X re (e jωk )

(4)
gdzie: N – ilość elementów okna czasowego; n, k=0, 1, 2..., N –1, k = 2k/N oraz
Xre [exp(jk)] = FFTN [xre(n)]. Symbol {.} oznacza operację filtracji
dolnoprzepustowym filtrem cyfrowym o częstotliwości granicznej 10 Hz.
3. BADANIA EKSPERYMENTALNE
Skuteczność proponowanej metody badania drgań kadzi transformatora w
stanie nieustalonym
sprawdzono eksperymentalnie na „testowym”
transformatorze olejowym TONa 800/15 (moc: 0.8 MVA, napięcie: 1.5kV/400V).
Do cyfrowej rejestracji drgań wykorzystano miernik wibracji SVAN958 z
podłączoną pamięcią zewnętrzną (nośnik rejestrowanych sygnałów).
Badania
eksperymentalne
polegały
na
wykonywaniu
pomiarów
wibroakustycznych po uprzednio zamodelowanych uszkodzeniach rdzenia i
uzwojeń. Wprowadzane defekty, to sukcesywne luzowanie śrub pakietujących
jarzma (górne i dolne) rdzenia i deformowanie górnych cewek jednego z uzwojeń
wysokiego napięcia po uprzednim usunięciu docisku pakietującego cewki (rys. 2).
Modelowanie uszkodzeń każdorazowo wiązało się z wyjęciem, przy pomocy
dźwigu, części aktywnej transformatora z kadzi, poczym transformator był
powtórnie montowany. Podczas pomiarów wibroakustycznych akcelerometr był
przytwierdzony do przedniej ściany kadzi transformatora, w połowie jej
wysokości, naprzeciw kolumny, której uzwojenia były deformowane (rys. 2b).
Pomiary drgań wykonano drgań według następującej specyfikacji:
R0Z0 – stan „sprawny”,
R1Z0 – śruby pakietujące jarzma rdzenia poluzowane, uzwojenia „sprawne”,
R2Z0 – śruby pakietujące jarzma rdzenia całkowicie odkręcone, uzwojenia
„sprawne”,
R0Z1 – usunięty docisk uzwojeń jednej fazy wysokiego napięcia, rdzeń
„sprawny”,
R0Z2 – usunięty docisk uzwojeń jednej fazy wysokiego napięcia, uzwojenie
zdeformowane przez przesunięcie górnej cewki, rdzeń „sprawny”,
R0Z3 – usunięty docisk uzwojeń jednej fazy wysokiego napięcia, uzwojenie
zdeformowane przez przesunięcie dwóch górnych cewek, rdzeń „sprawny”.
124
Eugeniusz Kornatowski
a)
b)
Rys. 2. Badania eksperymentalne: a) część aktywna transformatora po wyjęciu z kadzi – miejsca
modelowanych defektów, b) lokalizacja czujnika akcelerometrycznego
Wyniki badań wibroakustycznych, dla tak zamodelowanych uszkodzeń,
zilustrowano wykresami na rysunku 3.
Na rysunku 3a) pokazano proces stabilizacji znormalizowanego przyspieszenia
drgań kadzi dla trzech stopni uszkodzeń uzwojenia. Największa z degradacji
uzwojeń (R0Z3) spowodowała wzrost maksymalnej względnej wartości
przyspieszenia i amplitudy oscylacji.
Wykonanie podobnego badania dla stanu nieustalonego, ale z uwzględnienie
wyłącznie defektów rdzenia, prowadzi do mniej „czytelnych” wniosków (rys. 3b).
1.5
a
3.5
arz
rz
3.0
1.25
R0Z1
R0Z2
R0Z3
2.5
1
2.0
0.75
1.5
R0Z0
R1Z0
R2Z0
0.5
1.0
0.25
0.5
0
0
0.25
0.5
0.75
t [s]
a)
1.0
1.25
1.5
0
0
0.25
0.5
0.75
t [s]
1.0
1.25
1.5
b)
Rys. 3. Wyniki badań wibroakustycznych; proces stabilizacji drgań kadzi: a) przy rozpakietowanym
uzwojeniu, b) dla defektów rdzenia
Wibroakustyczna diagnostyka transformatorów w stanie nieustalonym
125
W tym przypadku różnice w przebiegu krzywych opisujących proces
stabilizacji przyspieszenie są niewielkie. Wprowadzenie największej degradacji
rdzenia – defektu R2Z0 – spowodowało przede wszystkim wyraźnie zauważalny
wzrost gasnących oscylacji zawartych w interwale czasowym od ok. 0.2 s do 1.0 s.
Na podstawie pokazanych wykresów można wnioskować, że proponowana
metoda charakteryzuje się szczególną skutecznością w przypadku detekcji wad
uzwojeń. Efektywna diagnostyka uszkodzeń rdzenia natomiast możliwa jest w
stanie ustalonej pracy transformatora bez obciążenia wykorzystując np. metodę
opisaną w [7].
4. WNIOSKI
Przeprowadzone badania eksperymentalne wykazały, że proponowana metoda
nadaje się w szczególności do diagnozowania uszkodzeń uzwojeń, natomiast jej
skuteczność w przypadku detekcji defektów rdzenia jest mniejsza. Na obecnym
etapie badań metodę tę można z powodzeniem wykorzystywać do diagnozowania
„porównawczego”, konfrontując wyniki pomiarów wykonywanych podczas
okresowych przeglądów konserwacyjnych.
Warto dodać, że opisana metoda, została pozytywnie oceniona po testach
przeprowadzonych w warunkach przemysłowych przez firmę „Energo –
Complex” (Piekary Śląskie). Metodę tę testowano w połączeniu z analizą
odpowiedzi częstotliwościowej transformatora (FRA). Uznano, że każda z tych
metod (wibroakustyczna i FRA) stosowana autonomicznie nie gwarantuje
stuprocentowo pewnej diagnozy, natomiast fuzja tych metod znacząco poprawia
wiarygodność wniosków.
LITERATURA
[1]
[2]
[3]
[4]
Aschwanden T. H., Häsig M., Fuhr J., Lorin P., Houhanessian V.D., Zaengl W.,
Schenk A., Zweiacker P., Piras A., Dutoit J., Development and Application of New
Condition Assessment Methods for Power Transformers, Proc. Cigré 1998 Session
Papers. Group Transformers, Paryż, Francja, 2000.
Bagiński A., Domażalski T., Kaźmierski M., Łukaszewski J., Olech W., Olejniczak
H., Owczarek J., Sieradzki S., Szymański Z., Ramowa instrukcja eksploatacji
transformatorów, ZPBE Energopomiar – Elektryka Sp. z O. O., Gliwice, 2001.
Booth C., McDonald J. R., Aresi R., The Use of Neural Networks for the
Estimation and Classification of Vibration Behavior in Power Transformers,
Proceedings American Power Conference, pp. 1132–1135, 1995.
Borucki S., Boczar T., Cichoń A., Lorenc M., Ocena stanu technicznego rdzenia
transformatora
na
podstawie
badań
wibroakustycznych,
Przegląd
Elektrotechniczny, nr 3, str. 27-30, 2007.
126
[5]
[6]
[7]
[8]
[9]
[10]
Eugeniusz Kornatowski
Borucki S., Cichoń A., Subocz J., Kornatowski E., Ocena stanu technicznego
rdzenia oraz uzwojeń transformatora energetycznego w stanie pracy nieustalonej,
Przegląd Elektrotechniczny , nr 11b, str. 22-25, 2010.
Halinka A., Szewczyk M., Rzepka P., Szablicki M., Działanie zabezpieczeń
nadprądowych w stanach nieustalonych towarzyszących włączaniu nieobciążonych
transformatorów SN, Elektroinfo, nr 3, str. 24-27, 2010.
Kornatowski E., Mechanical-condition Assessment of Power Transformer Using
Vibroacoustic Analysis, Key Engineering Materials, Trans Tech Publications, Vol.
500, ISSN: 1013-9826, str. 40-44, 2012.
Kornatowski E., Subocz J., Borucki S., Cichoń A., Cyfrowe przetwarzanie
sygnałów w diagnostyce stanu mechanicznego konstrukcji transformatorów,
Przegląd Elektrotechniczny, nr 11b, str. 247-250, 2010.
Praca zbiorowa, Diagnostyka stanu technicznego transformatorów. Zasady badań i
kryteria oceny, ZPBE Energopomiar – Elektryka Sp. z O. O., Gliwice 1983.
Zieliński T., Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań,
Wydawnictwa Komunikacji i Łączności, Warszawa, 2005.
VIBROACOUSTIC DIAGNOSTICS OF TRANSFORMERS
IN TRANSIENT STATE
This article presents a vibroacoustic method of diagnosing mechanical condition of the
active part of the transformer. The proposed method is based on the analysis of changes in
the time-domain normalized values of vibration acceleration which are recorded on the
surface of the tank. The subject of this analysis is the unknown mechanical status of
unloaded transformer during the first few seconds after power-up (transient state). The
method is based on an algorithm for calculating the analytical signal module for the realvalue signal, representing recorded vibration acceleration.
Presented method has been tested in laboratory and industrial applications. Studies have
shown particular suitability of the method, in conjunction with the FRA (Frequency
Response Analysis) method, for diagnosing failures of transformer windings.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Tomasz PAJCHROWSKI*
ADAPTACYJNE STEROWANIE SILNIKIEM
SYNCHRONICZNYM O MAGNESACH TRWAŁYCH
W artykule przedstawiono wyniki symulacyjne adaptacyjnego regulatora prędkości
z zastosowaniem sztucznej sieci neuronowej dla napędu z silnikiem synchronicznym
o magnesach trwałych. Omówiona została struktura sztucznej sieci neuronowej oraz
metoda uczenia regulatora prędkości w czasie rzeczywistym. Model układu został
opracowany w języku Matlab. Parametry regulatora są optymalizowane on-line według
algorytmu RPROP. Przedstawione wyniki badań symulacyjnych ilustrują poprawne
działanie adaptacyjnej regulacji prędkości na zmianę parametrów układu napędowego,
takich jak moment bezwładności.
1. WPROWADZENIE
Współczesnym układom napędowym, zwłaszcza serwonapędom, stawia się
coraz wyższe wymagania dynamiczne, co powoduje, że parametry regulatorów
prędkości i położenia stosowane w tych układach są dobierane tak, aby uzyskać
największą, możliwą dynamikę ruchu. Tak dobrane regulatory o „wyśrubowanych”
nastawach są wrażliwe na niewielkie nawet zmiany parametrów transmitancji
napędu i napędzanego mechanizmu. W takich układach napędowych jak: napędy
ramion robota, napędy mechanizmu posuwu obrabiarek, napędy zwijarek czy
maszyn papierniczych, parametrem najczęściej zmienianym jest moment
bezwładności. Zmienne jest również opóźnienie występujące w układach
przekształtników i sterowania, jak i również w stanach osłabiania strumienia
magnetycznego zmienna jest stała momentu elektromagnetycznego silnika.
Dlatego zachodzi potrzeba zaprojektowania układu regulacji niewrażliwego, lub
mało wrażliwego na zmiany wyżej wymienionych parametrów.
Na rys. 1 przedstawiono strukturę kaskadowej regulacji serwonapędu z
silnikiem synchronicznym o magnesach trwałych (ang. PMSM- Permanent Magnet
Synchronous Magnet), składającą się z pętli regulacji momentu
elektromagnetycznego, prędkości i położenia. Silnik ten, ze względu na mały
moment bezwładności, dużą przeciążalność momentem i wysoką sprawność, jest
bardzo chętnie stosowany w przemyśle i stawiany w rzędzie najlepszych pod
względem dynamiki silników. Dla uzyskania małej wrażliwości na zmiany
__________________________________________
* Politechnika Poznańska.
128
Tomasz Pajchrowski
parametrów całego układu regulacji, kluczowym staje się zaprojektowanie
odpornego lub adaptacyjnego regulatora prędkości kątowej, przy założeniu, że nie
zmieniają się parametry w pętli regulacji momentu, natomiast pętla regulacji
położenia tych zmian może nie odczuwać przy prawidłowym zaprojektowaniu
regulatora prędkości. Obecnie bardzo chętnie, przy projektowaniu takiego
regulatora sięga się do metod inteligencji obliczeniowej.
400VAC/50Hz
R
zad
R

zad
SSN

FDP
idzad=0
iqzad
PI
PI
ud

dq
uq

id
abc

ia i
b

dq
ic
FDP
iq

abc

PMSM


Rys. 1. Schemat układu regulacji położenia i prędkości dla serwonapędu z PMSM
W pracach wcześniejszych [8, 9] autor brał udział w opracowaniu koncepcji
odpornych regulatorów prędkości wykorzystujących logikę rozmytą, sztuczne sieci
neuronowe i połączeniu obu tych technik w systemach neuronowo-rozmytych.
Efektem działania regulatorów odpornych było uzyskanie jednakowej, niezależnej
od zmian momentu bezwładności dynamiki regulacji prędkości. Alternatywną
koncepcją dla sterowania odpornego jest regulacja adaptacyjna. W pracach [2, 3, 4]
przedstawiono dwie różne koncepcje adaptacyjnego regulatora neuronowego.
Regulator adaptacyjny z modelem referencyjnym przedstawiono w pracy [4],
w którym regulator neuronowy uczony jest na podstawie błędu, jaki powstaje
pomiędzy wzorcowym sygnałem wyjściowym z modelu referencyjnego,
a rzeczywistym sygnałem regulowanego obiektu. Inną ciekawą koncepcję, w której
regulator neuronowy uczony jest na podstawie własnego błędu regulacji
zaprezentowano w pracach [2, 3]. W pracach tych autorzy zaprezentowali
oryginalne rozwiązania tej metody, które nadal wydaje się wymagają dalszej
pogłębionej analizy. W niniejszym artykule autor przedstawił wyniki badań
symulacyjnych układu regulacji prędkości obrotowej na zmianę momentu
bezwładności. Badania przeprowadzono dla serwonapędu bezpośredniego (bez
przekładni mechanicznej) z wolnoobrotowym silnikiem PMSM, którego parametry
podano w [6, 7, 8, 9].
Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych
129
2. STRUKTURA I ALGORYTM UCZENIA SIECI NEURONOWEJ
2.1. Struktura sieci neuronowej
Na rysunku 2 przedstawiono przyjętą strukturę sztucznej sieci neuronowej,
która w układzie regulacji prędkości pełni rolę regulatora adaptacyjnego.
ref
1
e
2
w11
w12
w21 w 13
w 22
w23
1
v1
b1
v2
2

3
-1
z
4
b2
w43
v3
iqref
4
b4
3
b3
Rys. 2. Struktura sztucznej sieci neuronowej
Sieć ta posiada trzy wejścia główne dla sygnałów prędkości zadanej (ref),
prędkości rzeczywistej () i uchybu (e), oraz wejście dodatkowe sygnału uchybu
opóźnionego o jeden okres próbkowania, który w modelu wynosił 100 s. Sieć
posiada dwie warstwy o liniowych funkcjach aktywacji, gdzie sygnałem
wyjściowym jest prąd zadany w osi q (iqref).
2.2. Algorytm uczenia sieci neuronowej
Uczenie sztucznej sieci neuronowej odbywa się bez sygnału wzorcowego, na
podstawie uchybu regulacji prędkości. Jako kryterium jakości uczenia przyjęto
wyrażenie [5, 11]:
1
2
(1)
E  ref   
2
Ponieważ adaptacja wag regulatora neuronowego ma się odbywać w czasie
rzeczywistym (ang. on-line), należy wybrać prosty i szybki algorytm modyfikacji
parametrów sztucznej sieci neuronowej. Po analizie literatury i stosowanych
rozwiązaniach
wybrana
została
metoda
RPROP
(ang.
Resilient
backPROPagation) [10], która wymaga jedynie znaku składowej gradientu, bez
określania ich wartości, a współczynniki uczenia są modyfikowane w każdym
kroku uczenia. Zmiana współczynnika wagi wij(k) dla j-tego wejścia i i-tego
neuronu opisuje zależność [10]:
 E ( w(k )) 

wij (k )   ij (k )  sign
 wij 


(2)
130
Tomasz Pajchrowski
Współczynnik uczenia ij (k) jest indywidualnie dobierany dla każdej wagi,
i zwiększany, gdy znaki gradientów są takie same, natomiast zmniejszany, gdy są
różne, według następującej zasady [10]:
min (aηij(k  1 ),ηmax ) dla Sij(k)Sij(k-1 )  0

(3)
ij  max (bηij(k  1 ),ηmin ) dla Sij(k)Sij(k-1 )  0

ηij(k  1 ) dla innych przypadków

gdzie min , max oznacza minimalną i maksymalną wartość współczynnika
uczenia, a i b wartości stałe (najczęściej a = 1,2 , b =0 ,5) a
S ij (k ) 
E w(k )
wij
(4)
Zaletą tej metody uczenia jest znaczne przyspieszenie procesu modyfikacji wag,
szczególnie w obszarach o niewielkim nachyleniu funkcji celu [10].
3. METODYKA BADAŃ SYMULACYNYCH
Badania symulacyjne przeprowadzono w środowisku Matlab – Simulink,
wykorzystując opracowany model układu napędowego z silnikiem PMSM, opisany
w pracach [8, 9]. Sztuczną sieć neuronową zmodelowano wykorzystując program
narzędziowy Neural Networks Toolbox. W pracy założono, że w układzie
napędowym brak jest połączeń sprężystych i zmian energii potencjalnej dlatego
można zapisać:
md  
d  Jω2 


dt  2 
(5)
a następnie po przekształceniach uzyskujemy wyrażenie:
md  J
d  dJ

dt 2 dt
(6)
Po zbudowaniu modelu matematycznego przeprowadzono badania, które polegały
na wymuszaniu procesów przejściowych wywołanych zmianą prędkości zadanej
dla różnych wartości momentu bezwładności J, którego wartości zmieniały się
w funkcji czasu.
4. WYNIKI BADAŃ SYMULACYNYCH
Ważnym procesem jest pierwszy cykl uczenia sztucznej sieci neuronowej,
startujący z przypadkowo dobranymi wagami (mogą to być również wagi zerowe).
Jak wykazały wcześniejsze badania [6, 7], proces odpowiedzi na skok wartości
zadanej prędkości przebiega w takiej sytuacji oscylacyjnie z dużym
przeregulowaniem. Można temu przeciwdziałać, i tak, na początku dla prędkości
zerowej wprowadzić do układu skok momentu wirtualnego [6, 7], lub użyć sygnału
Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych
131
prędkości zadanej z prefiltrem [6, 7]. W poprzednich pracach [6, 7] przedstawiono
również wpływ stałej czasowej opóźnienia na uchyb prędkości obrotowej podczas
skoku momentu oporowego oraz wpływu strefy histerezy błędu uczenia sieci
neuronowej. W niniejszych badaniach przedstawiony zostanie wpływ zmian
momentu bezwładności w funkcji czasu dla układu z prefiltrem i bez prefiltru.
a)
b)
Waveform of angular speed
Waveform of angular speed
0.15
0.15
 [rad/s]
0.1
0.05
 [rad/s]
0.1
0.05
0
-0.05
0
-0.05
-0.1
-0.1
-0.15
-0.15
0
0.5
1
1.5
2
2.5
t [s]
3
3.5
4
4.5
0
0.5
1
1.5
2
2.5
t [s]
3
3.5
4
4.5
Rys. 3. Przebieg prędkości obrotowej dla układu bez prefiltru (a) i z prefiltrem
(b) podczas zmiany momentu bezwładności dla sieci wstępnie nauczonej
a)
b)
Waveform of current and moment of inertia
8
6
6
4
4
J [kgm2], iq [A]
J [kgm2], iq [A]
Waveform of current and moment of inertia
8
2
0
-2
2
0
-2
-4
-4
-6
-6
-8
0
0.5
1
1.5
2
2.5
t [s]
3
3.5
4
-8
4.5
0
0.5
1
1.5
2
2.5
t [s]
3
3.5
4
4.5
Rys. 4. Przebieg prądu w osi q (-) oraz momentu bezwładności J (-) dla układu bez prefiltru (a)
i z prefiltrem (b) dla sieci wstępnie nauczonej
a)
b)
Qality Index
Qality Index
25
5
4.5
20
4
3.5
15
ISE
ISE
3
10
2.5
2
1.5
5
1
0.5
0
1
2
3
4
5
6
7
8
Period
9
10
11
12
0
1
2
3
4
5
6
7
8
Period
9
10
11
12
Rys. 5. Przebieg wskaźnika jakości ISE układu bez prefiltru (a) i z prefiltrem (b) dla sieci
wstępnie nauczonej
132
Tomasz Pajchrowski
W przeprowadzonych, i przedstawionych badaniach symulacyjnych przyjęto
rozwiązanie, w którym, po wstępnym nauczeniu sztucznej sieci neuronowej
współczynniki wagi neuronów zostały zapamiętane w pamięci i przy każdym
ponownym uruchamianiu przepisane do regulatora. Algorytm koryguje
współczynniki wag w kolejnych krokach, w chwilach występowania błędu
regulacji, czyli w trakcie kolejnych procesów przejściowych wywołanych
zmianami prędkości zadanej, momentu oporowego oraz zmian momentu
bezwładności. Zmiany współczynników wag są jednak zdecydowanie mniejsze,
niewywołujące znacznych oscylacji [6, 7]. Na rys. 3 przedstawiono przebieg zmian
prędkości obrotowej dla układu bez prefiltru (a) i z prefiltrem (b) podczas zmiany
momentu bezwładności dla wstępnie nauczonej sieci neuronowej. Proces zmiany
momentu bezwładności rozpoczął się w czasie 1,4 s od wartości 1,5 kgm2 i trwał
do 3,4 s. Zakończył się na wartości 5.8 kgm2 (rys. 4). Na rys. 5 przedstawiono
wskaźnik jakości ISE (ang. Integral Square Error) uchybu prędkości dla
poszczególnych okresów zmian prędkości.
Porównując przebiegi prędkości z rys. 3a i 3b można zauważyć, że układ bez
prefiltru przejawia tendencję do niewielkich przeregulowań zarówno przed zmianą
momentu bezwładności, jak i po zmianie. Wzrost wartości wskaźnika ISE można
zaobserwować po rozpoczęciu zmiany momentu bezwładności, a po jej
zakończeniu obserwujemy zmniejszenie wartości tego wskaźnika, co świadczy
o kontynuowaniu procesu adaptacji. Podobnie wygląda przebieg z prefiltrem, ale
przed rozpoczęciem zmian nie zaobserwowano przeregulowania prędkości
kątowej, natomiast niewielkie pojawiło się podczas zmiany momentu
bezwładności. Po zakończeniu tego procesu, widać wyraźny spadek wskaźnika
ISE. Porównując oba wskaźniki (rys. 5a i 5b) można zauważyć również, że
wartość tego parametru dla układu z prefiltrem (ISE = 0.8) jest zdecydowanie
mniejsza w porównaniu z układem bez prefiltru (ISE = 12), zarówno przed
rozpoczęciem procesu zmian momentu bezwładności, podczas jego zmian i po
zakończeniu (czas uczenia dla obu układów był taki sam). Natomiast, podczas
zmian momentu bezwładności wskaźnik ISE dla układu bez prefiltru wzrósł
dwukrotnie (ISE = 24), natomiast dla układu z prefiltrem można zauważyć ponad
pięciokrotny wzrost tej wartości (ISE = 4,5). Nadal jednak wskaźnik ten (z
prefiltrem) jest ponad pięciokrotnie niższy z układem porównywanym.
5. WNIOSKI
Przedstawione wyniki symulacyjne przedstawiają poprawne działanie
regulatora neuronowego, uczonego w czasie rzeczywistym. Przedstawiona
koncepcja adaptacyjnego regulatora neuronowego pozwala uniezależnić
właściwości dynamiczne regulacji prędkości kątowej od zmian parametrów
serwonapędu, a w szczególności zmian momentu bezwładności. Przyjęta metoda
uczenia sieci neuronowej RPROP umożliwia uczenie sztucznej sieci neuronowej
Adaptacyjne sterowanie silnikiem synchronicznym o magnesach trwałych
133
„on-line” czyli w czasie rzeczywistym podczas zachodzących szybkich procesów
przejściowych. Zaproponowany regulator neuronowy posiada interesujące
właściwości, które zostaną przedstawione w dalszych pracach.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
Ellis G., Control System Design Guide. Third Edition: Using Your Computer to
Understand and Diagnose Feedback Controllers, Elsevier, Academic Press, 2004.
Grzesiak L., Meganek V., Sobolewski J., Ufnalski B., DTC_SVM Drive with ANN-based
Speed Controller, PELINCEC Conference, Warsaw University of Technology, 2005, CD.
Grzesiak L. M., Meganek V., Sobolewski J, Ufnalski B., On-line Trained Neural
Speed Controller with Variable Weight Update Period for Direct-Torque-Controller
AC Drive, EPE-PEMC Conference, Portoroz, 2006, CD.
Orlowska-Kowalska T., Szabat K., Control of the Drive System with Stiff and
Elastic Coupling using Adaptive Neuro-Fuzzy Approach, IEEE Trans. On Industrial
Electronics, vol. 51, No. 4, 2007, pp. 228-240.
Ossowski S., Sieci neuronowe do przetwarzania informacji, Oficyna Wydawnicza
Politechniki Warszawskiej, Warszawa 2000.
Pajchrowski T., Zawirski K., Adaptive Neural Speed Controller for PMSM Servodrive
with Variable Parameters, Proceedings of EPE-PEMC 2012 ECCE Europe Conference
and Exposition Conference, 4th to 6th September 2012 , Novi Sad, Serbia.
Pajchrowski T., Zawirski K., Application of artificial neural network for adaptive
speed control of PMSM drive with variable parameters, Proceedings of XXII
Symposium on Electromagnetic Phenomena in Nonlinear Circuits, EPNC’2012,
Pula, Croatia, 26 -29 June 2012.
Pajchrowski T., Zawirski K., Application of Artificial Neural Network to Robust
Speed Control of Servodrive. IEEE Transaction on Industrial Electronics, Vol.54,
No.1, February 2007, pp.200-207.
Pajchrowski T., Zawirski K.,Robust speed and position control based onneural and
fuzzy techniques, EPE 2007, Aalborg, Power Electronics and Applications, 2007
European Conference on 2-5 Sept. 2007, E-ISBN 978-92-75815-10-8.
Riedmiller M., Braun H., A direct adaptive method for faster backpropagation
learning: The RPROP algorithm, IEEE International Conference on Neural
Networks pp. 586-591, vol. 1, 28 March – 1 April, 1993.
Rutkowski L., Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe
PWN, Warszawa 2005.
ADAPTIVE PERMANENT MAGNET SYNCHRONOUS MOTOR CONTROL
This paper presents the results of simulation of adaptive speed controller using an
artificial neural network for permanent magnet synchronous motor drive. Discusses the
structure of the artificial neural network and the method of learning the speed controller in
real time. Model system has been developed in Matlab. The controller parameters are
optimized on-line by RPROP algorithm. The simulation results illustrate the proper
operation of the adaptive speed control to change the parameters of the drive system, such
as the moment of inertia.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Tomasz PAJCHROWSKI*
ENERGOOSZCZĘDNY NAPĘD Z SILNIKIEM
SYNCHRONICZNYM O MAGNESACH TRWAŁYCH
Z ŁAGODNYM STARTEM
W artykule przedstawiono układ napędowy z silnikiem synchronicznym o magnesach
trwałych z rozruchem bezpośrednim (LSPMSM) przeznaczony dla napędu wentylatora.
Omówiony został algorytm sterowania silnika LSPMSM według zasady u/f oraz
optymalizacja korekty napięcia zasilającego za pomocą algorytmu genetycznego, która
zapewnia zmniejszone zużycie energii elektrycznej. Model układu opracowano w języku
Matlab. Przedstawione wyniki badań symulacyjnych ilustrują poprawne działanie
energooszczędnego układu napędowego z silnikiem LSPMSM dla napędu wentylatora.
1. WPROWADZENIE
Silniki synchroniczne o magnesach trwałych (PMSM, ang. Permanent Magnet
Synchronous Motor), ze względu na bardzo dobre właściwości dynamiczne, są od
wielu lat powszechnie stosowane w układach precyzyjnego sterowania, między
innymi w takich układach napędowych jak: napędy robotów, mechanizmy posuwu
obrabiarek, napędy zwijarek czy maszyny papiernicze. Można zauważyć, że
obecnie wiele prowadzonych prac badawczych koncentruje się również na
wykorzystaniu silników PMSM z klatką tłumiącą i bez klatki tłumiącej, do
napędów pomp i wentylatorów, gdzie wymagania dynamiczne mają znacznie
mniejsze znaczenie [1, 2, 3]. W napędach tych, mamy często do czynienia ze
znacznymi odległości pomiędzy silnikiem a przekształtnikiem, dlatego wymagany
pomiar położenia wirnika w tych układach jest dość trudny. Zastosowanie
bezpośredniego pomiaru położenia wiąże się z koniecznością prowadzenia
długiego połączenia, co zwiększa koszty i obniża niezawodność napędu. Także
zastosowanie bloku obserwatora jest wiąże się z dodatkowymi problemami, z
uwagi na często stosowane w tych rozwiązaniach filtry pomiędzy
przekształtnikiem a silnikiem, a tym samym utrudnia to projektowanie układu
napędowego. Alternatywnym rozwiązaniem sterowania dla napędu wentylatora
z silnikiem synchronicznym o magnesach trwałych jest układ otwarty ze
sterowaniem częstotliwościowym według zasady u/f [1, 2, 3]. W pracach [1, 3]
__________________________________________
* Politechnika Poznańska.
136
Tomasz Pajchrowski
przeprowadzono obszerne badania symulacyjne z silnikiem PMSM bez klatki
tłumiącej w otwartej pętli sterowania częstotliwościowego u/f. Przedstawiono analizę
stabilności wentylatorowego układu napędowego i wykazano, że układ sterowania
z silnikiem PMSM bez klatki tłumiącej jest niestabilny [1, 3]. W celu zmniejszenia
poboru mocy przez układ napędowy przeprowadzono wstępną optymalizację
napięcia i wprowadzono dodatkową pętlę stabilizującą pracę wirnika. Wyniki
symulacyjne potwierdzają słuszność zastosowanego rozwiązania dla napędu
wentylatora [1, 2, 3]. W niniejszej pracy przedstawiono alternatywne rozwiązanie
otwartego sterowania według zasady u/f z silnikiem synchronicznym o magnesach
trwałych z klatką tłumiącą (ang. LSPMSM – Line Start Permanent Magnet
Synchronous Motor). Silnik taki w czasie rozruchu ma właściwości maszyny
indukcyjnej (w stanach dynamicznych czynny udział bierze klatka tłumiąca), a w
czasie pracy ustalonej – silnika synchronicznego. Dla silnika LSPMSM nie jest
konieczne stosowanie dodatkowej pętli stabilizującej pracę wirnika [1, 3]
i wprowadzania jej w układzie sterowania. Klatka tłumiąca pełni rolę takiego
stabilizatora, a układ jest stabilny w całym zakresie prędkości obrotowej. Jednak,
w celu zapewnienia zmniejszonego poboru mocy czynnej z sieci dla całego układu
napędowego, konieczna jest optymalizacja napięcia zasilającego w funkcji prędkości
zadanej. Do rozwiązania tego zadania zastosowano algorytmy genetyczne [4].
2. MODEL MATEMATYCZNY SILNIKA LSPMSM
Budowa silnika synchronicznego o magnesach trwałych z rozruchem
bezpośrednim (LSPMSM) podobna jest do silnika synchronicznego o wzbudzeniu
magnetoelektrycznym bez klatki tłumiącej (PMSM). Oba silniki mają konstrukcję
będącą modyfikacją silnika indukcyjnego asynchronicznego. Silnik LSPMSM
w stanach przejściowych ma własności maszyny indukcyjnej klatkowej, a podczas
pracy z ustaloną prędkością synchroniczną – silnika synchronicznego. Model
matematyczny oparty jest na podobnych zasadach jak model silnika
synchronicznego o magnesach trwałych [5, 6]. Różnice wynikają z odmiennej
budowy wirnika. Dla modelu matematycznego LSPMSM zakłada się istnienie
klatki tłumiącej. Przy założeniach upraszczających, takich, że silnik ma uzwojenia
skupione i jest symetryczny pod względem magnetycznym i elektrycznym, pomija
się efekty nasycenia w obwodach magnetycznych oraz prądy wirowe i zjawisko
histerezy, to w wirującym układzie współrzędnych prostokątnych dq związanych
ze strumieniem wirnika, równania opisujące model LSPMSM można zapisać:
d d
  q
dt
d q
uq  Rqiq 
  d
dt
u d  Rd id 
(1)
(2)
Energooszczędny napęd z silnikiem synchronicznym o magnesach trwałych …
d d
di
 iD RD  LD D
dt
dt
 d  Ld (id  iD )   m
d q
di
 iQ RQ  LQ Q
dt
dt
 q  Lq (iq  iQ )
137
(3)
(4)
(5)
(6)
D
1  D
Q
LQ  Lq
1 Q
LD  Ld
(7)
(8)
gdzie: Rd, Rq – rezystancja stojana w osiach d i q; Ld, Lq – indukcyjność stojana w
osiach d i q; LD, LQ – indukcyjność klatki tłumiącej w osi d i q; RD, RQ –
rezystancja klatki tłumiącej w osi d i q;  - współczynnik rozproszenia
indukcyjności miedzy klatką tłumiącą a uzwojeniem stojana.
Równaniom 1-8 odpowiada następujący model obwodowy w osiach dq:
id
Rd
m
Ld
ud
iD
RD
Ld
LD
q
iq
Rq
uq
iQ
RQ
Lq
d
Rys. 1. Model obwodowy silnika LSPMSM w osi d i q
LQ
138
Tomasz Pajchrowski
Równanie dynamiki napędu ma postać:
d
(9)
J
 Te  TL
dt
Moment oporowy dla wentylatora można wyrazić przybliżonym równaniem:
(10)
TL  Ts  k f  2
gdzie Ts to moment tarcia statycznego,
charakterystycznym dla wentylatora [3].
a
kf
jest
współczynnikiem
3. OPTYMALIZACJA NAPIĘCIA STOJANA
W pracy zaproponowano sterowanie silnikiem LSPMSM w układzie otwartym
według metody u/f. W metodzie tej napięcie stojana us jest obliczane w celu
utrzymania stałego strumienia. To pozwala na uzyskanie stałego momentu w całym
zakresie prędkości. Napięcie było wyznaczane na podstawie wzoru [1, 3]:
2
2
2
u s  is rs cos ui  e  (is rs cos ui )  (is rs )
s
(11)
z
Wyznaczenie u s
DC
us
us
Sygnał
referencyjny
ia
Wyznaczenie us
z
PWM
1
s
LSPMSM
ib
ic
}
is
Rys. 3. Struktura sterowania energooszczędnego z silnikiem LSPMSM
W celu uzyskania najmniejszych strat w silniku LSPMSM (id = 0) w stanie
ustalonym (stanów przejściowych dla napędu wentylatora w pracy nie
analizowano) zbudowano model symulacyjny, którego strukturę przedstawiono na
rys. 3. Za pomocą algorytmu genetycznego [4] dla różnych prędkości obrotowych,
tak optymalizowano sygnał zmiany napięcia us, aby osiągnąć minimum prądu
w osi d. Po serii testów symulacyjnych opracowano tablicę przeglądową, której
wejścia stanowią: prędkość zadana z i przyspieszenie zadane z, a wyjście to
sygnał zmiany napięcia us. W celu minimalizacji prądu w osi d wykorzystano
bibliotekę „genetic algorithm” z pakietu Matlab i uruchomiono funkcję
„gaoptimset”. Wybrano 20 osobników w populacji, liczba generacji nie
przekraczała 50, a funkcja celu po której kończyła się optymalizacja dla zadanej
prędkości obrotowej wynosiła |0.01|.
Energooszczędny napęd z silnikiem synchronicznym o magnesach trwałych …
139
4. WYNIKI BADAŃ SYMULACYNYCH
Na rysunku 4 przedstawiono wyniki symulacyjne podczas odpowiedzi na
wartość zadaną prędkości oraz przedstawiono przebieg prądu w osi d i q dla
układu bez optymalizacji (rys. 4b) i z optymalizacją (rys. 4a) dla takiej samej
trajektorii prędkości zadanej i obciążenia wentylatorowego (10). Można
zauważyć, że optymalizacja modułu napięcia zasilającego została wykonana
prawidłowo. Wartość prądu w osi d, dzięki korekcji napięcia zasilającego
(zmniejszenie modułu napięcia zasilania) została zredukowana do wartości równej
0, przy nie zmienionej wartości prądu w osi q. Dzięki temu straty mocy czynnej
w uzwojeniach i żelazie, są mniejsze. Badania zostały przeprowadzone dla
równych współczynników rozproszenia (7 i 8), który wynosił 0,1, co oznacza
znaczny udział współczynnika tłumienia podczas stanów dynamicznych
i statycznych silnika LSPMSM.
a)
b)
Waveform of angular speed
300
250
250
200
200
 [rad/s]
300
150
150
100
100
50
50
0
0
5
10
15
0
20
0
5
10
t [s]
15
20
t [s]
Waveform of current in axis q and d
Waveform of current in axis q a nd d
30
4
3.5
25
3
2.5
20
i [A]
2
i [A]
 [rad/s]
Waveform of angular speed
1.5
1
15
10
0.5
5
0
-0.5
-1
0
0
5
10
15
t [s]
20
0
5
10
15
20
t [s]
Rys. 4. Przebieg prędkości obrotowej i prądu w osi d i q dla układu z korekcją (a)
i bez korekcji napięcia (b)
140
Tomasz Pajchrowski
Przeprowadzono również optymalizację dla innych wartości współczynnika
rozproszenia, które różniły się tylko tym, że dla wyższych wartości rozproszenia
(mniejszy udział klatki tłumiącej) wyraźnie wzrastają oscylacje prądu w obu
osiach oraz prędkości. Oznacza to, że potrzebna jest dodatkowa pętla stabilizacji
prędkości obrotowej [1, 3].
5. WNIOSKI
Przedstawioną w artykule metodę sterowania silnikiem LSPMSM według
zasady u/f można zastosować w układach bezczujnikowego sterowania o niskiej
dynamice, takich jak pompy czy wentylatory. W porównaniu z silnikiem PMSM,
nie wymaga ona stosowania dodatkowych układów stabilizacji. Poprawne
zachowanie się napędu stanowi doskonały punkt wyjścia do badań
eksperymentalnych.
LITERATURA
[1] P.D. Chandana Perera, F. Blaabjerg, J.K. Pedersen, and P. Thogersen, “A sensorless,
stable V/f control method for Permanent-magnet synchronous motor drives,” IEEE
Trans. Ind. Applicat., vol 39, pp. 783-791, May/June 2003.
[2] M. Kiuchi, T. Ohnishi, H. Hagiwara, and Y. Yasuda, “V/f control of Permanent
Magnet Synchronous Motors suitable for home appliances by DC-link peak current
control method,” International Power Electronic Conference, IPEC 2010, pp. 567-573.
[3] Brock. S., Pajchrowski T.: Energy-optimal v/f control of permanent magnet synchronous
motor for fun application , Sympozjum Maszyn Elektrycznych - SME 2011.
[4] Rutkowski L., Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe
PWN, Warszawa 2005.
[5] Jażdżyński W., Bajek M., Obliczenia analityczne silnika synchronicznego z
magnesami trwałymi o rozruchu bezpośrednim (LSPMSM) z pominieciem zjawisk
nieliniowych, Zeszyty problemowe – Maszyny Elektryczne Nr 83/2009.
[6] Rahman M., Little T., Slemon G.: Analytical models for interior-type permanent
magnet synchronous motors. IEEE Transactions on Magnetics, tom 21, nr 5, 1985,
ss. 1741-1743.
ENERGY – OPTIMAL CONTROL OF LINE START PERMANENT
MAGNET SYNCHRONOUS MOTOR
This paper presents the drive system of line start synchronous motor with permanent
magnet (LSPMSM) for fan application. There was presented to the motor u/f control
algorithm for LSPMSM and optimization of the supply voltage using a genetic algorithm,
which provides reduced power consumption. The model developed in Matlab. The
simulation results illustrate the correct operation of energy-efficient of LSPMSM drive for
fan applications.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Sławomir JUDEK*
Leszek JARZĘBOWICZ*
STANOWISKO DO SKANOWANIA 3D
NAKŁADEK ODBIERAKÓW PRĄDU LOKOMOTYW
Prawidłowy odbiór prądu z sieci jezdnej trakcji elektrycznej jest jednym z
podstawowych elementów niezawodnego funkcjonowania zelektryfikowanego transportu
szynowego, zwłaszcza przy dużych prędkościach jazdy. Na jakość odbioru prądu wpływa
konstrukcja sieci jezdnej i odbieraków prądu oraz stan techniczny i regulacja tych dwóch
elementów. O jakości współpracy odbieraka prądu z siecią jezdną zasadniczo decydują:
nacisk odbieraka na sieć oraz stan powierzchni nakładek ślizgowych. W referacie
przedstawiono innowacyjne stanowisko do diagnostyki nakładek ślizgowych odbieraków
prądu wykorzystujące technikę obrazowania 3D. Układ przetestowano w warunkach
laboratoryjnych oraz podczas eksploatacji próbnej na linii kolejowej. Potwierdzono
potencjał wdrożeniowy zaproponowanej metody.
1. WPROWADZENIE
Pojazd elektryczny jest specyficznym przykładem ruchomego odbiornika
energii elektrycznej. Pojazdy elektryczne dzielimy, ze względu na sposób
zasilania, na sieciowe i autonomiczne. Pojazdy sieciowe pobierają energię z sieci
trakcyjnej za pomocą odbieraka prądu. Jednym z jego podzespołów jest ślizgacz,
na którym znajdują się nakładki ślizgowe, czyli elementy bezpośrednio
współpracujące z przewodem jezdnym, i ich mocowania. Odbierak powinien
spełniać określone wymagania, tak aby zapewnić ciągłość zasilania, a co za tym
idzie niezawodność i bezpieczeństwo transportu. W odniesieniu do kolei
funkcjonują Techniczne Specyfikacje dla Interoperacyjności (TSI) wprowadzone
dla państw Unii Europejskiej na mocy Decyzji Komisji nr 2012/464/UE. W myśl
tych przepisów materiał, z którego wykonana jest nakładka ślizgowa, powinien
być mechanicznie i elektrycznie kompatybilny z materiałem przewodu jezdnego,
aby uniknąć nadmiernego ścierania powierzchni przewodów jezdnych oraz
nakładek. Do współpracy z przewodami jezdnymi wykonanymi z miedzi lub
stopów miedzi stosuje się nakładki węglowe lub węglowe impregnowane
specjalnymi domieszkami [5, 6].
__________________________________________
* Politechnika Gdańska.
142
Sławomir Judek, Leszek Jarzębowicz
Eksploatowane do niedawna w Polsce nakładki ślizgowe kolejowych
odbieraków prądu były wykonywane ze stopów miedzi. Umożliwiały one odbiór z
sieci dużych prądów trakcyjnych. Wadą nakładek miedzianych jest stosunkowo
duże zużycie ścierne (nawet w przypadku stosowania smaru) zarówno przewodów
jezdnych, jak i ich samych. Na początku 2011 r. przeprowadzono kompleksową
zmianę typu nakładek ślizgowych z miedzianych na węglowe. Dotyczyła ona
wszystkich pojazdów korzystających z infrastruktury kolejowej, którą zarządza
spółka Polskie Linie Kolejowe.
Z przeprowadzonych przez Instytut Kolejnictwa badań wynika, że w
warunkach polskich zużycie nakładek węglowych może osiągać poziom ponad
0,2 mm na każde 1000 km przebiegu pojazdu. Zużycie to jest jeszcze
intensywniejsze w okresie zimowym [4]. Na podstawie danych eksploatacyjnych
pochodzących od znaczących przewoźników wynika, że dystans, jaki lokomotywa
może pokonać z jednym kompletem nakładek, wynosi przeciętnie 30 000 km, co
przekłada się na około 3,5 miesięczny okres użytkowania [2].
Na rys. 1 przedstawiono widok nakładek o różnym stopniu zużycia,
wynikającego zarówno z normalnych warunków eksploatacyjnych, jak i z sytuacji
awaryjnych.
a
b
Rys. 1. Widok eksploatowanych nakładek ślizgowych, gdzie: a – nadmierne zużycie,
b – całkowite uszkodzenie
2. OCENA STANU NAKŁADEK ŚLIZGOWYCH
Nakładki ślizgowe są wymiennymi częściami ślizgacza odbieraka prądu,
znajdującymi się w bezpośrednim kontakcie z przewodem jezdnym, i z tego
powodu ulegającymi zużyciu. Zużycie nakładki może przebiegać jednostajnie, jak
również w sposób dynamiczny (rys. 1). Nagły ubytek znacznych fragmentów
nakładki, bądź jej całkowite zniszczenie, spowodowane jest najczęściej
nieprawidłową współpracą odbieraka prądu z siecią jezdną. O jakości tej
współpracy, zwłaszcza przy dużych prędkościach jazdy, w praktyce decydują:
nacisk odbieraka na sieć, stan powierzchni nakładek ślizgowych, konstrukcja sieci
jezdnej i konstrukcja odbieraków prądu oraz stan techniczny utrzymania i
regulacja tych dwóch elementów systemu odbioru prądu. Na jakość utrzymania w
istotny sposób wpływa wykorzystanie diagnostyki technicznej.
Niektóre zarządy kolejowe stosują rozwiązania włączone w system diagnostyki
pokładowej, polegające na wyposażeniu odbieraków w czujniki pomiarowe. Są to
Stanowisko do skanowania 3D nakładek odbieraków prądu lokomotyw
143
jednak rozwiązania kosztowne i ograniczone tylko do określonej kategorii
pojazdów. Pojawiają się także propozycje budowy systemu punktów kontrolnych,
rozmieszczonych w różnych miejscach sieci kolejowej, odbierających sygnały z
czujników zintegrowanych z nakładką stykową, zarządzanych centralnie. Jednym
ze sposobów automatycznego monitorowania uszkodzenia nakładek węglowych
jest wykorzystanie komór ciśnieniowych lub światłowodów umieszczonych
wewnątrz nakładki tak, że jej zużycie lub uszkodzenie powoduje rozszczelnienie
komory ciśnieniowej bądź uszkodzenie włókien optycznych. Zaistnienie takiej
sytuacji jest wykrywane i interpretowane jako uszkodzenie. Prowadzi to
zazwyczaj do automatycznego opuszczenia odbieraka. Wadą tej metody jest
wykrywanie tylko całkowitego uszkodzenia lub zużycia nakładki.
W rozwiązaniach światowych pojawiają się także układy do monitoringu stanu
odbieraków prądu wykorzystujących techniki wizyjne. W pracy [3] opisano
rozwiązanie automatycznej kontroli, w której wykorzystano kilka kamer do
przechwytywania profili nakładek i liniowe oświetlacze laserowe do precyzyjnego
zlokalizowania pantografu w przestrzeni. Analiza obrazów pozwala na określenie
dla każdej z nakładek wybranych rozmiarów oraz oszacowanie procentowego
ubytku materiału. Istotną wadą tego rozwiązania jest niezwykle skomplikowany
układ optyczno-mechaniczny. Wymusza to zastosowanie wysublimowanych
technik synchronizacji zdarzeń tak, aby możliwe było uzyskanie trójwymiarowej
geometrii ślizgacza na podstawie obrazów dwuwymiarowych. To implikuje
bardzo złożony algorytm obróbki danych wizyjnych.
Innym rozwiązaniem jest system Pancam [1]. Do oceny stanu nakładki
wykorzystywana jest jedna kamera. Dodatkowa kamera służy do kontroli
nabieżników ślizgacza. Techniki analizy oparte są na dwuwymiarowym
przetwarzaniu obrazu. System jest prostszy i mniej funkcjonalny niż opisywany w
[3]. Główną wadą tego rozwiązania jest konieczność stosowania specjalnych
ekranów eliminujących wszelkie elementy tła obrazu przechwytywanego przez
kamerę. Ekrany służą równocześnie do zwiększenia kontrastu pomiędzy zarysem
pantografu a pozostałymi elementami fotografowanej sceny. W wyniku
przeprowadzonych prób średnio aż w 20% przypadków nie było możliwe
postawienie poprawnej diagnozy stanu technicznego odbieraka prądu.
W Polsce kontrola stanu nakładek odbieraków prądu odbywa się okresowo
podczas przeglądu lokomotywy w zakładach taboru przewoźników. Polega ona na
ręcznym pomiarze grubości nakładki w najbardziej zużytym obszarze.
Dokumentacje techniczno-ruchowe precyzują minimalną grubość, przy której
należy wymienić nakładki. Jednocześnie dopuszczalne jest wydłużenie okresu
eksploatacji w przypadku zebrania większego doświadczenia ruchowego przez
użytkującego. Zaleca się jednoczesną wymianę pary nakładek przynależnych do
jednego ślizgacza. Oprócz oceny stopnia zużycia materiału czynnego, konieczna
jest także kontrola wykruszeń, wyżłobień, pęknięć oraz uszkodzeń listwy nośnej.
Dopuszczalne są wykruszenia nieprzekraczające 30% powierzchni nakładki. W
144
Sławomir Judek, Leszek Jarzębowicz
przypadku wyżłobień istotny jest ich kształt i położenie. Najbardziej
niebezpieczne są wyżłobienia powstające w poprzek nakładki. Dla pęknięć istotne
jest ich położenie, liczba oraz rozmiar. Uszkodzenie listwy nośnej powstają na
skutek wyładowań łukowych (rys. 1). Głębokość nadpaleń o charakterze
wyłącznie lokalnym, nie może być większa niż 30% grubości ścianki profilu
korpusu ślizgacza [7].
Jak wynika z przytoczonych zaleceń zawartych w dokumentacji ruchowej
nakładek węglowych ich inspekcja jest czasochłonna i kosztowna, a także
uzależniona od subiektywnej oceny diagnosty realizującego pomiar.
3. METODA POMIARU 3D
Zastosowanie metod wizyjnych w różnych dziedzinach techniki intensywnie
się rozwija. Proces ten jest coraz bardziej dynamiczny ze względu na ciągły postęp
w technice cyfrowych przetworników obrazu, co z kolei powoduje obniżenie
kosztów wdrożenia i eksploatacji. Obecnie metody pozyskiwania i przetwarzania
obrazów dwuwymiarowych są dość dobrze rozpoznane i szeroko stosowane w
przemyśle. Równolegle z techniką 2D zaczęło rozwijać się obrazowanie 3D.
Znane są sposoby odwzorowania trójwymiarowego obiektów na podstawie
wielokrotnego fotografowania sceny pod różnymi kątami, bądź wykorzystaniu
tzw. kamer stereo.
W prezentowanym rozwiązaniu zaproponowano system monitoringu i
diagnostyki stanu technicznego nakładek ślizgowych odbieraków prądu oparty na
analizie obrazów tych nakładek, uzyskiwanych podczas przejazdu pojazdu
szynowego przez stanowisko pomiarowe z szybką kamerą 3D.
Do odwzorowania kształtu i wymiarów obiektu wykorzystywana jest zasada
triangulacji laserowej. Obiekt jest oświetlony liniowym źródłem światła
laserowego z jednego kierunku, a kamera rejestruje obraz obiektu z innego
kierunku (rys. 2). Linia lasera pojawiająca się na powierzchni obiektu
rejestrowana jest poprzez matrycę kamery. Na tej podstawie, z wykorzystaniem
zaimplementowanych w mikroprocesorze kamery parametryzowanych
algorytmów, określana jest wysokość każdego punktu przekroju, przez analizę
przebiegu linii lasera na matrycy światłoczułej. Wynikiem pomiaru jest profil,
zawierający jedną wartość dla każdego mierzonego punktu wzdłuż przekroju – na
przykład wysokość obiektu wzdłuż jej szerokości. W celu pomiaru trzeciego
wymiaru obiektu musi on poruszać się względem układu kamery i oświetlacza.
Wynik takiego skanowania jest zatem zbiorem profili, gdzie każdy profil zawiera
pomiar przekroju w pewnym miejscu wzdłuż kierunku przemieszczania.
Wartości pomiarowe generowane przez kamerę 3D nie są skalibrowane, tzn.:
 wartości wysokości (współrzędne z) podane są w postaci liczby, zależnej od
numerów wierszy lub pikseli zlokalizowanych na matrycy światłoczułej,
Stanowisko do skanowania 3D nakładek odbieraków prądu lokomotyw
145
 lokalizacja punktu wzdłuż przekroju (współrzędna x) podawana jest jako liczba
reprezentująca kolumnę czujnika, w której punkt zmierzono,
 lokalizacja punktu wzdłuż kierunku przemieszczania (współrzędna y) jest
reprezentowana przez np. kolejny numer pomiaru i przeliczana na podstawie
znajomości prędkości przesuwu, bądź bezpośrednio mierzona.
Rys. 2. Metoda pomiaru 3D
W celu uzyskania pomiarów skalibrowanych, tj. współrzędnych i wysokości w
milimetrach, trzeba przekształcić współrzędne matrycy kamery na układ
współrzędnych rzeczywistych x, y, z. Transformacja ta zależy od wielu
czynników, m.in. odległości między kamerą i obiektem, kąta pomiędzy kamerą i
laserem i właściwości obiektywu. To odwzorowanie jest opisane za pomocą
zależności, z niewielką liczbą dobieralnych parametrów i parametryzowane
dwuetapowo. W pierwszej kolejności przeprowadzana jest korekcja zniekształceń
wprowadzanych przez optykę obiektywu, a następnie korekta perspektywy.
Zniekształcenia obiektywu korygowane są na podstawie standardowego
modelu wielomianowego, za pomocą którego następuje przeliczenie
współrzędnych sensora (u, v) do płaszczyzny obiektywu (u’, v’).
u '  u  u 0 c1 r 2  c 2 r 4   2c 3u 0 v 0  c 4 r2  2u 0 
u '  u  u 0 c1 r 2  c 2 r 4   2c 3u 0 v 0  c 4 r2  2u 0 
u 0  u  uc
,
(1)
v0  v  vc
r  u02  v 02
gdzie (uc, vc) jest środkiem optycznym matrycy i c1, c2, c3, c4 są parametrami
określającymi dystorsję obiektywu. Model ten jest wystarczający dla większości
standardowych obiektywów, poza obiektywami szerokokątnymi typu rybie oko.
Środek optyczny matrycy należy do tzw. parametrów wewnętrznych, czyli
zależnych od własności konstrukcyjnych kamery. Inne typowe wewnętrzne
parametry, które mogłyby być uwzględniane w modelu, to niedoskonałości w
146
Sławomir Judek, Leszek Jarzębowicz
montażu lub produkcji matrycy. Oszacowanie współczynników dystorsji odbywa
się eksperymentalnie na podstawie skanowania płaskiego elementu wzorcowego.
Korekta perspektywy, czyli odwzorowanie płaszczyzny obiektywu do
płaszczyzny, na którą pada światło oświetlacza laserowego, jest tego rodzaju, że
oddaje skalę, obrót i perspektywę. Jest ona zdefiniowana przy użyciu
współrzędnych jednorodnych jako:
X 
u ' b11 b12 b13  u '
 Z   H  v'   b b
 
(2)
 
   21 22 b23  v ' .
 s 
 1  b31 b32 b33   1 
Współrzędne rzeczywiste (x, z) otrzymywane są poprzez wprowadzenie
współczynnika normalizacji s:
X
Y
x , y .
(3)
s
s
Teoretycznie wszystkie dziewięć współczynników macierzy H można określić
pomiarowo na podstawie jednego skanowania obiektu piłokształtnego o znanych
wymiarach. Nie mniej jednak w praktyce wykonuje się ich wiele tak, aby pokryć
całkowite pole widzenia kamery.
4. STRUKTURA SPRZĘTOWA STANOWISKA
Zgodnie z przedstawioną koncepcją i metodą pomiarową zbudowano
stanowisko pomiarowe do monitoringu stanu nakładek ślizgowych [2].
Stanowisko to zostało przetestowane w warunkach laboratoryjnych, a następnie
zainstalowane na linii kolejowej. Główny system pomiarowy osadzono na
konstrukcji wsporczej sieci trakcyjnej w obszarze wysokiego potencjału (rys. 3).
Oprócz pomocniczej konstrukcji nośnej dla kamery 3D oraz oświetlacza
laserowego, zamontowano również ogniwo fotowoltaiczne, współpracujące z
układem zasilającym, zawierającym buforową baterię akumulatorów
elektrochemicznych wraz z niezbędnymi podzespołami kontrolno-sterującymi
oraz mediakonwerterami światłowodowymi. System wykrywania przejeżdżającej
lokomotywy, jednocześnie realizujący pomiar jej prędkości wraz z kamerą służącą
do identyfikacji numeru i typu pojazdu oraz określania, które z odbieraków prądu
współpracują z siecią trakcyjną w trakcie przeprowadzania pomiaru,
zainstalowano na sąsiedniej konstrukcji wsporczej. Po instalacji i uruchomieniu
poszczególnych podsystemów stanowiska, wykonano koordynację układu
mocowania kamery 3D i oświetlacza laserowego względem osi toru, a także
względem osi odbieraków prądu pojazdów badanych, z uwzględnieniem odsuwu
przewodu jezdnego sieci trakcyjnej oraz efektu okluzji światła generowanego
przez liniowy oświetlacz laserowy, spowodowanej obecnością liny nośnej.
Stanowisko do skanowania 3D nakładek odbieraków prądu lokomotyw
147
Uwzględniono również wypieranie sieci trakcyjnej przez współpracujący z nią
odbierak prądu.
Rys. 3. Stanowisko monitoringu stanu nakładek ślizgowych odbieraków prądu zainstalowane w
warunkach laboratoryjnych oraz terenowych
Po czynnościach montażowo-uruchomieniowych wykonano badanie
kilkudziesięciu nakładek odbieraków prądu lokomotyw będących w normalnym
ruchu eksploatacyjnym. Przed wykonaniem skanowania 3D lokomotywy
poddawane były przeglądowi kontrolnemu, w kamach którego wykonywano
oględziny i pomiar ręczny grubości nakładek. Na rys. 4 przedstawiono
wizualizację wyniku skanowania nakładki ślizgowej. Stanowi ona odwzorowanie
wartości wysokości pozyskanych w procesie pomiarowym. Z punktu widzenia
monitoringu stanu nakładek jest jedynie informację pomocniczą.
Rys. 4. Wizualizacja 3D wyników skanowania nakładek ślizgowych odbieraków prądu
Ważnym elementem stanowiska jest opracowanie algorytmów automatycznej
oceny zużycia. Algorytmy przetwarzania danych pomiarowych stanowią warstwę
nadrzędną oprogramowania i zostały przedstawione w referacie Analiza obrazu
3D do oceny stanu zużycia nakładek ślizgowych.
148
Sławomir Judek, Leszek Jarzębowicz
5. PODSUMOWANIE
W opracowaniu przedstawiono stanowisko systemu monitoringu stanu
nakładek ślizgowych odbieraków prądu w warunkach ruchowych na linii
kolejowej z wykorzystaniem techniki skanowania 3D. Wizyjne stanowisko
diagnostyczne, w sposób znaczący skraca czas potrzebny na przeprowadzenie
pomiarów, zapewniając dużą dokładność i powtarzalność uzyskanych wyników.
Praca powstała w ramach projektu sfinansowanego
ze środków Narodowego Centrum Nauki.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Hamey L. G. C., Watkins T., Yen S. W. T., Pancam: In-Service Inspection of
Locomotive Pantographs. Digital Image Computing Techniques and Applications,
9th Biennial Conference of the Australian Pattern Recognition Society on, 2007.
Jarzębowicz L., Judek S., Karwowski K.; Vision system for monitoring technical
condition of current collector strips. SEMTRAK 2012, PiT, Kraków 2012. (in
Polish).
Kin, E.C.W., Pioneer Design in Automatic Pantograph Wear Monitoring.
Engineering Integrity, 19, 2006, pp. 12-17.
Rojek A., Majewski W., Materials for pantograph contact strips of. Electrotechnical
News, 04/2010. (in Polish).
Skibicki J., Electrical vehicles. Part. I. Gdańsk, Wydawnictwo PG, 2010. (in Polish)
Commission Decision of 23 July 2012 concerning technical specifications for
interoperability. (2012/464/EU).
Operating instructions for use carbon strips. Morgan Carbon Poland, 2007.
3D-SCANNING SYSTEM FOR CURRENT COLLECTORS CONTACT STRIPS
The correct current collection from catenary is one of the fundamental elements of
reliable operation of electrified rail transport, especially at high speeds. The proper current
collection depends on technical condition and adjustment of both current collectors and
catenary. Considering current collectors issues, the main factors are: static force applied by
the collector to the catenary and contact strips surface condition. The paper presents an
innovative test stand for diagnosing the current collector contact strips with 3D imaging
technique. System was tested in the laboratory and during the trial operation on the railway.
The potential of the implementation of the proposed method was confirmed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Leszek JARZĘBOWICZ*
Sławomir JUDEK*
ANALIZA OBRAZU 3D DO OCENY STANU ZUŻYCIA
NAKŁADEK ŚLIZGOWYCH
Z punktu widzenia niezawodności eksploatacyjnej transportu kolejowego, istotnym
czynnikiem jest stan powierzchni grafitowych nakładek ślizgowych trakcyjnych
odbieraków prądu. Zaproponowane przez autorów nowatorskie stanowisko pomiarowe,
oparte na systemie wizyjnym z kamerą 3D, umożliwia rejestrację powierzchni nakładek
ślizgowych przejeżdżających lokomotyw. Stanowisko zamontowano i uruchomiono na
torze kolejowym. W czasie eksploatacji próbnej zarejestrowano ok. 80 obrazów 3D
nakładek ślizgowych. Zebrane wyniki cechuje duża różnorodność, szczególnie w zakresie
położenia oraz pochylenia rozważanej nakładki ślizgowej w dwóch płaszczyznach.
Opracowano metodę automatycznego sprowadzenia wyników rejestracji do wspólnego
układu odniesienia. Ustandaryzowane wyniki są następnie porównywane z profilem nowej
nakładki w celu oceny zużycia. Zgromadzone doświadczenia pozwoliły na wyciągnięcie
wniosków dotyczących komercyjnego zastosowania stanowiska.
1. WPROWADZENIE
Dla zapewnienia bezpieczeństwa i niezawodności eksploatacyjnej transportu
kolejowego kluczowe znaczenie techniczne ma układ odbioru prądu z sieci
trakcyjnej jezdnej przez poruszające się pojazdy [1, 2]. Jego poprawne działanie
zależy od prawidłowego stanu technicznego i regulacji zarówno sieci jezdnej, jak i
odbieraka prądu. Wymagania dla układu odbioru prądu rosną wraz ze
zwiększaniem prędkości pociągów, w związku z dużymi wartościami odbieranego
prądu oraz dynamicznym oddziaływaniem mechanicznym odbieraka i sieci.
Jednym z najistotniejszych elementów odbieraka prądu, stykającym się
bezpośrednio z trakcyjnym przewodem jezdnym, są grafitowe nakładki ślizgowe
(rys. 1) [3]. Uszkodzenia nakładek ślizgowych lub ich nadmierne zużycie są
przyczyną powstawania sił poprzecznych, które mogą doprowadzić do drgań lub
nawet zerwania przewodów jezdnych.
Ocena zużycia i wykrywanie uszkodzeń nakładek ślizgowych odbywa się
podczas przeglądów okresowych lokomotyw i zespołów trakcyjnych. Uszkodzenia
nakładek, polegające na wykruszeniu fragmentu lub nawet wyrwaniu segmentu
__________________________________________
* Politechnika Gdańska.
150
Leszek Jarzębowicz, Sławomir Judek
nakładki, pojawiają się pomiędzy przeglądami. Autorzy zaproponowali
stanowisko do skanowania i automatycznej oceny nakładek ślizgowych
przeznaczone do pracy na linii kolejowej. Skanowanie odbywa się podczas
przejazdu lokomotywy pod punktem pomiarowym. Do akwizycji danych
dotyczących powierzchni nakładek ślizgowych wykorzystano kamerę 3D oraz
liniowy oświetlacz laserowy. Fotografię stanowiska przedstawiono na rys. 2.
Szczegółowy opis zasady pomiaru 3D oraz struktury sprzętowej systemu
zamieszczono w referacie pt. „Stanowisko do skanowania 3D nakładek
odbieraków prądu lokomotyw” oraz w [4].
a)
b)
Rys. 1. Widok nowej (a) oraz skrajnie zużytej (b) nakładki ślizgowej (szerokość nakładki: 1100 mm)
Rys. 2. Widok stanowiska do skanowania 3D powierzchni nakładek ślizgowych
zamontowanego nad torem kolejowym
Stanowisko uruchomiono nad torem wyjazdowym z Zakładu Taboru w Gdyni
Grabówku. Wykonano niezbędną kalibrację i weryfikację poprawności działania.
W czasie eksploatacji stanowiska zarejestrowano ok. 80 obrazów 3D nakładek.
Zebrane wyniki cechuje duża różnorodność, szczególnie w zakresie położenia
rozważanej nakładki ślizgowej w kadrze oraz jej nachylenia, zarówno w
płaszczyźnie poziomej jak i pionowej. Utrudnia to znacznie automatyczną analizę.
W referacie opisano opracowane algorytmy automatycznego przetwarzania i
analizy wyników rejestracji pozwalające na wyznaczenie zużycia nakładek.
Analiza obrazu 3D do oceny stanu zużycia nakładek ślizgowych
151
2. PRZETWARZANIE WYNIKÓW SKANOWANIA
Kamera 3D została poddana kalibracji uwzględniającej wzajemne ustawienie
skanowanych nakładek ślizgowych, kamery i oświetlacza laserowego, a także
zniekształcenia wprowadzane przez obiektyw kamery. Dzięki temu układ FPGA,
w który wyposażona jest kamera, przeskalowuje zarejestrowane dane w czasie
rzeczywistym. W rezultacie liczbowe wyniki mają postać wysokości wyrażonej w
milimetrach. Daje to możliwość określenia rzeczywistych wymiarów obiektu.
Wyniki rejestracji wykonanej przez kamerę 3D mają postać macierzy W.
Liczba kolumn związana jest rozmiarem matrycy kamery. 1536 kolumny
odpowiadają szerokości obszaru skanowania wynoszącej 1172 mm, co przekłada
się na rozdzielczość wynoszącą ok. 0,76 mm/piksel.
Liczba wierszy macierzy W związana jest z częstością pomiaru profilu oraz
czasem rejestracji. Okres pomiaru ustawiono na 4 ms. Wartość ta wynika z
minimalnego czasu naświetlania matrycy kamery, pozwalającego odtworzyć
przebieg linii laserowej na skanowanym obiekcie. Z uwagi na brak możliwości
automatycznego określenia, który z odbieraków lokomotywy jest uniesiony,
rejestracja obejmuje czas przesunięcia się pod punktem pomiarowym całej
długości dachu pojazdu. Z tego powodu liczba wierszy macierzy W wynosi
zazwyczaj kilka lub kilkanaście tysięcy, przy czym z reguły właściwe dane, czyli
profile pary nakładek zamontowanych na uniesionym odbieraku, zawierają się w
nie więcej niż dwustu kolejnych wierszach.
Wykorzystując środowisko LabVIEW, opracowano procedury programowe
automatycznie lokalizujące wiersze zawierające dane zarejestrowane podczas
przejazdu odbieraka pod punktem pomiarowym. Z macierzy W wyodrębniana jest
podmacierz o liczbie wierszy równej 300, zawierająca profile pary zeskanowanych
nakładek. Przykładową zawartość podmacierzy przedstawiono na rys. 3 w postaci
graficznej. Poszczególne punkty obrazu odpowiadają komórkom macierzy
wynikowej, a jasność punktu uzależniona jest od wartości komórki. Każdy stopień
256-poziomowej skali szarości odpowiada zmianie wysokości o ok. 0,4 mm.
Przyjęta skala pozwala zobrazować zmiany wysokości w zakresie ok. 10 cm.
x
z
6
5
4
nLG
y
nLD
cN
1
cPL
cPP
2
1
nPG
nPD
3
kG
kD
Rys. 3. Graficzne przedstawienie zawartości przykładowej macierzy wynikowej z rejestracji 3D:
1 – nakładki ślizgowe, 2 – nabieżniki, 3 – elementy konstrukcyjne ślizgacza, 4 – przewód jezdny,
5 – cień przewodu jezdnego, 6 – cień liny nośnej
152
Leszek Jarzębowicz, Sławomir Judek
Z uwagi na różnice montażowe odbieraków oraz elastyczne zawieszenie
ślizgacza w zarejestrowanym obrazie krawędzie nakładek nie we wszystkich
przypadkach są równoległe do osi x (konwencja oznaczenia osi na rys. 3). W celu
ujednolicenia wyników, dla wszystkich przypadków wyznaczono kąt nachylenia
krawędzi nakładek względem osi x i wykonano przeliczenie korygujące ten kąt do
zera. Wykorzystano bibliotekę IMAQ środowiska LabVIEW zawierającą gotowe,
parametryzowane algorytmy obrotu oraz wyznaczania krawędzi obrazu [5].
Konsekwencją asymetrycznego ustawienia kamery względem osi toru jest brak
w zarejestrowanym obrazie lewego skraju nakładek. Widoczny jest tylko skraj
prawy: kD, kG. W wyniku tego, istotne – z punktu widzenia analizy wyników
skanowania – wyznaczenie środka nakładek możliwe jest jedynie poprzez
określenie wewnętrznych skrajów nabieżników: nLD, nLG, nPD, nPG. W kolejnych
wynikach rejestracji położenie ww. punktów szczególnych jest znacząco różne,
więc muszą one być zlokalizowane dla każdego wyniku odrębnie.
Rejestrowany profil nakładki ślizgowej przesłonięty jest częściowo przez
przewód jezdny i jego cień wynikający z zasłonięcia promienia oświetlacza
laserowego. Dodatkowo, umieszczenie oświetlacza powyżej sieci trakcyjnej
jezdnej (p. rys. 2), wymuszone względami bezpieczeństwa, wiąże się z
pojawieniem się na nakładkach także cienia liny nośnej. Wymienione braki w
profilach zarejestrowanych nakładek ograniczają możliwości wykrycia uszkodzeń,
które mogą wystąpić na całej szerokości nakładki. Jednak z punktu widzenia
analizy zużycia, przesłonięte fragmenty profilu nakładek nie wprowadzają
istotnych ograniczeń. Największe zużycie występuje zawsze w obszarze
środkowym (p. rys. 1b), w obrębie którego zestyk z przewodem jezdnym znajduje
się przez większość czasu pracy. Obszar ten jest w zarejestrowanych obrazach
nieprzesłonięty.
4. OPRACOWANIE WZORCOWEGO PROFILU NAKŁADKI
Dla oceny ubytku, wynikającego ze zużycia lub wykruszenia, istotna jest
znajomość kształtu powierzchni nakładki nowej. W celu opracowania profilu
wzorcowego wykorzystano wyniki rejestracji wykonane dla jednej z lokomotyw,
w której para nakładek ślizgowych została wymieniona na nowe bezpośrednio
przed przejazdem przez punkt pomiarowy. Skanowanie wykonano dwukrotnie,
uzyskując łącznie 4 profile odpowiadające nowym nakładkom. Profile te, po
wzajemnym dopasowaniu ich położenia oraz pochylania na płaszczyźnie (x, z),
uśredniono (rys. 4). Z uwagi na występowanie w otrzymanym uśrednionym
profilu nieregularności, profil ten poddano aproksymacji. Ze względu na brak
znajomości funkcji opisującej profil, oraz złożoność jego kształtu zdecydowano
się na odwzorowanie profilu nowej nakładki poprzez zastosowanie funkcji
sklejanych trzeciego stopnia (ang. spline).
Analiza obrazu 3D do oceny stanu zużycia nakładek ślizgowych
153
Rys. 4. Kształt profilu wzorcowego wyznaczonego na podstawie wyników skanowania nowych
nakładek ślizgowych
5. ANALIZA WYNIKÓW
Ocena zużycia analizowanych nakładek ślizgowych odbywa się poprzez
porównanie ich profilu z profilem wzorcowym. Zestaw zarejestrowanych wyników
cechuje jednak duża różnorodność w zakresie położenia i pochylenia
zeskanowanego profilu na płaszczyźnie (x, z). Dla umożliwienia miarodajnego
porównania ze wzorcem należy zatem zarejestrowane profile poddać automatycznej
normalizacji, polegającej na odpowiednim przesunięciu liniowym i obrocie.
Normalizacja analizowanego profilu zaczyna się od obrotu (wypoziomowania).
Z uwagi na sprężyste, obustronne zawieszenie ślizgacza, do którego
przymocowane są nakładki, profile wykreślone na płaszczyźnie (x, z) najczęściej
nie są poziome. Nachylenie nie przekracza 2, jednak – uwzględniając znaczną
długość nakładek (1100 mm) oraz dużą rozdzielczość pomiaru (rzędu 0,1 mm) –
wskazane jest wypoziomowanie profilu. Trudność stanowi wyznaczenie kąta
obrotu. Z oględzin licznego zbioru w różnym stopniu wyeksploatowanych
nakładek wynika, iż zużycie obejmuje prawie całą długość nakładki, z
wyłączeniem obszarów o długości kilku centymetrów na skrajach. W obszarach
tych, po obu stronach można byłoby zatem przyjąć punkty odniesienia ułatwiające
normalizację profilu. Ze względu na brak lewego skraju w wynikach skanowania
(p. rozdz. 2), nie jest to jednak możliwe. Założono zatem symetryczne zużycie
nakładki przyjmując dwa punkty odniesienia, służące do wyznaczenia kąta obrotu,
symetrycznie względem środka nakładki (na powierzchni podlegającej zużyciu).
Wypoziomowane profile są przesuwane wzdłuż osi x, tak aby ich środki
pokryły się ze środkiem profilu wzorcowego. Środki profili wyznaczane są na
podstawie krawędzi nabieżników (nLD, nLG, nPD, nPG na rys. 3).
Bardzo istotne, z punktu widzenia dokładności porównania ze wzorcem, jest
przesunięcie analizowanego profilu wzdłuż osi z. Punkt odniesienia umożliwiający
wyznaczenie wartości przesunięcia wytypowano na prawym skraju profilu, w
obszarze nie podlegającym zużyciu. Rozważano także wytypowanie punktów
szczególnych na nabieżnikach, które – z zasady – nie podlegają zużyciu. W typie
odbieraków, dla których zarejestrowano profile nakładek ślizgowych, nabieżniki
wykonane są z aluminiowych kształtowników. Nieznana jest powtarzalność ich
154
Leszek Jarzębowicz, Sławomir Judek
wyprofilowania. Ponadto płaskowniki te mogą ulegać deformacji w trakcie
eksploatacji. Z koncepcji tej zatem zrezygnowano, choć jest ona warta rozważenia
w przypadku innych typów konstrukcji odbieraka.
Porównanie przykładowych znormalizowanych profili zarejestrowanych
nakładek z profilem wzorcowym przedstawiono na rys. 5.
a)
b)
c)
Rys. 5. Porównanie profilu nakładki zeskanowanej z profilem wzorcowym dla egzemplarza:
a) nowego (wyznaczone zużycie: Za = 0,7 mm); b) zużytego w niewielkim stopniu
(obliczone zużycie: Zb = 2,3 mm); c) zużytego w stopniu bliskim dopuszczalnej granicy
(obliczone zużycie: Zc = 10,8 mm)
W analizowanych profilach występują zakresy wartości x, dla których
wysokość z jest wartością zaburzoną, wynikającą z przesłonięcia nakładki przez
przewód jezdny lub zacienienia linii laserowej. W wyniku automatycznej analizy
wyodrębniane są dwa podzakresy analizowanego profilu, obejmujące obszar
nakładki podlegający największemu zużyciu, a jednocześnie nie zawierające
obszarów, w których wartości wysokości są zafałszowane (wyodrębniony profil
wykreślono na rys. 5 czarną ciągłą linią).
Analiza obrazu 3D do oceny stanu zużycia nakładek ślizgowych
155
Ocena wartości zużycia Z wykonywana jest poprzez znalezienie największej
różnicy pomiędzy analizowanym profilem zeskanowanej nakładki a profilem
wzorcowym. Obliczone przez algorytm wartości Z zamieszczono o opisie rys. 5.
Podczas badań terenowych zeskanowano ponad 40 nakładek ślizgowych, z
czego 30 wielokrotnie. Dla pomiarów i analizy wykonanej wielokrotnie obliczono
współczynnik powtarzalności d będący różnicą pomiędzy maksymalnym i
minimalnym wyznaczonym zużyciem danej nakładki ślizgowej. Wartość
współczynnika d dla żadnego przypadku nie przekroczyła wartości 0,5 mm, a dla
połowy nakładek była nie większa niż 0,1 mm (p. rys. 6).
Rys. 6. Rozkład powtarzalności wyznaczonego zużycia nakładek ślizgowych dla trzydziestu
wielokrotnie zeskanowanych nakładek
6. PODSUMOWANIE
Badania terenowe, przeprowadzone na torze kolejowym, potwierdziły
możliwość wykorzystania techniki 3D do skanowania powierzchni nakładek
ślizgowych odbieraków prądu i w rezultacie do oceny ich zużycia. Duża odległość
kamery od skanowanego obiektu, częściowe przesłonięcie nakładki przez
elementy sieci jezdnej oraz trudne warunki środowiskowe nie są czynnikami
krytycznymi.
Przy wyborze miejsca instalacji systemu pomiarowego istotne jest
uwzględnienie udsuwu przewodu jezdnego i liny nośnej (odsunięcie od osi toru).
Wskazane jest, aby związane z tymi elementami braki w profilu skanowanych
nakładek nie występowały w obszarze środkowym, czyli w obszarze nakładki
podlegającemu największemu zużyciu.
Bezpośrednio przed przejazdem przez punkt pomiarowy wszystkie
zarejestrowane nakładki ślizgowe podlegały oględzinom i pomiarowi ręcznemu w
ramach przeglądu kontrolnego lokomotyw. Różnice w wynikach pomiaru
ręcznego i automatycznego sięgają nawet 2 mm. Pomiar ręczny wykonywany był
jednak zazwyczaj na środku nakładki, zaś – w związku z nierównomiernością
zużycia i niewielkimi lokalnymi uszkodzeniami – punkt największego ubytku
156
Leszek Jarzębowicz, Sławomir Judek
wysokości nie zawsze występował dokładnie w tym miejscu. Wyniku pomiaru
ręcznego nie można zatem traktować jako wzorcowego, weryfikującego
dokładność zaproponowanego stanowiska automatycznego. Dlatego w ramach
badań terenowych systemu oceniono jedynie powtarzalność wyników uzyskanych
poprzez wielokrotne skanowanie tych samych nakładek. Dalsze badania, mające
charakter laboratoryjny, wykorzystujące dokładnie zwymiarowane nakładki
(zużyte w różnym stopniu oraz uszkodzone) pozwolą wyciągnąć jednoznaczne
wnioski na temat precyzji wyników skanowania i ich analizy.
Praca powstała w ramach projektu sfinansowanego
ze środków Narodowego Centrum Nauki.
LITERATURA
[1]
[2]
[3]
[4]
[5]
Maintenance of catenary instruction trakcyjnej Iet-2, PKP Polskie Linie Kolejowe
S.A, Warszawa, 2010 (in Polish).
Commission Decision of 23 July 2012 concerning technical specifications for
interoperability (2012/464/EU). European Commission, 2012.
Rojek A., Majewski W., Materials for pantograph contact strips, Electrotechnical
News, 04/2010 (in Polish).
Jarzębowicz L., Judek S., Karwowski K.; Vision system for monitoring technical
condition of current collector strips. SEMTRAK 2012, PiT, Kraków 2012 (in
Polish).
IMAQ Vision for LabVIEW User Manual. National Instruments, 2004.
ANALYSIS OF 3D IMAGE FOR DETERMINATION
OF CURRENT COLLECTORS STRIPES WEAR
The condition of the current collectors contact strips is an important factor when
considering operational reliability of railway transportation. The authors proposed a novel
measurement system based on the camera 3D to acquire the surface of current collectors
contact strips. The system was installed above the railway track for tests in target
environmental conditions. During the trial operation about 80 contact strips 3D-profiles of
passing locomotives were recorded. Pooled results vary widely, especially in the position
and tilt of acquired profiles. An automatic registered profiles normalization method was
introduced. Standardized profiles are compared to the shape of the new contact strip in
order to evaluate their wear. Summary of scanning and analysis results conclude to the
possibility of commercial usage of the introduced system.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Krzysztof DRÓŻDŻ*
Krzysztof SZABAT*
ROZMYTY REGULATOR PRĘDKOŚCI TYPU TSK UKŁADU
NAPĘDOWEGO Z SILNIKIEM SYNCHRONICZNYM
O MAGNESACH TRWAŁYCH
W pracy przedstawiono strukturę sterowania prędkością układu napędowego
z silnikiem synchronicznym o magnesach trwałych PMSM ze zmiennym momentem
bezwładności z wykorzystaniem metod sterowania rozmytego. W badanym układzie
zastosowano odporny na zmiany wartości momentu bezwładności regulator rozmyty typu
TSK oraz przeprowadzono badania porównawcze struktur sterowania prędkością
z klasycznym regulatorem PI. W celu doboru optymalnych wartości współczynników
regulatorów wykorzystano algorytm genetyczny. Badania symulacyjne przeprowadzono
w środowisku Matlab.
1. WSTĘP
Nowoczesnym układom serwonapędowym stawiane są coraz wyższe
wymagania dotyczące dynamiki ich działania. Sprostanie takim wymaganiom
umożliwia zastosowanie silników synchronicznych z magnesami trwałymi
(PMSM). Silniki te osiągają wysoką dynamikę dzięki małemu momentowi
bezwładności oraz dużemu stosunkowi osiąganego momentu mechanicznego
do masy. Wymienione cechy silników PMSM oraz możliwość ich pracy
przy wysokich obrotach powodują coraz większą popularność tego typu układów
napędowych. Przykładami ich zastosowań są napędy robotów [3], obrabiarek
sterowanych numerycznie [2], serwonapędy [5]. Pomimo ich szerokiego
zastosowania oraz wielu zalet silniki synchroniczne z magnesami trwałymi
stanowią skomplikowany obiekt regulacji, który wymaga zastosowania złożonych
metod sterowania [1].
W pętli sterowania prędkością często wykorzystywane są klasyczne regulatory
PI. Rozwiązanie takie cechuje się pewnymi wadami. Współczynniki wzmocnień
proporcjonalnego i całkującego, zoptymalizowane dla pewnego zakresu zmian
błędu regulacji prędkości nie są optymalne dla innych zakresów zmian tej
wielkości. Podobnie jest w przypadku zmian momentu bezwładności układu, które
powszechnie występują w wielu typach napędów. Jedną z metod poprawy tej
__________________________________________
* Politechnika Wrocławska.
158
Krzysztof Drożdż, Krzysztof Szabat
wady jest zastosowanie programowalnych zmian parametrów regulatora prędkości
(gain scheduling). Metoda ta jest często wykorzystywana w sterowaniu obiektami
nieliniowymi w przypadkach, gdy konieczna jest zmiana nastaw regulatora
uzależniona od zmiennych warunków pracy układu [4]. Do zastosowania
tej metody konieczne jest wykorzystanie sygnału dostępnego pomiarowo
oraz skorelowanego ze zmianami obiektu, który zwany jest zmienną wiodącą.
Takim sygnałem jest błąd regulacji prędkości układu napędowego oraz jego
pochodna. W klasycznym zastosowaniu metody gain scheduling parametry nastaw
regulatora prędkości zgromadzone są w tablicy i odpowiednio przekazywane
do regulatora w zależności od wartości zmiennej wiodącej. Zaletą takiego
rozwiązania jest prostota w jego realizacji, natomiast wadą skokowe przełączanie
wartości poszczególnych wzmocnień regulatora prędkości, co może prowadzić
do skokowych zmian sygnału sterującego. W perspektywie dłuższego czasu
eksploatacji napędu, takie zjawisko może przyczynić się do skrócenia żywotności
jego części mechanicznych. Alternatywnym rozwiązaniem jest zastosowanie
logiki rozmytej. System rozmyty spełniający rolę tablicy przełączeń nastaw
regulatora prędkości, charakteryzuje się ich płynnymi zmianami w funkcji błędu
prędkości zadanej oraz jego pochodnej. Takie działanie eliminuje wadę, jaką
posiada klasyczna tablica przełączeń.
W artykule przeanalizowano działanie struktury sterowania wykorzystującej
liniowy regulator prędkości PI oraz nieliniowy model silnika PMSM. Następnie
zaproponowano rozwiązanie alternatywne wykorzystujące rozmyty regulator
prędkości typu TSK i dokonano porównania.
2. MODEL MATEMATYCZNY OBIEKTU BADAŃ
I STRUKTURA STEROWANIA
W badaniach symulacyjnych wykorzystano nieliniowy model matematyczny
silnika synchronicznego z magnesami trwałymi, który może być opisany
w układzie współrzędnych związanych z wirnikiem (d-q) następującymi
równaniami [6]:
dI
~
(1)
Vd  Rs I d  Ld d   e Lq I q ,
dt
~ dI q
(2)
Vq  Rs I q  Lq
  e Ld I d   m K e ,
dt
3
~
~
(3)
M e  p Ld  Lq I d I q  K t I q ,
2
d m 1
(4)
 M e  M L ,
dt
J



Rozmyty regulator prędkości typu TSK układu napędowego...
159
gdzie: Vd, Vq, Id, Iq, – napięcia i prądy stojana w osiach d i q, Ld – indukcyjność
w osi d, L~q - nieliniowa zależność indukcyjności w osi q, Rs – rezystancja uzwojeń
stojana, ωe - pulsacja elektryczna, ωm - prędkość kątowa wirnika, p – liczba par
biegunów, Me, ML – moment elektromagnetyczny i obciążenia, J – moment
~
bezwładności napędu, K t - nieliniowa zależność stałej momentu od prądu w osi q.
Przyjęty powyżej nieliniowy model jest zgodny z rzeczywistością w całym
obszarze charakterystyki rozwijanego momentu elektromagnetycznego Me = f(Iq).
Dodatkowo indukcyjność (reaktancja) w osi q jest silnie zależna od prądu Iq.
Wartość momentu elektromagnetycznego w przypadku liniowego modelu silnika
jest wprost proporcjonalna do wartości prądu w osi q i zależy od parametrów
konstrukcyjnych. W przypadku uwzględnienia nieliniowości rozwijany moment
nie jest funkcją liniową.
Sterowanie silników synchronicznych o magnesach trwałych często
realizowane jest za pomocą polowo zorientowanej struktury sterowania, która
przedstawiona została na rysunku 1.
Rys. 1. Struktura sterowania
W przypadku pracy bez osłabiania pola, wartość prądu w osi d powinna być
utrzymywana na zerowym poziomie. Przy takich warunkach struktura ta realizuje
strategię sterowania z zachowaniem stałego kąta mocy [6].
3. ROZMYTY REGULATOR PRĘDKOŚCI TYPU TSK
W klasycznej strukturze sterowania układem napędowym z silnikiem
synchronicznym o magnesach trwałych często wykorzystuje się regulatory PI
wraz z ich modyfikacjami. Rozwiązania te cechują się pewnymi wadami
opisanymi we wstępie. W celu poprawienia właściwości dynamicznych układu
160
Krzysztof Drożdż, Krzysztof Szabat
w całym zakresie zmian prędkości oraz przy występowaniu zmiennego momentu
bezwładności napędu opracowano regulator rozmyty typu TSK. Na rysunku 2.
przedstawiono strukturę omawianego regulatora.
Rys. 2. Struktura regulatora rozmytego
W opisywanym regulatorze zastosowano trapezowe funkcje przynależności
zmiennych wejściowych, które zaprezentowano na rysunku 3. Zmiennymi
wejściowymi regulatora są błąd regulacji prędkości e(k) oraz jego pochodna Δe(k).
W przypadku obu zmiennych wejściowych wykorzystano takie same funkcje
przynależności. Przyjętą bazę reguł zestawiono w tabeli 1. W celu doboru nastaw
regulatora ustalono następujące wartości współczynników: k1 = 0.1, aij = 1
(i = 1, 2, 3; j = 0, 1). Pozostałe współczynniki k2 i k3 dobrano na podstawie
podobieństwa do regulatora PI, gdzie wartość wzmocnienia Kp odpowiada
wartości współczynnika k2, a wartość wzmocnienia KI wartości współczynnika k3.
Rys. 3. Zastosowane funkcje przynależności zmiennych wejściowych regulatora e(k) i Δe(k)
Po przeprowadzeniu testów na poprawne działanie struktury sterowania,
dokonano optymalizacji wartości współczynników aij za pomocą algorytmu
genetycznego.
Rozmyty regulator prędkości typu TSK układu napędowego...
161
Przyjęto następujące kryterium optymalizacji:
I  I1  I 2 ,
(5)
2 2
I1   e1 t dt ,
(6)
2 2
I 2   e 2 t dt ,
(7)
gdzie: e1 - wartość błędu regulacji przy znamionowym momencie bezwładności
J = JN i znamionowym momencie obciążenia MON, e2 - wartość błędu regulacji
przy momencie bezwładności J = 2JN i znamionowym momencie obciążenia,
t - czas.
Tabela 1. Baza reguł
Δe(k)
e(k)
NB
NS
ZE
PS
PB
NB
NS
ZE
PS
PB
a30
a31
a30
a31
a30
a31
a30
a31
a10
a11
a30
a31
a30
a31
a20
a21
a10
a11
a30
a31
a30
a31
a20
a21
a10
a11
a20
a21
a30
a31
a30
a31
a10
a11
a20
a21
a30
a31
a30
a31
a10
a11
a30
a31
a30
a31
a30
a31
a30
a31
Opisywany regulator można przedstawić jako quasi-liniowy regulator rozmyty
składający się z kilku liniowych regulatorów PI, którego schemat przedstawiono
na rysunku 4.
Rys. 4. Schemat quasi-liniowego regulatora rozmytego
162
Krzysztof Drożdż, Krzysztof Szabat
Wartość zmiany sygnału sterującego można tu opisać poniższą zależnością:
~
~
u (k )  K P e(k )  K I e(k ),
(8)
gdzie:
m
~
K p   k 2 ai1 ,
(9)
i 1
m
~
K I   k 3 ai 0 .
(10)
i 1
4. WYBRANE WYNIKI BADAŃ SYMULACYJNYCH
W rozdziale tym przedstawiono wybrane wyniki badań symulacyjnych.
Przeprowadzono badania porównawcze w odniesieniu do działania układu
z przyrostowym regulatorem PI.
Rys. 5. Przebiegi: prędkości zadanej nzad = 6000 obr/min, prędkości osiąganej dla J = JN (a),
dla J = 2JN (b) przy zastosowaniu regulatora TSK nmTSK oraz PI nmPI, momentu
elektromagnetycznego dla J = JN (c), dla J = 2JN (d) meTSK, mePI
Rozmyty regulator prędkości typu TSK układu napędowego...
163
Rys. 6. Przebiegi: prędkości zadanej nzad = 3000 obr/min, prędkości osiąganej dla J = JN (a),
dla J = 2JN (b) przy zastosowaniu regulatora TSK nmTSK oraz PI nmPI, momentu
elektromagnetycznego dla J = JN (c), dla J = 2JN (d) meTSK, mePI
Uzyskane wyniki przy zastosowaniu wartości prędkości zadanej
nzad = 6000 obr/min oraz zmiennym momencie bezwładności układu napędowego
J przedstawiono na rysunku 5., natomiast dla wartości prędkości zadanej
nzad = 3000 obr/min i zmiennym momencie bezwładności wyniki zaprezentowano
na rysunku 6. Z przebiegów wynika, że dzięki zastosowaniu regulatora rozmytego
typu TSK osiągnięto znaczną poprawę właściwości dynamicznych układu
napędowego. Widoczne jest znaczne zmniejszenie lub eliminacja przeregulowań
przebiegów prędkości oraz szybsza reakcja układu w przebiegu momentu
elektromagnetycznego.
5. PODSUMOWANIE
Zastosowanie rozmytego regulatora prędkości typu TSK w strukturze
sterowania układu napędowego z silnikiem synchronicznym o magnesach
trwałych w znaczący sposób poprawiło jego właściwości dynamiczne.
Na podstawie przeprowadzonych rozważań teoretycznych i badań symulacyjnych
można wyciągnąć następujące wnioski:
164
Krzysztof Drożdż, Krzysztof Szabat
 omawiane rozwiązanie stanowi alternatywę dla metody gain scheduling,
zapewnia eliminację głównej wady tej metody jaką jest skokowe przełączanie
nastaw regulatora,
 zastosowanie regulatora TSK o nastawach dobranych za pomocą algorytmu
genetycznego umożliwia poprawę właściwości dynamicznych napędu zwłaszcza
w przypadku układu o zmiennym momencie bezwładności,
 regulator TSK, w porównaniu do klasycznego regulatora Mamdaniego, może
być przedstawiony jako zestaw miękko przełączalnych regulatorów klasycznych.
Takie podejście jest atrakcyjne w praktyce przemysłowej.
W kolejnych pracach planuje się eksperymentalną weryfikację proponowanego
rozwiązania.
Praca finansowana przez Narodowe Centrum Nauki w ramach projektu Adaptacyjne
sterowanie rozmyte złożonego układu napędowego o zmiennych parametrach, 2012-2015,
2011/03/B/ST7/02517
LITERATURA
[1] Cychowski M., Serkies P., Nalepa R., Szabat K., Model predictive speed and
vibration control of dual-inertia PMSM Drives, Industrial Electronics (ISIE), IEEE
International Symposium, Page(s): 1919 - 1924, 2011.
[2] Hangbo C., Dangui H., On composite position control of CNC system feeding PMSM
based on position feedforward and SVPWM, Mechatronics and Automation (ICMA),
International Conference on Mechatronics and Automation, Pages: 735-740, 2010.
[3] Hongjia W., Dianguo X., Ming Y., Xianguo G., Minitype servo controller design for
humanoid robot joint system, Industrial Electronics and Applications (ICIEA), 6th IEEE
Conference on Industrial Electronics and Applications, Pages: 1707-1711, 2011.
[4] Panda S.K., Lim J.M.S., Dash P.K., Lock K.S., Gain-scheduled PI speed controller
for PMSM drive, Industrial Electronics, Control and Instrumentation, IECON 97.
23rd International Conference, Pages: 925-930, 1997.
[5] Serkies P., Nalepa N., Szabat K., Cychowski M., Współpraca regulatora
predykcyjnego z napędem PMSM i połączeniem sprężystym, Prace Naukowe
Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej,
Nr 64, Wrocław, 2010.
[6] Zawirski K., Sterowanie silnikiem synchronicznym o magnesach trwałych,
Wydawnictwo Politechniki Poznańskiej, Poznań 2005.
FUZZY TSK SPEED CONTROLLER FOR THE PMSM DRIVE SYSTEM
In this paper the speed control structure for the PMSM drive system with changeable
inertia is considered. As the speed controller the TSK type fuzzy system is considered. The
coefficients of the controller are selected with the help of genetic algorithm. The
comparative study between the system with the classical PI controller and the system with
fuzzy controller is presented. The obtained results shown the advantage of the control
structure with the fuzzy controller.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Krzysztof SIEMBAB*
FAULT TOLERANT CONTROL OF A PMSM DRIVE
IN THE SELECTED EMERGENCY CONDITIONS
The paper describes an investigation of fault tolerant control strategies for permanent magnet
synchronous motor (PMSM) driven by a fault-tolerant inverter. The inverter is a topologymodified inverter with fault-tolerant capability, which can be configured as the standard 3phase 6-switch inverter and reconfigured as 3-phase 4-switch or 2-phase 4-switch inverter
under the fault condition. By analyzing operating principle of a fault-tolerant inverter and the
mathematical model of PMSM, fault tolerant control algorithms are investigated. There is a
conclusion that three phase stator windings of PMSM can be effectively operated by controlling
only two phase currents. Simulation results show the validity of the proposed methods.
1. INTRODUCTION
The use of fault-tolerant electric drives becomes inevitable in many critical
applications, in which the failures can endanger safety of the user or machine. The
inverter’s standard topology for the drive with PMSM motor is susceptible to
failures of both, the power electronics part, as well as the motor itself. The failure
of a motor phase or even of a single power transistor usually prevents its further
operation, even if there had been no further escalation of failure. With regard to
the above, the development of structures that are fault-tolerant and capable to
maintain continuous operation becomes very important. The use of inverter’s
redundant structure in the case of failure, allows for reconfiguration of invertermotor connection and introduction of FTC – Fault Tolerant Control [1].
The article presents fault tolerant control with the use of inverter, equipped
with redundant leg of capacitors. After the occurrence of failure and
reconfiguration of inverter, the control of PMSM motor is executed with the use of
only four transistor switches.
2. TOPOLOGY OF A FAULT-TOLERANT INVERTER
The use of a standard inverter structure does not allow for application of fault
tolerant control. Minimal redundant topology of the fault tolerant inverter is shown
__________________________________________
* Poznan University of Technology.
166
Krzysztof Siembab
in the Figure 1a. This system is equipped with the additional branch, consisting of
two ‘split’ capacitors that form mid-point of supply voltage [2].
After the occurrence of any damage to one of inverter’s transistor legs, in order
to prevent further damages, it is necessary to reconfigure the topology of the
inverter. The proposed solution (Fig. 1b) enables the switching of the motor phase,
in which the failure occurred (in the figure below phase C), to the redundant
branch of capacitors. This leads to achievements of topology 4S3P (4-switch 3phase), in which the control is executed with the use of four transistors (the control
of two motor phases), while the third phase is connected to mid-point of DC
supply voltage by TRIAC. This topology allows for discretionary forming of stator
current, just like in the case of basic topology.
The occurrence of motor phase failure does not allow for the use of the above
mentioned reconfiguration. In this case, in order to enable the further operation of
the drive, it is necessary to use the motor neutral point. The proposed solution
(Fig. 1c) enables the connection of the motor neutral point to the redundant leg of
capacitors. This leads to the acquirement of topology 4S2P (4-switch 2-phase), in
which the control is executed with the use of four transistors. This topology allows
for discretionary forming of stator current, just like in the case of basic topology,
however, it also requires a change in the control algorithm, which is due to the
occurrence of current in the neutral line.
Fig. 1. Fault tolerant inverter: a) basic topology, b) failure of transistor leg, c) failure of motor phase
3. FAULT TOLERANT CONTROL
3.1. Fault tolerant control in 4S3P configuration of the inverter
During normal operation of inverter, the primary voltage vector is defined by
the following equation:
Vs (Van , Vbn , Vcn )  23 (Van  Vbn   2Vcn )
(1)
Fault tolerant control of a PMSM drive in the selected emergency conditions
167
where α=ej2π/3 and Van, Vbn, Vcn are the instantaneous values of motor phase
voltages against the neutral point, and Vd is the supply voltage of the inverter.
By defining three variables (Sa, Sb and Sc) you can describe phase instantaneous
voltages. These variables represent the switch state of three phase legs and can
assume values '1' or '0'. Value '1' represents turning on of the upper transistor and
turning off of the bottom transistor, and the value '0' represents the opposite state.
The correlation of phase voltages and switches states of the inverter is described
by the following equation:
 Van  13 Vd (2S a  Sb  Sc )

1
Vbn  3 Vd ( S a  2Sb  Sc )
V  1 V ( S  S  2S )
a
b
c
 cn 3 d
(2)
After the transformation of the above equation to the stationary frame in the
coordinates αβ, one get:
1
Vs  3 Vd (2 S a  S b  S c )
 V  1 V (S  S )

s
b
c
3 d
(3)
According to (1) and (2), the voltage vector can be defined as the following:
Vs (S a , Sb , S c )  23 Vd ( S a  Sb   2 Sc )
(4)
The inverter with six switches, taking into account all combinations of
variables Sa, Sb and Sc, enables the generation of six non-zero voltage vectors and
two zero vectors. The voltage vectors that are possible to obtain, are shown in the
Table 1 and in the Figure 2.
Table 1. Basic voltage vectors for the inverter in the topology 6S3P
V0(000)
V1(100)
V2(110)
V3(010)
V4(011)
V5(001)
V6(101)
V7(111)
0
2
V
3 d
j 1
2
V e 3
3 d
j 2
2
V e 3
3 d
 23 Vd
j 4
2
V e 3
3 d
j 5
2
V e 3
3 d
0
After the failure of transistor branch in phase C and reconfiguration of the
inverter to the topology 4S3P, the phase voltages can be described as [3]:
 Van  13 Vd (2 Sa  Sb  0.5)

1
Vbn  3 Vd ( Sa  2 Sb  0.5)
 V  1 V ( S  S  1)
a
b
 cn 3 d
The transformation to the stationary frame αβ:
(5)
168
Krzysztof Siembab
Vs  13 Vd (2S a  Sb  0.5)
 V  1 V (S  S )

s
a
b
3 d
(6)
Taking into account the equations (1) and (5), we obtain the voltage vector with
the failure of transistor leg in phase C, defined as:
Vs ( Sa , Sb )  23 Vd ( Sa  Sb  0.5 2 )
(7)
Failure of the other transistor leg, leads to achievements of voltage vector,
described by equation (8) with the fault of inverter leg in phase A and equation (9)
with the fault of inverter leg in phase B.
Vs ( Sb , Sc )  23 Vd (0.5  Sb   2 Sc )
(8)
Vs ( Sa , Sc )  23 Vd ( Sa  0.5   2 Sc )
(9)
For the inverter in topology 4S3P, while changing switches state, one can
obtain four voltage vectors. These vectors are shown in Table 2 for various
possible failures of inverter transistor legs.
Table 2. Basic voltage vectors for the inverter in topology 4S3P, for the various faults
Transistor leg fault in
V1'(00)
V2'(10)
V3'(11)
V4'(01)
1
V
3 d
1
Phase A
j 
1
Ve 2
3 d
1
V e j
3 d
j 
1
Ve 2
3 d
j 
1
Ve 3
3 d
7
Phase B
j 
1
Ve 3
3 d
Phase C
j 
1
V e 3
3 d
2
j 
1
Ve 6
3 d
4
j 
1
Ve 6
3 d
1
3
1
5
j 
1
Ve 6
3 d
1
j 
1
Ve 6
3 d
j 
1
Ve 3
3 d
5
In accordance with the voltage vectors described in Table 1 and Table 2, for
traditional inverter with six keys and inverter with four keys, allowing for motor
operation after occurrence of failure in the one of the inverter legs, in the Figure 2,
there has been shown the voltages vectors in αβ coordinates.
Fig. 2. Space voltage vectors generated by the inverter in topology 6S3P and 4S3P for various faults
Fault tolerant control of a PMSM drive in the selected emergency conditions
169
It is seen from Figure 2 that the health inverter allows for generation of six
symmetrical non-zero voltage vectors, and the inverter with failures in topology
4S3P, allows only for generation of four non-symmetric voltage vectors. By using
PWM modulation for control of the inverter’s switches, one can generate voltage
with the maximum amplitude of 1 Vd , which constitutes a half of voltage
2 3
generated by healthy inverter.
After a change in inverter’s topology, the current in the motor phase, connected
to redundant capacitors branch, cannot be controlled directly by transistor
switches. Considering PMSM motor without the neutral wire, the sum of currents
of three motor phases in the neutral point is zero, therefore the current in damaged
phase C can be described by the following equation:
ic  ia  ib
(10)
Equation (10) shows that the current in phase C can be easily and indirectly
controlled by the regulation of currents in phases A and B. The above
considerations shows that in order to obtain vector control of PMSM motor, one
just need an access to the two undamaged motor phases, while the third phase is
connected to a pair of capacitors. Presented topology of the inverter does not
require a change in the control algorithm after the occurrence of failure.
3.2. Fault tolerant control in 4S2P configuration of the inverter
For development of control algorithm for PMSM motor with inverter of
structure 4S2P a model in dq0 coordinates was used:
di
Vd  Rs id  Lq iqe  Ld d
(11)
dt
diq
Vq  Rs iq  Ld id e  e f  Lq
(12)
dt
di
V0  Rsi0  L0 0
(13)
dt
where Rs – stator resistance, Ld and Lq – stator inductance in the axis d and q
respectively, L0 – leakage inductance, ψf – amplitude of flux from the permanent
magnets, ωe – electric angular velocity of the rotor.
The transformation of dq0 coordinate system to abc is presented below:
 sin( )
1 id 
ia   cos( )
i   cos(  2 )  sin(  2 ) 1 i 
3
3
 q 
 b 
2

2

ic  cos(  3 )  sin(  3 ) 1 i0 
(14)
With the symmetry of the power system of motor phases (there is no current in
the neutral line), the current i0 is 0. The current in axis 0 can be described with the
equation (15) and the motor neutral current is defined in (16):
170
Krzysztof Siembab
i0  13 (ia  ib  ic )
in  ia  ib  ic  3i0
(15)
(16)
Having defined the model of PMSM motor in the coordinates dq0, the control
algorithm for motor with failure is defined. Considering the transformation (14)
one obtain the following equations:
ia  id cos( )  iq sin( )  i0
(17)
ib  id cos(  23 )  iq sin(  23 )  i0
ic  id cos( 
2
3
)  iq sin( 
2
3
)  i0
(18)
(19)
After the occurrence of an open-phase fault in any phase of motor, and
attaching the motor’s neutral point to the redundant leg of capacitors, flow of
current in the neutral wire is possible, and it causes appearance of current in axis 0.
In the case of discontinuance of phase A of motor, the flow of current in this phase
is not possible, therefore ia = 0. By substituting this correlation to the equation
(17), one get that current i0 is:
i0  iq sin( )  id cos( )
(20)
By substituting equation (20) to equations (18) and (19), one get the following:
ib  3 id cos(  56 )  iq sin(  56 )
(21)
ic 

3 i
d
cos( 
5
6
)  iq sin( 
5
6

)
(22)
The above equations describe the new principle of controlling PMSM motor
with the failure of phase A. The developed control algorithm will allow for further
operation of the damaged motor, with the smallest possible decrease in the control
quality. However, this requires an increase of phase currents amounting to 3
times and their offset of 30o (Fig. 3) as compared to operation without failures [4].
Fig. 3. Current phasor relationship after an open-phase fault on: a) phase A b) phase B c) phase C
Fault tolerant control of a PMSM drive in the selected emergency conditions
171
4. SIMULATION RESULTS
The verification of developed fault tolerant control method was conducted on
simulation model in the Matlab/Simulink software. The figure 4 shows the results of
research of PMSM motor, before and after the occurrence of failure in transistor
branch for phase C (topology 4S3P) and failure in motor’s phase A (topology 4S2P).
The Figure 4 (left side) shows the results of simulation research, before and
after the occurrence of failure in one of the inverter’s branches.
Fig. 4. Fault tolerant control for topology 4S3P (left side) and topology 4S2P (right side)
In the moment t1 = 0.18 s, the shorting of upper transistor in phase C has taken
place, which resulted in a large increase of phase currents, rush of torque, high
oscillation and decrease of rotational speed. Assuming that after 20 ms the failure
was detected, in the moment t2 = 0.20 s inverter’s topology has been changed to a
172
Krzysztof Siembab
topology 4S3P, allowing the drive to return to the operating state before the
failure. The control algorithm remained unchanged.
In the moment t1 = 0.12 s, the discontinuance of motor’s phase A has taken
place (Fig. 4 (right side)), which resulted in an increase in the currents flowing in
two undamaged phases, large rushes of torque, decrease and oscillation of
rotational speed and occurrence of current in the axis d. After the detection of
failure, in moment t2 = 0.14 s, a change of inverter’s topology to topology 4S2P has
taken place, without a change in the control algorithm. This resulted in the
occurrence of current in motor’s neutral conductor, and the decrease in torque
fluctuations and rotational speed. However, due to the lack of balance of two phase
currents, a fairly large torque ripples have remained. Only after the switch, at the
moment t3 = 0.18 s, of control algorithm to the above developed fault tolerant
control algorithm, the drive began to work correctly with reduction in control
quality taken into account. The new control algorithm enabled a significant
reduction of the torque ripples and PMSM motor speed, and eliminated the current
in axis d, which appeared after the occurrence of failure.
5. CONCLUSION
This paper presents two fault tolerant topologies of inverter, which can be
applied to PMSM drive in order to improve the reliability of the system under
various faults of inverter and motor. These fault tolerant topologies are based on
the reconfiguration of inverter’s structure by connecting the redundant leg of
capacitors. To keep the motor operating under faulty conditions with minimum
performance degradation, two control strategies are proposed. The simulation
results demonstrate that the proposed algorithms have good static and dynamic
performance. To verify the proposed method effectively, the experimental research
will be further continued in the future.
REFERENCES
[1]
[2]
[3]
[4]
Welchko, B.A., Lipo, T.A., Jahns, T.M., Schulz, S.E., Fault tolerant three-phase AC
motor drive topologies: a comparison of features, cost, and limitations, IEEE
Transactions on Power Electronics vol.19 , iss.4, p.1108 – 1116, 2004.
Doc, C., Lanfranchi, V., Friedrich, G., Inverter topology comparison for remedial
solution in transistor faulty case, in Proc. Eur. Power Electron. Appl., p. 1–8, 2007.
Sun, D., Meng, J., Research on fault tolerant inverter based permanent magnet
synchronous motor direct torque control drives, in Proc. IEEE Int. Conf. Ind.
Electron. Appl., Singapore, p. 1–5, 2006.
Bolognani, S., Zordan, M., Zigliotto, M., Experimental fault-tolerant control of
PMSM drive. IEEE Tran. Ind. Electron., vol. 47, p. 1134-1141, 2000.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Norbert ADAMKIEWICZ*
Dariusz ZMARZŁY*
CHARAKTERYSTYCZNE PARAMETRY PRACY POMP
W MIEJSKICH SYSTEMACH
KANALIZACJI BYTOWO-GOSPODARCZEJ
W artykule przedstawiono wyniki analizy czasów działania pomp wykorzystywanych
do pompowania ścieków bytowo-gospodarczych i przemysłowych w miejskich systemach
kanalizacyjnych. Obiekty te należą do urządzeń, których parametry pracy, a w
szczególności czas, zależą od bardzo wielu czynników. Wybrano jeden przykładowy
tygodniowy przebieg czasowy pracy zestawu dwóch pracujących naprzemiennie pomp.
Wyznaczono ich rozkłady gęstości prawdopodobieństwa, a następnie dopasowano je do
funkcji Fiska. Wyznaczono również przebieg różnicy czasów działania pomp, dla którego
wyznaczono rozkład gęstości prawdopodobieństwa. Nowy rozkład aproksymowano przy
użyciu modelu Cauchy’ego. Stwierdzono, że model ten bardzo dobrze oddaje statystyczne
cechy różnicy czasów działania pomp. Może zatem zostać wykorzystany w automatycznym
systemie diagnostyki awarii pomp w pompowni ścieków bytowo-gospodarczych.
1. WPROWADZENIE
Prawidłowo zaprojektowane i wykonane rozdzielcze systemy kanalizacji
bytowo-gospodarczej z grawitacyjnym odprowadzaniem ścieków są układami
raczej bezawaryjnymi. Jednak w warunkach aglomeracji miejskich rzadko
występuję jeden rodzaj kanalizacji, najczęściej są to systemy mieszane, w
szczególności systemy grawitacyjno – ciśnieniowe. Zaletą tego rozwiązania jest
praktycznie nieograniczony obszar zabudowy infrastruktury kanalizacyjnej. Na
rysunku 1 przedstawiono schemat systemu kanalizacji pracującego w warunkach
aglomeracji miejskiej.
Jednym z podstawowych elementów tego typu systemów kanalizacyjnych są
pompownie. Ze względu na ich istotną rolę jaką spełniają w systemach
kanalizacyjnych, wymagają szczególnej ochrony oraz zapewnienia ze strony
eksploatatora warunków niezbędnych do bezawaryjnego funkcjonowania.
Uszkodzenie jednej z pompowni powoduje, że mieszkańcy we wszystkich
podporządkowanych zlewniach nie mogą korzystać z urządzeń kanalizacyjnych.
Zwłaszcza w przypadku skomplikowanych hydraulicznie i rozbudowanych
__________________________________________
* Politechnika Opolska.
174
Norbert Adamkiewicz, Dariusz Zmarzły
systemów miejskich prawidłowe funkcjonowanie systemu kanalizacji wymaga
ciągłego monitorowania stanu szeregu elementów składających się na ten system
oraz szybkiej reakcji w przypadku awarii.
Rys. 1. Schemat sieci kanalizacyjnej w aglomeracji miejskiej
W ostatnich latach następuje sukcesywny wzrost cyfryzacji systemów kontroli
w układach dostarczania wody [1, 2] oraz odprowadzania ścieków. Aktualnie
wykonywana infrastruktura wodno-kanalizacyjna zawiera podstawowe elementy
kontroli, sterowania i diagnostyki takie jak czujniki inteligentne, sterowniki PLC
[3], układy komunikacji. Sposoby sterowania oraz diagnostyki są na obecnym
etapie w fazie badań, są jednak systematycznie wdrażane do pracy w warunkach
rzeczywistych [4, 5, 6, 7]. Badania przedstawione w artykule mają na celu rozwój
metod diagnostycznych w pompowniach ścieków.
Pompownie jako elementy układów kanalizacji bytowo-gospodarczej należą do
urządzeń, których parametry pracy, a w szczególności czas, zależą od bardzo wielu
czynników. Część z nich ma charakter stały, a część wolnozmienny np. wielkość
zlewni, ilość podłączonych użytkowników. Ponadto istotną kwestią są parametry
zmienne okresowo, np. pory dnia, pory roku, występowania dni świątecznych,
prace ogrodowe oraz czynniki o stochastycznym rozkładzie występowania np.
losowe skoki temperatury, susza, powódź, awarie. Prawidłowa diagnostyka
funkcjonowania systemu wymaga dokonania analizy działania poszczególnych
składowych systemu.
Ścieki bytowo-gospodarcze i przemysłowe pochodzące z poszczególnych
zlewni aglomeracji miejskiej gromadzone są w zbiornikach pompowni. Następnie
za pomocą pomp zatapialnych przetłaczane są przewodem tłocznym do studni
rozprężnej i dalej poprzez sieć kanałów grawitacyjnych trafiają do kolejnej
pompowni. Ostatecznie ścieki trafiają do oczyszczalni ścieków gdzie są
oczyszczane i odprowadzane do odbiornika, na przykład do rzeki.
Charakterystyczne parametry pracy pomp w miejskich systemach kanalizacji ...
175
2. OBIEKT POMIAROWY
W niniejszym artykule skupiono się na analizie czasów działania pomp w
jednym z polskich przedsiębiorstw wodno-kanalizacyjnych. System kanalizacji jest
rozwiązany jako układ grawitacyjno-tłoczny. Łączna długość przewodów
kanalizacyjnych wynosi ok. 360 km. Z większości zlewni istniejących na terenie
obsługiwanym przez system, ścieki odprowadzane są bezpośrednio do miejskiej
oczyszczalni ścieków. Sieć wodno-kanalizacyjna jest średniej wielkości.
Zaopatruje w wodę ok. 67 tyś. mieszkańców.
Przedmiotem analizy są dwie pompy tłoczne o mocy 9,5 kW każda. Pompy
pracują w sposób naprzemienny. Cykl działania układu sterowania polega na
przełączaniu kolejnej pompy po przekroczeniu krytycznego poziomu ścieków.
3. UKŁAD POMIAROWY
Pomiary wykonano przy użyciu dostępnego systemu pomiarowego
zainstalowanego w pompowni ścieków [8]. Uproszczony schemat blokowy
przedstawiono na rysunku 2.
Rys. 2. Schemat blokowy układu pomiarowego
Podstawowym elementami systemu są obiekt pomiarowy oraz zdalny system
zarządzania. W obiekcie pomiarowym mierzony jest poziom zwierciadła ścieków
przy użyciu sondy ultradźwiękowej. Sygnał ten jest przekazywany do układu
sterowania. Układ ten na podstawie wysokości zwierciadła steruje załączaniem
oraz wyłączaniem poszczególnych pomp. Sygnałem zwrotnym z pomp jest stan
czujników informujących o prawidłowym funkcjonowaniu pompy.
Sygnały o stanie pracy obiektu są przekazywane do zdalnego systemu
zarządzania przy użyciu sieci GPRS. Dane są wizualizowane na monitorach w
dyspozytorni, na stanowiskach klienckich oraz publikowane w sieci internet.
W niniejszym artykule w analizie nie uwzględniano poziomu zwierciadła ścieków.
Badano wyłącznie czasy pracy poszczególnych pomp.
176
Norbert Adamkiewicz, Dariusz Zmarzły
4. WYNIKI POMIARÓW
Pomiar polegał na wyznaczeniu różnicy czasów między włączeniami danej
pompy. Pompy powinny włączać się naprzemiennie. Czas między przełączeniami
powinien być zbliżony.
Znaczące odchyłki od normy mogą wskazywać na awarię np. uszkodzenie
pompy lub sondy poziomu, który wpływała na działanie układu sterującego.
Do analizy wykorzystano dane pomiarowe wykonane w sierpniu 2010 r.
Częstotliwość próbkowania wynosiła 1/60 s (pomiar co 1 minutę). W ciągu
jednego dnia wykonywano 1440 pomiary dla każdej z pomp. Do analizy
wykorzystano okres tygodniowy to znaczy 10080 pomiarów. W tym czasie
wystąpiło kilka typowych sytuacji awaryjnych.
Na rysunku 3 przedstawiono przykładowy przebieg działania dwóch pomp w
okresie od 15 do 22 sierpnia 2010 r. W 4 dniu wystąpiła anomalia w pracy P1
polegająca na krótkotrwałym zatrzymaniu pompy. W 5 dniu wystąpiła anomalia
polegająca na znacznym wydłużeniu czasu działania pompy. Z kolei na przebiegu
pracy pompy P2 można zauważyć zatrzymanie pompy w 4 dniu. Taka awaria może
być spowodowana awarią czujnika pompy, brakiem zasilania lub przerwą w
transmisji danych.
Rys. 3. Przebieg czasowy czasów działania pomp P1 i P2
Charakterystyczne parametry pracy pomp w miejskich systemach kanalizacji ...
177
Rys. 4. Rozkłady gęstości prawdopodobieństwa oraz aproksymacje przy użyciu modelu Fiska czasów
działania pomp P1 i P2
Na rysunku 4 przedstawiono funkcje gęstości prawdopodobieństwa pracy pomp
P1 i P2 w tym okresie. Rozkłady aproksymowano przy użyciu funkcji loglogistycznej (Fiska). Z rozkładów wynika, że przebiegi są pod względem
statystycznym podobne, i nie występują zasadnicze różnice między czasami
działania pomp. Dalszym krokiem jest analiza różnicy czasów. Przebieg czasowy
różnicy czasów działania pomp przedstawiono na rysunku 5.
Rys. 5. Przebieg różnicy czasów działania pomp
178
Norbert Adamkiewicz, Dariusz Zmarzły
Na wykresie można zaobserwować znaczące odchyłki w pracy pomp, w
chwilach występowania nieprawidłowości. Kolejnym krokiem analizy było
wyznaczenie rozkładu gęstości prawdopodobieństwa w ten sposób przetworzonego
sygnału. Wynik analizy przedstawiono na rysunku 6. W tym przypadku rozkład nie
jest „normalny” co potwierdza próba dopasowania przy użyciu funkcji Gaussa.
Znacznie lepszym dopasowaniem charakteryzuje się model Cauchy’ego, który
podobnie jak rozkład Gaussa jest dwuparametrowy. Opisuje go funkcja:
1
f ( x) 
(1)
  x  x 2 
0
 
 1  
    


gdzie: x0 jest położeniem, wartość  > 0 jest parametrem skali.
Zaletą tego rozkładu jest fakt, że w analizowanym przypadku wartość x0 jest
bliska zeru. To oznacza, że w praktyce rozkład można opisać funkcją o jednej
zmiennej. Jest to duża zaleta w przypadku użycia tego modelu w procesie
diagnostyki on-line. Wynika to z faktu, że znalezienie modelu o jednym punkcie
swobody wymaga znacznie mniejszej ilości obliczeń, oraz prostszego algorytmu
dopasowania. Taki model jest również bardziej stabilny obliczeniowo, łatwiejszy
do implementacji w mikroprocesorowym systemie diagnostycznym.
Rys. 6. Model rozkładu różnicy czasów działania pomp P1 i P2 w analizowanym okresie pracy
Końcowy algorytm diagnostyki może mieć postać prostej reguły decyzyjnej,
np. Jeśli wartość chwilowej różnicy czasów przekracza wartość u, to wystąpiła
awaria. System diagnostyki może poinformować obsługę o wystąpieniu
nieprawidłowości. Wartość u jest wartością progową wyliczoną na podstawie
położenia jednego z kwartyli. Wartość u może być wyznaczona automatycznie,
jest równocześnie parametrem czułości systemu diagnostycznego, wprowadza
także pewien element adaptacji.
Charakterystyczne parametry pracy pomp w miejskich systemach kanalizacji ...
179
5. WNIOSKI
Na podstawie uzyskanych rezultatów stwierdzono, że do modelowania różnicy czasu
pracy pomp w pompowni ścieków można wykorzystać model Cauchy’ego. Model ten
sprawdza się podczas występowania krótkotrwałych sytuacji awaryjnych. Jest
stosunkowo prosty i zawiera dwa parametry. W sytuacji, w której awarie są rzadkie,
model można uprościć do jednoparametrycznego. Zaproponowany model może zostać
wykorzystany do automatycznego wykrywania nieprawidłowości w pracy pomp w
miejskich systemach kanalizacyjnych.
LITERATURA
[1] Borkowski D., Wetula A., Bień A.: Design, optimization, and deployment of a waterworks
pumping station control system. ISA Transactions 51, Vol. 51, s. 539-549, 2012.
[2] Ahonen T,. Tamminen J., Ahola J., Vilholainen J., Aranto N., Kestila J.: Estimation of
pump operational state with model-based methods. Energy Conversion and
Management, Vol. 51, s. 1319-1325, 2010.
[3] Johansson J., Intelligent drives on the rise again. World Pumps, Is. 10, s. 40-42, 2009.
[4] Selek I., Bene J.G., Hos C.: Optimal (short-term) pump scheduling detection for water
distribution systems by neutral evolutionary search. Applied Soft Computing, Vol. 12, s. 23362351, 2012.
[5] Wang J.Y., Chang T.P., Chen J.S.: An enhanced algorithm for b-objective pump scheduling in
water supply. Expert Systems and Applications, Vol. 36, s. 10249-10259, 2009.
[6] Rajakarunakaran S., Venkumar P., Devaraj D., Surya Prakasa Rao K., Artificial neural network
approach for fault detection in rotary system, Applied Soft Computing, Vol. 8, pp. 740-748,
2008.
[7] Zmarzły M., Zmarzły D., Szmechta M.: Data analysis and processing algorithms in
efficiency coefficient optimization system of inverter driven water-supply pump-set,
Polish Journal of Environmental Studies, Vol. 16, No. 4A, s. 405-408, 2007.
[8] Adamkiewicz N. Zmarzły D.: Analiza czasu działania pomp w wybranej sieci
kanalizacji sanitarnej, Pomiary Automatyka Kontrola, zaakceptowany do publikacji.
CHARACTERISTIC PARAMETERS OF PUMP OPERATION
IN URBAN SEWAGE SYSTEMS
Analysis results of operation times of pumps applied for pumping of municipal and household
wastewater in urban and industrial sewage systems are presented in the paper. These facilities
belong to the equipment, which operating parameters and in particular the operation time, depend
on numerous factors. An example of weekly time course of a set of two alternatively working
pumps was chosen. Theirs probability density distributions have been determined and afterwards
they were adjusted to the Fisk function. Furthermore, the difference time course of pump
operation was determined, for which the probability density distribution was estimated. The new
distribution was approximated using a Cauchy model. It was found that this model reflects truly
statistical properties of the difference operation times of the considered pumps. Therefore, It can
be applied in an automatic fault diagnosis system of pumps in pumping station of municipal and
household wastewater.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Leszek KASPRZYK*
ANALIZA ZUŻYCIA ENERGII PODCZAS JAZDY
POJAZDEM SAMOCHODOWYM
W pracy przedstawiono zagadnienie energochłonności pojazdów samochodowych –
przeanalizowano energię potrzebną do jazdy oraz możliwą do odzysku. Omówiono
problematykę malejących zasobów paliwowych w kontekście rozwoju motoryzacji.
Przedstawiono charakterystykę aktualnie wykorzystywanych pojazdów samochodowych, z
uwzględnieniem podziału ze względu na czynnik zasilający. Zaprezentowano zależności
opisujące opory działające na samochód w trakcie jazdy oraz metody wyznaczania mocy
niezbędnej do przyspieszania i hamowania. Przygotowano aplikację komputerową
stworzoną w środowisku MS Visual Studio C# służącą do analizy i prezentacji graficznej
przebiegu jazdy. Na podstawie przeprowadzonych badań testowych i wykonanych
obliczeń, dokonano analizy energochłonności przykładowego pojazdu pokonującego dwie
trasy o różnej charakterystyce. Przeprowadzono również analizę możliwych oszczędności
energii podczas jazdy samochodem oraz omówiono problematykę związaną z
ograniczeniami zasobników energii.
1. WPROWADZENIE
Rosnąca w ostatnich latach mobilność ludzi oraz związany z nią rozwój
technologiczny branży motoryzacyjnej przyczynia się do znaczącego zwiększenia
liczby samochodów, a wraz z nim do wzrostu zapotrzebowania na paliwo silnikowe.
Sprawia to, że coraz większą uwagę skupia się na ekologii i ekonomii
produkowanych pojazdów, szczególnie pod kątem ich eksploatacji. Rozważania nad
tą problematyką nakierowane są na różne aspekty i realizowane są zarówno w
zakresie poprawy sprawności projektowanych układów napędowych, jak i
poszukiwania nowych rodzajów energii, a także metod ich magazynowania. Z tego
względu w pracy zajęto się analizą energochłonności samochodów osobowych,
skupiając się na energii, którą można odzyskać. Przeprowadzono wstępne badania
eksperymentalne polegające na porównaniu zapotrzebowania na energię pojazdu
bez możliwości odzysku energii, do zapotrzebowania pojazdu z możliwością
odzysku energii. Celem tych badań była analiza oporów ruchu, mocy potrzebnej do
przyspieszania i wytracania prędkości, analiza możliwych do uzyskania
oszczędności podczas hamowania odzyskowego, a także wskazanie ograniczeń
związanych z zastosowaniem różnych rozwiązań zasobników energii.
__________________________________________
* Politechnika Poznańska.
182
Leszek Kasprzyk
2. STAN ZASOBÓW MOTORYZACJI I ZASOBÓW
PALIWOWYCH
Według danych z Raportu Branży Motoryzacyjnej Polskiego Związku
Przemysłu Motoryzacyjnego z 2012 roku liczba pojazdów samochodowych w
Polsce w ostatnich kilkunastu latach wzrosła o ponad 70% i wynosi około 25 mln
(75% z nich to samochody osobowe), a w porównaniu do roku 1990 wzrost ten
wynosi ponad 300% [2, 6]. Co więcej przewiduje się też, że wskaźnik nasycenia
samochodami osobowymi – wyrażony liczbą aut przypadających na tysiąc
mieszkańców – będzie systematycznie rósł i nasyci się około 2020-2025 roku w
liczbie 525÷550 [6]. Z tego powodu naukowcy na całym świecie coraz częściej
próbują oszacować czas, na jaki wystarczy zasobów paliwowych. Przewiduje się,
że zasoby te wystarczą na około 40 lat, a kierowcy z coraz większym
zmartwieniem przyglądają się ich cenom, które systematycznie wzrastają.
Część kierowców próbuje szukać oszczędności wybierając mniejsze
samochody. Z tego powodu w ostatnich latach w parku samochodowym
zauważalna jest przewaga modeli małych i kompaktowych nad dużymi i
luksusowymi. Również w kwestii pojemności silnika samochodów zauważalna
jest tendencja na kupowanie aut małolitrażowych z silnikami o pojemności do
1400 cm3 (niezależnie od rodzaju paliwa) [2]. Innym popularnym rozwiązaniem
na oszczędności jest zakup samochodów przystosowanych do spalania LPG. Ich
udział we flocie systematycznie wzrastał i aktualnie wynosi około 15%, chociaż ze
względu na duży koszt instalacji ostatnio maleje popyt na samochody nowe
przystosowane do spalania LPG [2]. Podobnie przez pewien okres zauważyć
można było wzrost zainteresowania silnikami Diesla, jednak w 2011 roku liczba
zarejestrowanych samochodów z takim silnikiem spadła o 6% w stosunku do
poprzedniego roku i wyniosła około 40% [2].
Modnym, lecz jeszcze mało licznym rozwiązaniem, jest wzbogacenie pojazdu
o inny rodzaj napędu (pojazdy hybrydowe – najczęściej z silnikiem elektrycznym)
lub zamiana silnika spalinowego na elektryczny. Według danych z Raportu PZPM
liczba pojazdów z napędem hybrydowym wynosi 0,25%, a elektrycznym 0,01%.
Świadczy to o tym, że kierowcy wciąż uważają te rozwiązania za mało opłacalne.
Szczegółowe dane dotyczące liczby samochodów osobowych zarejestrowanych w
Polsce w 2010 oraz 2011 roku przedstawione zostały w tabeli 1.
Tabela 1. Liczba samochodów osobowych zarejestrowanych w Polsce
w 2010 i 2011 roku w zależności od rodzaju czynnika zasilania silnika [2]
Rok
2010
2011
Benzyna
166 657
163 527
Olej napęd.
143 852
109 740
LPG
4858
3257
CNG
19
43
Elektryczny
7
35
Hybrydowy
615
825
Analiza zużycia energii podczas jazdy pojazdem samochodowym
183
W celu wykazania, że zastosowanie jednego z powyższych czynników może
być uzasadnione ekonomicznie, dokonano analizy energetycznej pojazdu, przy
uwzględnieniu specyfiki jego pracy.
3. ANALIZA ENERGETYCZA POJAZDÓW SAMOCHODOWYCH
Chcąc wykazać zasadność stosowania układów napędowych, umożliwiających
odzysk energii, konieczne jest przeprowadzenie szczegółowej analizy energii potrzebnej
do ruchu pojazdu samochodowego. Dokonując takiej analizy należy uwzględnić siły
działające na pojazd w trakcie ruchu. Siły te zależą od wielu czynników, z czego do
najistotniejszych należy zaliczyć opory toczenia i opory aerodynamiczne.
Siła toczenia (Ft) wyznaczana jest z zależności [4]:
Ft  mgf t
(1)
gdzie: m – masa pojazdu, g – przyspieszenie ziemskie, ft – współczynnik oporu
toczenia.
Współczynnik oporu toczenia zależy od wielu czynników, takich jak rodzaj
ogumienia, prędkość jazdy, ciśnienie powietrza w ogumieniu itp. Zakładając
prawidłową i stałą wartość ciśnienia oraz rodzaj ogumienia, wpływ prędkości
jazdy, spowodowany między innymi odkształcaniem się opony, określić można z
następującego wzoru [4]:
f t  f t 0 (1  K 2 )
(2)
gdzie: v – prędkość pojazdu, K – współczynnik dodatkowego oporu toczenia (dla
powierzchni asfaltowych przyjmuje się K = 5*10-5 s2/m2), fto – współczynnik oporu
toczenia dla małych prędkości.
Współczynnik oporu toczenia dla małych prędkości najczęściej wyznacza się
wykonując próbę wybiegu pojazdu. Wówczas, aby obliczyć jego wartość, należy
zastosować wzór:
f t0 
 p2
2 gS t
(3)
gdzie: vp – prędkość początkowa pojazdu, g – przyspieszenie ziemskie,
St – droga toczenia (wybiegu) samochodu.
W praktyce dla pojazdów osobowych jadących po nawierzchni asfaltowej
współczynnik oporu toczenia dla małych prędkości wynosi od 0,012 do 0,014.
Kolejnym oporem oddziałującym w znaczący sposób na jadący pojazd jest siła
aerodynamiczna, wynikająca z wzdłużnych oporów powietrza (Fp) [4]:
Fp 
1
c x A w2
2
(4)
gdzie:  – gęstość powietrza (dla warunków normalnych 0C i ciśnienia 1013 hPa
gęstość suchego powietrza jest równa około 1.293 kg/m3), cx – współczynnik oporu
184
Leszek Kasprzyk
powietrza w kierunku wzdłużnym – zależy od kształtu pojazdu i dla samochodów
osobowych wynosi od 25% do 45% (zazwyczaj około 30% ) [5], A – pole
powierzchni czołowej pojazdu, vw – prędkość pojazdu względem powietrza.
Na podstawie wyznaczonych oporów ruchu, znając prędkość chwilową pojazdu
v (a na tej podstawie również przyspieszenie pojazdu ap oraz siłę wypadkową F
działającą na pojazd), oszacować można siłę napędową FN (przy założeniu jazdy
po płaskim terenie):
FN  F  F p  Ft
(5)
Znając wartość siły napędowej oraz przyjmując pewną sprawność mechaniczną
układu napędowego  (sprawność układu napędowego wynosi od 85 do 95%),
wyliczyć można energię potrzebną do pokonania zadanej drogi S w czasie t:
E
FN S

lub
E
FN tv

(6)
oraz zapotrzebowanie na moc
P
E
t
(7)
4. PRZYKŁADOWE BADANIA I ANALIZY TESTOWE
W celu praktycznej weryfikacji przestawionych rozważań przeprowadzono analizę
energochłonności przykładowego pojazdu podczas pokonywania wybranych tras o
różnej charakterystyce. Wykorzystując zestaw GPS dokonano rejestracji wartości
chwilowej prędkości pojazdu samochodowego marki Opel Vectra z silnikiem Diesla 1.9
CDTI o mocy 110 kW i łącznej masie równej około 1700 kg. Dokonano analizy
parametrów jazdy pojazdu samochodowego jadącego dwoma odcinkami drogi – w
centrum miasta w czasie godzin szczytu (9,04 km w czasie 52 min) oraz na terenie
mieszanym poza godzinami szczytu (25 km w czasie 34 min). Następnie przygotowano
aplikację komputerową stworzoną w środowisku MS Visual Studio C# 2010 EE służącą
do analizy i prezentacji graficznej przebiegu jazdy. Zarejestrowane podczas jazdy
współrzędne geograficzne przedstawiono na rysunku 1, a przebiegi prędkości jazdy w
czasie na rysunku 2. Wybór rodzaju trasy przejazdu podyktowany był chęcią wykazania
możliwości odzysku energii przez pojazdy elektryczne, które przy aktualnych
możliwościach gromadzenia energii elektrycznej są przeznaczone głównie do jazdy na
krótkich dystansach (zazwyczaj miejskiej).
Następnie na podstawie zależności opisanych w rozdziale 3 dokonano analizy
energochłonności pojazdu oraz jego zapotrzebowania na moc. Podczas obliczeń
przyjęto następujące parametry pojazdu: współczynnik oporu toczenia dla małych
prędkości ft0 = 0,013, pole powierzchni czołowej A = 2,75m2, współczynnik oporu
powietrza cx = 30%. Uzyskane wyniki obliczonego zapotrzebowania na moc
przedstawiono na rysunku 3. Moce (i później energie) pobierane przez pojazd dla
Analiza zużycia energii podczas jazdy pojazdem samochodowym
185
zapewnienia jego ruchu przyjęto jako wartości dodatnie, a odzyskiwane podczas
hamowania jako wartości ujemne. Na podstawie obliczonej mocy wyznaczono
energię, jaką zużył badany pojazd w celu przyspieszania (rys. 4 a i b, krzywa nr 1).
Dodatkowo, uwzględniając opory ruchu, obliczono energię jaką można byłoby
odzyskać w wyniku hamowania elektrodynamicznego (rys. 4 a i b, krzywa nr 2)
oraz ich sumę – czyli energię jaką zużyłby pojazd, gdyby miał możliwość odzysku
energii (rys. 4 a i b, krzywa nr 3).
a)
b)
Rys. 1. Przebieg tras, podczas których dokonano analizy zużycia energii
a) odcinek miejski w godzinach szczytu, b) odcinek trasy mieszanej poza godzinami szczytu
186
Leszek Kasprzyk
a)
b)
Rys. 2. Zarejestrowana prędkość jazdy w funkcji czasu
a) odcinek miejski w godzinach szczytu, b) odcinek trasy mieszanej poza godzinami szczytu
W celu weryfikacji poprawności obliczeń energochłonności pojazdu
wyznaczono zapotrzebowanie na olej napędowy podczas przejazdu zadanych
odcinków drogi, zakładając średnią sprawność silnika spalinowego równą 30% [5]
oraz wartość energetyczną paliwa równą 36 MJ/l [3,5]. Uzyskane wyniki
porównano z wartościami wskazanymi przez komputer pokładowy (którego
poprawność wskazań wcześniej zweryfikowano). W przypadku trasy miejskiej
obliczone zapotrzebowanie na paliwo wyniosło 0,82 l, a w przypadku drugiej trasy
1,23 l. Wyniki te nieznacznie różniły się od wskazań komputera pokładowego,
który w pierwszym przypadku wskazał wartość 0,8 l, a w drugim 1,2 l. Znikomość
Analiza zużycia energii podczas jazdy pojazdem samochodowym
187
uzyskanych odchyłek uznano za potwierdzenie poprawności obliczonych wartości
zużycia energii, uznając że różnice w oszacowanych i wskazanych przez komputer
pokładowy wartościach wynikają najprawdopodobniej z przybliżeń sprawności
silnika spalinowego i układu napędowego, która nie jest stała i w bardzo dużym
stopniu zależy od aktualnego przełożenia i prędkości obrotowej silnika.
a)
b)
Rys. 3. Obliczone zapotrzebowanie na moc w funkcji czasu
a) odcinek miejski w godzinach szczytu, b) odcinek trasy mieszanej poza godzinami szczytu
188
Leszek Kasprzyk
a)
b)
Rys. 4. Energia zużyta podczas jazdy (1), energia jaką można odzyskać podczas wytracania
prędkości (2) oraz ich suma (3) w funkcji czasu: a) odcinek miejski w godzinach szczytu, b) odcinek
trasy mieszanej poza godzinami szczytu
Prowadząc dalsze rozważania związane z analizą energii pojazdu, rozważano
zasobność źródła energii elektrycznej, które umożliwiłoby pokonanie odcinka
drogi o długości do 150 km, przy jednoczesnej analizie zdolności układów
elektrycznych do przekazywania odpowiedniej mocy w stanach dynamicznych –
zarówno w przypadku oddawania energii (w czasie przyspieszania pojazdu), jak i
w przypadku odzyskiwania energii (w momentach hamowania).
Jak wykazano w artykule [1] pokonanie trasy o długości 200 km przez podobny
pojazd wymaga zastosowania 2 bloków po 7 akumulatorów trakcyjnych typu Trojan
Analiza zużycia energii podczas jazdy pojazdem samochodowym
189
T1275 150 Ah, przeznaczonych do pracy cyklicznej i do głębokiego rozładowania, o
łącznym napięciu 84 V. Jednakże, jak wynika z rysunku 3, w obu analizowanych
przypadkach podczas jazdy moc dodatnia (potrzebna do napędzania pojazdu)
przekroczyła wartość kilkudziesięciu kW. Stało się tak w momentach gwałtownego
przyspieszania (ruszania). W takich przypadkach zastosowane akumulatory byłyby
niewystarczające ze względu na fakt, że wymagałoby to poboru prądu o wartościach
przekraczających 900 A, co przekraczałoby możliwości zaproponowanych źródeł
energii. Podobna sytuacja miałaby miejsce podczas gwałtownego zmniejszania
prędkości – wartości mocy ujemnej na rysunku 3. Ładowanie akumulatorów tak dużym
prądem doprowadziłoby do ich szybkiego zniszczenia i konieczności ich częstej
wymiany. Zważywszy że znaczna część kosztów eksploatacyjnych w przypadku
pojazdów elektrycznych wynika z kosztów wymiany akumulatorów [1], byłoby to
wysoce nieekonomiczne. Zastosowanie wyłącznie akumulatorów jest niekorzystne
nawet wówczas, gdy zwróci się uwagę na fakt, że podczas jazdy – zarówno w ruchu
miejskim, jak i w terenie mieszanym – przez znaczną większość czasu zapotrzebowanie
na moc nie przekracza wartości 30 kW i możliwe byłoby ograniczenie prądu do np.
300 A. Z tego względu istotne wydaje się zastosowanie dodatkowych zasobników
energii – które umożliwiłyby przekazywanie dużych prądów (w obu kierunkach) w
stanach dynamicznych – takich jak na przykład superkondensatory. Potwierdza to
przedstawione w artykule [1] rozważania teoretyczne na temat doboru magazynów
energii elektrycznej w pojazdach.
Należy jednak podkreślić fakt wystąpienia różnicy w zapotrzebowaniu na energię w
przypadku pojazdu z możliwością odzysku energii, w porównaniu do pojazdu
nieumożliwiającego odzysk energii. Jak wynika z zależności przedstawionych na
rysunku 4, ilość energii jaką zużył pojazd w ruchu miejskim wynosi około 5 800 kJ, z
czego odzyskać można byłoby 3 300 kJ (analizę wykonano pomijając straty
przetworników energii). Możliwość odzyskania dużych energii wynika z niewielkiej
prędkości jazdy oraz częstego przyspieszania i zwalniania. Gorszy wynik uzyskano
podczas analizy ruchu pojazdu w drugim omawianym przypadku – ilość zużytej przez
pojazd energii dochodzi do 12 900 kJ, z czego możliwej do odzyskania jest około
3 700 kJ. Tak znacząca różnica spowodowana jest jazdą ze znacznie większą prędkością
(średnia prędkość w pierwszym przypadku wynosi około 11 km/h, natomiast w drugim
około 45 km/h).
5. WNIOSKI
Na podstawie przeprowadzonych przykładowych badań testowych
potwierdzono, że zastosowanie układów umożliwiających odzysk energii może
pozwalać na znaczne oszczędności energii. W analizowanych przypadkach,
różnych pod względem charakterystyki jazdy, wykazano, że zastosowanie
dostępnych zasobników energii elektrycznej może umożliwić kilkudziesięciu
procentową oszczędność energii – ponad 50% w przypadku jazdy w centrum
190
Leszek Kasprzyk
miasta przy bardzo dużym natężeniu ruchu oraz 25% w przypadku jazdy na
odcinku mieszanym (częściowo na ternie zabudowanym) w okresie niskiego
natężenia ruchu samochodowego. W pracy zwrócono również uwagę na
problematykę związaną z ograniczeniami zasobników energii dotyczącymi
dopuszczalnych prądów ładowania i rozładowania – wykazano, że zastosowanie
wyłącznie tradycyjnych akumulatorów kwasowych może doprowadzić do
przedwczesnego obniżenia ich zdolności do gromadzenia energii i w konsekwencji
do znaczącego wzrostu kosztów eksploatacyjnych pojazdów elektrycznych i
hybrydowych. Przedstawiono także coraz bardziej popularne rozwiązania
wykorzystujące moduły superkondensatorów do przekazywania dużych energii w
stanach dynamicznych (gwałtownego przyspieszania i hamowania), których
parametry dają nadzieję na sprawne i długotrwałe działanie (odzyskiwanie i
oddawanie ładunku) podczas jazdy o różnej charakterystyce.
LITERATURA
[1] Bednarek K., Kasprzyk L., Zasobniki energii w systemach elektrycznych – część 2.
Analizy porównawcze i aplikacje, Poznan University of Technology, Academic
Journals, Electrical Engineering, Issue 69, ISSN 1897-0737, 2012, pp.209-218.
[2] Raport Branży Motoryzacyjnej, Polski Związek Przemysłu Motoryzacyjnego, 2012 r.
[3] Rozporządzenie Prezesa Rady Ministrów z dnia 10.05.2011 r. Dz. U. z 2011 r. nr 96,
poz. 559.
[4] Śląski G., Badania szacunkowe oporów ruchu pojazdu użytkowego w drogowej
próbie wybiegu, Logistyka 3/2011, ISSN 1231-5478, Instytut Logistyki i
Magazynowania, 2011, str. 2727-2737.
[5] Wolnik T., Komel B., Analiza kosztów układu kogeneracyjnego z silnikiem
spalinowym Diesla, Zeszyty Problemowe – Maszyny Elektryczne, Nr 86/2010, str.
175-180.
[6] http://www.stat.gov.pl/gus
ENERGY ANALYSIS OF THE VEHICLE DURING RUNNING
This paper presents the problem of energy consumption in car vehicles - the energy
needed to drive and possible recovery was analyzed. Discusses the problems of dwindling
fuel resources in the context of the automotive industry. The characteristics of currently
used vehicles, including breakdown by the power factor. Depending presented describing
the resistance acting on the car during the drive and determination methods of power
needed for acceleration and braking. Prepared computer application created in MS Visual
Studio C # is used to analyze and present graphical waveform driving. On the basis of
testing and calculations made, the analysis of energy consumption of the vehicle sample
overcoming two routes with different characteristics. An analysis of the energy savings
while driving and discusses issues related to energy storage constraints.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Sławomir PLUTA*
Łukasz WARGIN*
ZASTOSOWANIE INTERFEJSU GOOGLE MAPS API
DLA POTRZEB REALIZACJI SYSTEMU LOKALIZACJI
I REJESTRACJI TERMINALI MOBILNYCH
W artykule opisano sposób realizacji części zadań systemu lokalizacji i rejestracji
terminali mobilnych związanej z obsługą zadań przez węzeł centralny. Cały system składa
się z dwóch części. Pierwsza z nich – węzeł mobilny, znajduje się po stronie użytkownika
korzystającego z terminala przenośnego wyposażonego w moduł GPS oraz połączonego z
Internetem np. poprzez system GPRS. Druga część systemu (węzeł centralny),
odpowiedzialna jest za pobranie z bazy danych niezbędnych informacji, a następnie
przetworzenie ich i wyświetlenie aktualnego położenia urządzenia wraz z dodatkowymi
informacjami (czas, prędkość) na mapie z zasobu Google Maps. W artykule opisano zasady
implementacji Google Maps API – interfejsu programistycznego, umożliwiającego
korzystanie z Google Maps na własnych stronach WWW. Google Maps API pozwala na
zintegrowanie ze stroną WWW w pełni funkcjonalnej mapy łącznie z funkcjami do obsługi
zdarzeń związanych z procesem lokalizacji terminali mobilnych.
1. WSTĘP
W ostatnich latach obserwuje się wzrost zapotrzebowania na systemy
umożliwiające zdalną rejestrację położenia urządzeń mobilnych. Obecnie jest
wdrożonych dużo rozwiązań umożliwiających lokalizację i rejestrację położenia
pojazdów np. dla potrzeb firm transportowych. Natomiast w przypadku lokalizacji
osób w oparciu o położenie telefonu komórkowego, nie ma już tak wielu aplikacji.
Dzięki zastosowaniu systemów monitoringu z wykorzystaniem lokalizatorów GPS
[1-3], można np. dokonać kontroli pracowników wykonywujących swoje
obowiązki w terenie. Wykorzystanie systemów lokalizacji położenia urządzeń
mobilnych bądź też systemów lokalizacji wbudowanych w auta służbowe nie jest
jasno uregulowane. Stosując tą formę monitoringu należy ściśle stosować się do
przepisów zawartych w kodeksie cywilnym, konstytucji i w prawach pracy.
Przepisy nie regulują w jakiej formie należy poinformować pracowników o
zastosowaniu geolokalizacji. Przyjmuje się, że powinno udzielić się tej informacji
na jasnych zasadach, z którymi każdy może się zapoznać. Opracowanie systemu
__________________________________________
* Politechnika Opolska.
192
Sławomir Pluta, Łukasz Wargin
lokalizacji i rejestracji terminali mobilnych wymagało zastosowania technik
tworzenia stron internetowych przy użyciu języka HTML i PHP, tworzenia
skryptów JavaScript oraz powiązania strony WWW z bazą danych. Dzięki
wykorzystaniu interfejsu Google Maps API możliwe jest dokładne i szybkie
nanoszenie znaczników oznaczających położenie urządzeń przenośnych [4 - 6].
2. OPIS SYSTEMU LOKALIZACJI
System składa się z dwóch części. Pierwsza z nich to węzeł mobilny, w postaci
użytkownika korzystającego z urządzenia przenośnego wyposażonego w moduł GPS
połączonego z Internetem np. poprzez łącze GPRS. Urządzenie mobilne wysyła dane
na temat lokalizacji, czasu i prędkości do serwera bazy danych. Druga część systemu
– węzeł centralny zrealizowany na komputerze klienta, odpowiedzialny jest za
pobranie z bazy danych niezbędnych informacji, a następnie przetworzenie ich i
wyświetlenie aktualnego położenia urządzenia wraz z dodatkowymi informacjami
(czas, prędkość) na ekranie komputera. Na rysunku 1 zamieszczono schemat blokowy
przedstawiający podstawowe elementy składowe systemu lokalizacji.
Rys. 1. Ogólny schemat działania systemu lokalizacji
System centralny ma za zadanie odbiór danych z urządzenia mobilnego i ich
rejestrację w bazie danych oraz przetwarzanie. W tej części systemu, aplikacja
zainstalowana na komputerze administratora systemu, poprzez dowolne łącze
internetowe, nawiązuje połączenie z serwerem bazy danych, a następnie pobiera
dane z serwera. Kolejnym krokiem jest przetworzenie pozyskanych danych i
wyświetlenie ich. Podstawą realizacji centralnego systemu lokalizacji jest strona
Zastosowanie interfejsu Google Maps API dla potrzeb realizacji systemu …
193
internetowa. Strona napisana jest zgodnie ze specyfikacją języka HTML.
Wywoływanie funkcji Google Maps API odbywa się z wykorzystaniem języka
Java Script. Do realizacji bazy danych wykorzystano system MySQL.
3. ZASTOSOWANIE INTERFEJSU GOOGLE MAPS API
Google Maps API jest narzędziem stworzonym przez firmę Google w celu
umożliwienia wstawienia dowolnej mapy na stronę internetową. Dostęp do API
możliwy jest z poziomu języka JavaScript, ActionScript 3 (Google Maps API for
Flash) lub też w postaci zwykłego obrazu (Google Static Maps API). Korzystanie z
usługi jest bezpłatne. Google Maps API pozwala na zintegrowanie ze stroną
WWW w pełni funkcjonalnej mapy łącznie z własnymi danymi oraz funkcjami do
obsługi zdarzeń. Pierwsze wersje Google Maps API nie oferowały niektórych
zaawansowanych funkcji, dostępnych tylko na stronie Google Maps. Najnowsza
wersja udostępnia niemal wszystkie funkcje, a między innymi: geokodowanie
adresów, rysowanie, łączenie polilinii oraz wypełnianie kolorem, wyznaczanie tras
przejazdu z dowolnych punktów wraz z punktami pośrednimi oraz listą kroków,
kontrola widoku z ulic (Street View) itp.
Zawartość mapy jest generowana dynamicznie, a dane są pobierane z bazy
danych MySQL. Dane są wczytywane przez przeglądarkę z pliku dane.php,
którego zawartość generowana jest z wykorzystaniem skryptu napisanego w języku
PHP. Między znacznikami <dane> i </dane> zawarte są tagi markerów. Każdy
marker opisany jest przez jeden tag <marker/>, każdy tag marker zawiera
atrybuty: lat, lon, ikona, predkosc, kategoria, wspolrzedna_id i nazwa,
odpowiadające kolejno za: szerokość geograficzną, długość geograficzną, adres
URL ikony, prędkość, indywidualne id dla każdej współrzędnej oraz nazwę
użytkownika. Kiedy pobieranie danych się skończy, zostaje wywołana funkcja z
dwoma argumentami - dane, czyli zawartość pliku, oraz kodOdpowiedzi. Jeżeli kod
odpowiedzi wynosi 200 (co oznacza prawidłowe zakończenie pobierania danych)
wykonany zostanie kod odpowiedzialny za parsowanie. Jeśli kodOdpowiedzi był
inny (np. błąd 404), to wyświetlony zostanie odpowiedni komunikat informujący o
błędzie. Kolejnym krokiem jest parsowanie danych. Parsowanie (parser to
inaczej analizator składniowy) to przetwarzanie łańcucha tekstowego na instrukcje
zrozumiałe dla danego języka programowania. Dane parsowane są za pomocą
funkcji GXml.parse(), co przedstawiono poniżej:
var xml = GXml.parse(dane);
Tworzona jest zmienna markery i przypisywane są do niej wszystkie obiekty z
tagiem marker:
194
Sławomir Pluta, Łukasz Wargin
var markery =
xml.documentElement.getElementsByTagName("marker");
for(var i=0; i<markery.length; i++)
{
var lat = parseFloat(markery[i].getAttribute("lat"));
var lon = parseFloat(markery[i].getAttribute("lon"));
var ikona_url = markery[i].getAttribute("ikona");
var nazwa = markery[i].getAttribute("nazwa");
var czas = markery[i].getAttribute("czas");
var kategoria = markery[i].getAttribute("kategoria");
Następnie wywoływana jest funkcja wstawiająca marker na mapę z odpowiednimi
atrybutami:
var marker =
dodajMarker(kategoria,lat,lon,ikona_url,nazwa,czas);
odswiezSidebar();
}
Wywoływany jest komunikat informujący o ilości wczytanych markerów:
alert('Wczytano '+markery.length+' markerów');
Inicjowanie mapy jest prostą czynnością, utrudnienia pojawiają się wraz z
rozbudową aplikacji o nowe funkcje. Warto na mapie umieścić kontrolki
ułatwiające obsługę i poruszanie się po mapie.
Typowy widok mapy przedstawiono na rysunku 2. Zastosowano tu oznaczenia: 1 –
kontrolka nawigacyjna, klasa GLargeMapControl, 2 – Kontrolka wyboru trybu mapy,
klasa GMapTypeControl, 3 – okno informacyjne, klasa GInfoWindow, 4 – marker
pokazujący lokalizację, klasa GMarker, 5 – Mini-mapa, klasa GOverviewMapControl.
Kolejne elementy wykorzystywane w procesie tworzenia aplikacji to funkcja inicjująca
mapę:
function mapaStart()
{
Następnie wykonuje się sprawdzenie kompatybilności przeglądarki:
if(GBrowserIsCompatible
{
i utworzenie obiektu mapy w elemencie kodu HTML o ID „mapka”:
var mapa = new
GMap2(document.getElementById("mapka"));
Zastosowanie interfejsu Google Maps API dla potrzeb realizacji systemu …
195
Wycentrowanie mapy w miejscu o podanych współrzędnych i o podanym
przybliżeniu realizuje funkcja:
mapa.setCenter(new
GLatLng(53.41935400090768,14.58160400390625),10);
Dodanie kontrolek mapy zapewniają polecenia:
mapa.addControl(new
mapa.addControl(new
mapa.addControl(new
mapa.addControl(new
}
GLargeMapControl());
GMapTypeControl());
GOverviewMapControl());
GScaleControl());
}
Dzięki zastosowaniu powyższych funkcji można wywołać i umieścić podstawową mapę w aplikacji napisanej w kodzie HTML. Dodatkowo do mapy
dołączony zostanie pasek boczny, w którym wyświetlane będą informacje na temat
aktualnie pokazanych na mapie markerów. Markery nie wyświetlane na mapie, nie
będą również wyświetlane w bocznym pasku. Odnośnikiem jest tu nazwa
użytkownika zaznaczonego na mapie. Prezentowany system lokalizacji posiada
także bardzo przydatną funkcję jaką jest wyświetlanie przybliżonego adresu
wybranego punktu dzięki wykorzystywaniu geokodowania. Wykonanie skryptu
związanego z tym procesem, umożliwia wyświetlenie adresu w okienku
informacyjnym w pobliżu wybranego punktu na mapie.
Rys. 2. Wygląd generowanej mapy
196
Sławomir Pluta, Łukasz Wargin
Na rysunku 3 przedstawiono przykładowy zrzut ekranu dokumentujący proces
rejestracji przemieszczania się terminala mobilnego.
Rys. 3. Wygląd interfejsu użytkownika
4. PODSUMOWANIE
System lokalizacji użytkowników mobilnych dzięki zastosowaniu interfejsu
Google Maps API w przystępny sposób udostępnia takie funkcje jak: dodawanie i
usuwanie użytkowników, nanoszenie na mapę lokalizacji na podstawie zebranych
danych, wybór widzialności użytkowników, wyświetlanie tylko ostatniego
zarejestrowanego położenia użytkownika, pokazywanie przybliżonego adresu dla
zaznaczonego punkt, przenoszenie do punktu na mapie, zaznaczonego w pasku
bocznym znacznika, wyszukiwanie lokalizacji według wpisanego adresu oraz
wyświetlanie informacji na temat dowolnego punktu, takich jak:
 czas wysłania informacji,
 nazwa użytkownika,
 prędkość chwilowa przemieszczania się urządzenia,
 współrzędne geograficzne,
 przybliżony adres.
Projekt systemu umożliwia wprowadzanie dalszych rozszerzeń o nowe funkcje i
możliwości, pozwalające na tworzenie raportów i statystyk na podstawie zebranych
danych. System nie wymaga specjalistycznych serwerów bazodanowych. Podczas
Zastosowanie interfejsu Google Maps API dla potrzeb realizacji systemu …
197
testów system mobilny wysyłał dane o pozycji z minimalnym krokiem 0,5
sekundy. W tym przypadku po retransmisji możemy spodziewać się błędu
położenia w wysokości 1 kroku pomiaru, co w przypadku pieszych obiektów jest
dopuszczalne. W czasie 0,5 sekundy człowiek przemieszcza się o 0,5 m. Poziom
niedokładności jest więc koło 10 razy mniejszy od standardowego błędu lokalizacji
systemu GPS.
System w obecnej formie może znaleźć wiele zastosowań. Głównym jego
przeznaczeniem może być kontrola położenia pracowników, dzieci, osób
niepełnosprawnych oraz starszych. Funkcjonalność systemu w obecnej formie
ogranicza się do nanoszenia na mapę współrzędnych o aktualnej pozycji oraz
podawania i przetwarzania podstawowych informacji – czasu i prędkości
przemieszczania się urządzenia. Po wprowadzeniu odpowiednich modyfikacji,
system mógłby również stanowić bazę do budowy mobilnego systemu
telemetrycznego.
LITERATURA
[1] Narkiewicz J.: GPS i inne satelitarne systemy nawigacji. Wydawnictwo Komunikacji
i Łączności, Warszawa, 2007.
[2] Januszkiewicz J., Systemy satelitarne GPS Galileo inne. Wydawnictwo Naukowe
PWN, Warszawa, 2010.
[3] Lamparcki J., Świątek K.: GPS w praktyce geodezyjnej. Wydawnictwo Gall, 2007.
[4] Purvis M., Sambells J., Turner C.: Google Maps Aplications with PHP and AJAX:
From Novice to Professional, Apress, 2010.
[5] GOOGLE MAPS: Google Maps przewodnik użytkownika.
http://maps.google.com/support/bin/topic.py?hl=pl&topic=1465 .
[6] GOOGLE MAPS: Dokumentacja Google Maps Api.
http://code.google.com/intl/plPL/apis/maps/documentation/javascript/v2/basics.html.
APPLICATION OF THE GOOGLE MAPS API IN THE SYSTEM OF
LOCALIZATION AND REGISTRATION FOR MOBILE TERMINALS
In the article is shown a part of localization and registration system for mobile terminals
associated with the handling tasks by the central node. This paper contains a description of
the principles of operating the system. Important concepts and the most important system
services offered by Google (Google Maps and Google Maps Api) had been described. The
system allows identify the exact localization of the terminals with the basic information
which is stored in the database, such as location, time of the registration, the instantaneous
velocity and the average movement speed of the terminals.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Michał FILIPIAK*
Jarosław JAJCZYK*
BADANIE SYSTEMU ESP W WARUNKACH DROGOWYCH
W artykule przedstawiono najbardziej znany system kontroli toru jazdy stosowany w
pojazdach samochodowych. Przedstawiono jego budowę, omówiono działanie systemu w
przypadku podsterowności i nadsterowności. Zaprezentowano wyniki przykładowych
badań diagnostycznych przeprowadzonych w warunkach drogowych.
1. WSTĘP
Niektóre sytuacje drogowe są trudne do zasymulowania w warunkach
laboratoryjnych lub na stanowisku diagnostyki pojazdów. Zwłaszcza, gdy
przyczyny ich zaistnienia są losowe. Podczas ruchu pojazdu w warunkach
drogowych zachodzą zdarzenia nieprzewidywalne i aby je zasymulować konieczne
są badania w warunkach drogowych. Badania takie mają na celu wykazanie
skuteczności systemów wspomagających kierowcę. Dotyczy to szczególnie
systemów bezpieczeństwa, których działanie zazwyczaj ogranicza się do
nieoczekiwanych i nagłych zdarzeń na drodze. Dochodzi wtedy do gwałtownego
hamowania lub wykonywania manewrów ze zbyt dużą prędkością, niedostosowaną
do warunków drogowych. Sytuacje takie mogą doprowadzić do utraty sterowności
pojazdu, a w konsekwencji do spowodowania wypadku. Ich przyczyną może być
np. wkroczenie pieszego na jezdnie lub słaba widoczność, zwłaszcza w nocy lub
we mgle, podczas której pojawienie się przeszkody na drodze jest zauważalne z
opóźnieniem. Innymi przyczynami zaistnienia niebezpieczeństwa może być
niedostosowanie prędkości do warunków drogowych przy pokonywaniu zakrętów
wynikające często ze zbyt małego doświadczenia kierowcy.
Wraz z rozwojem techniki mikroprocesorowej powstał szereg systemów
mających za zadanie wspomaganie kierowcy w prowadzeniu pojazdu, zwłaszcza
w sytuacjach nagłych i niespodziewanych mogących mieć konsekwencje w
bezpieczeństwie [1, 2, 4, 6, 7, 11, 12]. Pierwszy, najbardziej popularny system,
który powszechnie zastosowano w pojazdach samochodowych to system
zapobiegający blokowaniu się kół podczas hamowania, czyli układ ABS (ang.
Anti-Lock Braking System). Kolejny układ to system zapobiegający poślizgowi
__________________________________________
* Politechnika Poznańska.
200
Michał Filipiak, Jarosław Jajczyk
kół napędowych podczas przyspieszania (ABS – ang. Acceleration Slip
Regulation). Układem wpływającym na trakcję pojazdu, stosowanym w coraz
większej liczbie nowych aut, jest układ elektronicznej stabilizacji toru jazdy (ESP
– ang. Electronic Stability Program). Jak wykazują badania tego typu układy
znacznie wpływają na bezpieczeństwo, a układ ESP, który od 31 października
2014 roku stanie się obowiązkowym wyposażeniem we wszystkich nowo
rejestrowanych samochodach, może zapobiec nawet 80 % wypadków związanych
z poślizgiem i jest drugim po pasach bezpieczeństwa najważniejszym systemem
bezpieczeństwa w pojeździe [9].
2. SYSTEM ESP
System ESP jest układem, który ma za zadanie stabilizować tor jazdy pojazdu.
System ten swoimi funkcjami obejmuje układy ABS (zapobiega blokowaniu się
kół podczas manewru hamowania) i ASR (zapobiega obracaniu się kół
napędowych w miejscu podczas ruszania). Dzięki swojej budowie i
oprogramowaniu prowadzi pojazd po wyznaczanym przez kierowcę torze jazdy.
Elektroniczny układ stabilizacji toru jazdy wykorzystuje informacje z szeregu
zaawansowanych technologicznie czujników i nawet do 25 razy na sekundę
sprawdza, czy rzeczywisty tor poruszania się pojazdu odpowiada skrętowi
kierownicy. Odbywa się to na podstawie informacji o ruchu pojazdu w osi
pionowej. Wykrycie rozbieżności między wartościami zadanymi a rzeczywistymi,
mogące skutkować utratą stabilności pojazdu, powoduje ingerencję ESP. Działanie
układu jest różne w zależności od wersji, choć zazwyczaj w pierwszej kolejności
obniżony zostaje moment obrotowy w celu przywrócenia stabilności pojazdu. Jeśli
to nie wystarczy dodatkowo wyhamowane zostają odpowiednie koła w celu
naprowadzenia pojazdu na zadany tor jazdy [12].
System ESP idealnie nadaje się do sterowania w sytuacjach nadsterowności, jak
i podsterowności pojazdu. Tego typu stabilizacja jest szczególnie użyteczna w
przypadku nagłych i nieprzewidzianych manewrów, które mogą zaistnieć podczas
wykonania gwałtownych manewrów ominięcia przeszkody. Występuje ona
również w przypadku tracenia przyczepności przy zbyt dużych prędkościach
podczas zmiany pasa ruchu. Nadsterowność pojazdu występuje, jeśli tył pojazdu
zaczyna tracić przyczepność z nawierzchnią drogi. Kierowca zaczyna wyczuwać
poślizg tylnich kół, a jego reakcja wymusza skontrowanie pojazdu tak, aby
wyprowadzić go na właściwą drogę. Zazwyczaj w tej sytuacji samochód opuszcza
zadany tor jazdy i może znaleźć się np. na przeciwległym pasie ruchu, co jest
niedopuszczalne. System ESP w tej sytuacji przyhamowuje poszczególne przednie
koła pojazdu. W przypadku podsterowności samochód nie reaguje z należytą siła
na skręt kierownicy. Przednie koła wpadając w poślizg powodują, iż
manewrowanie pojazdem jest znacznie utrudnione. W tej sytuacji system ESP
Badanie systemu ESP w warunkach drogowych
201
przyhamowuje koła znajdujące się na tylnej osi tak, aby nakierować pojazd na
właściwy tor jazdy. Działanie system ESP jest sygnalizowane miganiem lampki
ostrzegawczej.
Głównym elementem układu ESP, który odpowiada za pracę systemu jest
sterownik systemu (rys. 1). Analizuje on wszystkie sygnały i na ich podstawie
podejmuje odpowiednie działanie, które w sytuacjach wymagających zadziałania
systemu skutkuje wysterowaniem modulatora ciśnienia płynu hamulcowego w
odpowiednim obwodzie hamulcowym i przekazaniu dodatkowej informacji do
sterownika silnika [1, 2, 7, 11, 12].
Rys. 1 . Schemat blokowy systemu ESP
Funkcje, jakie realizuje sterownik to [1, 2, 4, 12]:
 zasilanie czujników działających w systemie,
 przetwarzanie danych wejściowych za pomocą przetwornika analogowocyfrowego,
 obliczanie na podstawie dostarczonych danych wartości nastawczych,
 wysyłanie sygnałów sterujących do elementów nastawczych,
 kontrola poprawnej pracy elementów systemu i ich połączeń,
 współpraca z innymi sterownikami systemu samochodowego (np.: sterownik
silnika, skrzyni biegów itp.).
Do poprawnej pracy system ESP wykorzystuje wiele sygnałów z szeregu
czujników, wyposażonych często w układy mikroprocesorowe obrabiające
wstępnie sygnał i transmitujące go w postaci cyfrowej do sterownika ESP. Spośród
podstawowych czujników wyróżnić można:
 czujniki prędkości obrotowej kół,
 czujnik kąta obrotu kierownicy,
 czujnik przyspieszenia poprzecznego pojazdu,
 czujnik prędkości kątowej (obrotowej) pojazdu wokoło osi pionowej,
 czujnik ciśnienia w układzie hydraulicznym.
202
Michał Filipiak, Jarosław Jajczyk
Najważniejszym elementem wykonawczym systemu ESP jest modulator
ciśnienia płynu hamulcowego. Składa się on m. in. z pompy przetłaczającej i
zaworów elektromagnetycznych oddzielnych dla każdego obwodu hamulcowego.
Modulator, na podstawie sygnałów ze sterownika może doprowadzić do
zwiększenia lub zmniejszenia siły hamowania poszczególnego koła [12].
3. BADANIA W WARUNKACH DROGOWYCH
Zadaniem układu elektronicznej stabilizacji toru jazdy jest kontrola trakcji
pojazdu w trakcie jazdy. Z tego powodu badania symulacyjne w sytuacjach, w
których system ESP jest przydatny, można wykonać tylko w warunkach
drogowych (w ruchu). W pracy badaniom został poddany układ ESP TRW 440.
Stanowił on wyposażenie samochodu marki Volkswagen Passat 1.9TDI kombi.
Badania przeprowadzono przy wykorzystaniu testera diagnostycznego KTS 570
firmy Bosch [3, 5, 8, 10].
Pomiary zostały wykonane przy prędkości około 40 km/h na pokrytej ubitym
śniegiem jezdni, a więc charakteryzującej się niskim współczynnikiem
przyczepności. W celu zarejestrowania i zbadania zachowania się pojazdu w
sytuacji nadsterowności i podsterowności przeanalizowano dwa przypadki.
Pierwszy to pokonywanie zakrętu ze zbyt dużą prędkością (dostosowaną do suchej
nawierzchni) (rys. 2), natomiast drugi to nagła zmiana pasa ruchu (rys. 5).
Zmiany prędkości obrotowej kół podczas wykonywania gwałtownego skrętu
kierownicą w lewo (rys. 3) przedstawiono na rysunku 4. W tej sytuacji śliska
nawierzchnia jest przyczyną wystąpienia podsterowności i pomimo skrętu w lewo
można zaobserwować, że siła odśrodkowa działająca na przód pojazdu powoduje,
że samochód nie podąża w zadanym kierunku. W tym momencie przednie koła
tracą przyczepność.
Rys. 2. Manewr skrętu w lewo na śliskiej nawierzchni
Badanie systemu ESP w warunkach drogowych
203
Rys. 3. Kąt obrotu kierownicy i pojazdu w funkcji czasu
Rys. 4 . Prędkości obrotowe kół pojazdu w funkcji czasu
System bezpieczeństwa czynnego ESP wykrywa niebezpieczną sytuację za
pomocą czujnika przyspieszenia poprzecznego i rotacji pojazdu względem osi
pionowej. Sterownik uruchamia modulator ciśnienia i przyhamowuje tylne lewe
koło (rys. 2 i rys. 4). Będąc w połowie zakrętu pojazd zostaje nakierowany na
właściwy tor jazdy. Natomiast przy wyjeździe z zakrętu kierowca wykrywając, że
zbyt mocno skręca w lewo zmienia kierunek jazdy na przeciwną stronę (rys. 3),
wprowadzając pojazd w nadsterowność. W tym przypadku system odpowiednio
zareagował poprzez przyhamowanie przedniego prawego, koła nie pozwalając na
uślizg tyłu pojazdu (rys. 2 i rys. 4).
W kolejnych badaniach przeprowadzono próbę nagłej zmiany pasa ruchu. Tor
jazdy został przedstawiony na rysunku 5.
W przedstawionej próbie pojazd miał do ominięcia cztery przeszkody, które
znajdowały się zarówno na prawym jak i lewym pasie ruchu. W początkowej fazie
pokonywania przeszkody zauważono, że system wyprowadza pojazd z
podsterowności przyhamowując tylne lewe koło, nadając moment skręcający
204
Michał Filipiak, Jarosław Jajczyk
pojazdem mimo poślizgu przednich kół. Następnie przy powrocie na właściwy pas
ruchu pojazd staje się nadsterowny. Aby nie dopuścić do obrotu wokół własnej osi,
zostaje przyhamowane przednie lewe koło. Podczas prostowania kół samochód
zostaje odpowiednio nakierowany na wprost i podczas skrętu w lewo ponownie
wpada w podsterowność (rys. 5).
Rys. 5. Badanie sterowności pojazdu przy zmianie pasa ruchu
W końcowej fazie ruchu zauważono gwałtowne przyhamowanie przednim
prawym kołem. Ta sytuacja została niepotrzebnie spowodowana przez kierowcę,
gdyż wcześniejsze wyprostowanie kół nie wprowadziłoby samochodu w
nadsterowność. Podczas manewru omijania przeszkód nie stwierdzono sytuacji, w
której kierowca mógłby utracić kontrolę nad pojazdem. Ten fakt potwierdza
wykres obrotu pojazdu wokół osi pionowej (rys. 6). Wynika z niego, że każdy
zadany kierunek jazdy z małym opóźnieniem ma odzwierciedlenie na obrocie
pojazdu wokół osi pionowej.
Rys. 6. Skręt kierownicy i obrót pojazdu w funkcji czasu
Badanie systemu ESP w warunkach drogowych
205
Rys. 7. Prędkości obrotowe kół pojazdu w czasie manewru omijania przeszkód
Podczas prób w warunkach drogowych nie zauważono sytuacji, w której pojazd
nie zareagowałby na zmianę zadanego tor jazdy. Na rysunku 7 można dostrzec, że
w ciągu dwóch sekund przyhamowane zostało dwukrotnie prawe przednie koło
(272 i 274 sekunda na rysunku 7). Można również dostrzec, że żadne z kół nie
zostało całkowicie zablokowane, gdyż sterowanie zaworami odbywa się
impulsowo. W ten sposób bardzo precyzyjnie zostaje dobrana siła korygująca. Jeśli
siła hamowania zostałaby źle dobrana, to samochód z sytuacji podsterownej
przeszedłby do nadsterowności. System ESP oprócz wysterowania zaworami
elektromagnetycznymi obniża również prędkość pojazdu.
4. WNIOSKI
System bezpieczeństwa czynnego ESP podczas testów w trudnych warunkach
atmosferycznych działał poprawnie. W trakcie wykonywania niebezpiecznych
manewrów na śliskiej nawierzchni nie dopuścił do utraty kontroli nad pojazdem.
Na podstawie wykonanych pomiarów można wywnioskować, że dynamika
systemu nawet podczas wyższych prędkości nie ulegnie zmianie. Reakcja systemu
stabilizacji toru jazdy na zadany przez kierowcę kierunek jazdy zawsze była
obarczona z lekkim opóźnieniem. Jest to spowodowane opóźnioną reakcją
samochodu na manewr wykonany kierownicą. Natomiast, jeśli taka reakcja nie
nastąpiła, to zostały uruchomione procedury bezpieczeństwa poprzez
przyhamowywanie odpowiedniego koła, aby wspomóc manewr zadany przez
kierowcę. Jednocześnie, aby ułatwić jazdę i zmniejszyć ryzyko wypadku został
ograniczony moment obrotowy silnika.
System ESP monitoruje czujniki podczas poruszania się pojazdu. Aktywacja
modulatora ciśnienia w celu nakierowania pojazdu na właściwy tor następuje
206
Michał Filipiak, Jarosław Jajczyk
podczas odchylenia osi podłużnej pojazdu od zadanego kierunku jazdy. Takie
sytuacje następowały, gdy kąt odchylenia był większy niż 10 stopni lub
następowała zmiana rotacji pojazdu w przeciwną stronę.
BIBLIOGRAFIA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
Bosch Team, Sieci wymiany danych w pojazdach samochodowych, Wydawnictwa
Komunikacji i Łączności, Warszawa 2008.
Filipiak M., Jajczyk J., Nawrowski R., Putz Ł.: Systemy bezpieczeństwa czynnego i
ich diagnostyka, Poznan University of Technology Electrical Engineering
Academic Journals, zeszyt 69, s. 219-226, Poznań, kwiecień 2012, s. 219-226.
Filipiak M., Jajczyk J., Nawrowski R., Putz Ł.: Urządzenia diagnostyczne w
pojazdach samochodowych, Poznan University of Technology Electrical
Engineering Academic Journals, zeszyt 69, Poznań, kwiecień 2012, s. 227-234.
Herner A., Riehl H.J., Elektrotechnika i elektronika w pojazdach samochodowych,
Wydawnictwa Komunikacji i Łączności, Warszawa 2002.
KTS 570 User Manual.
Myszkowski S., Poradnik serwisowy. Diagnostyka pokładowa. Standard
OBD II/EOBD, Instalator Polski, Warszawa 5/2003.
Schmidgall R., Zimmermann W., Magistrale wymiany danych w pojazdach.
Protokoły i standardy, Wydawnictwa Komunikacji i Łączności, Warszawa 2008.
Sitek K., Syta S., Pojazdy samochodowe. Badania stanowiskowe i diagnostyka,
Wydawnictwa Komunikacji i Łączności, Warszawa 2011.
Struth Werner, Robert Bosch, Informacja prasowa, Warszawa, listopad 2011.
Trzeciak K., Diagnostyka samochodów osobowych, Wydawnictwa Komunikacji i
Łączności, Warszawa 2010.
Konwencjonalne i elektroniczne układy hamulcowe, Praca zbiorowa, WKŁ 2006.
Układ stabilizacji toru jazdy, Praca zbiorowa, WKŁ 2000.
ESP SYSTEM TESTING IN CONDITIONS OF ROAD
This paper presents the most famous track control system used in motor vehicles. The
paper presents the design, discussed the system in the event of understeer and oversteer.
The results of diagnostic tests performed exemplary in road conditions.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Jarosław JAJCZYK*
Michał FILIPIAK*
DIAGNOSTYKA SYSTEMU ELEKTRONICZNEJ
STABILIZACJI TORU JAZDY
W artykule przedstawiono system elektronicznej kontroli toru jazdy stosowany w
pojazdach samochodowych. Omówiono jego budowę i działanie. Zaprezentowano metody
testowania tego typu układów oraz przedstawiono wyniki przykładowych badań
diagnostycznych.
1. WSTĘP
Ruch pojazdów samochodowych wiąże się z szeregiem niebezpieczeństw
wywołanych niespodziewanymi sytuacjami drogowymi. Sytuacje te mogą mieć
swoją przyczynę w stanie technicznym pojazdów, warunkach atmosferycznych, jak
również w umiejętnościach kierowcy. Niezależnie od przyczyny, w każdym
przypadku może dojść do okoliczności zagrażających mieniu i życiu. W pojazdach,
pozbawionych systemów wspomagających prowadzenie pojazdu, uniknięcie
niebezpiecznych sytuacji jest możliwe tylko dzięki umiejętnościom kierowcy.
Niestety szybkość zachodzących zjawisk związana z prędkością poruszania się
pojazdu i mnogość parametrów wpływających na zachowanie się pojazdu często
uniemożliwia odpowiednie (na czas) zareagowanie kierowcy. Zwłaszcza, że
sytuacje takie występują „z zaskoczenia”.
Wraz z rozwojem techniki mikroprocesorowej powstały systemy mające na celu
wsparcie kierowcy podczas prowadzenia pojazdu [1, 2, 4, 7, 10, 11]. Do
podstawowych układów zaliczyć można układ ABS (ang. Anti-Lock Braking
System), który zapobiega blokowaniu się kół, dzięki czemu pojazd zachowuje
sterowność podczas hamowania. Innym układem polepszającym parametry
trakcyjne pojazdu jest system ASR (ang. Acceleration Slip Regulation), który
zapobiega uślizgowi kół napędowych podczas przyśpieszania. Oba układy
stosowane dość powszechnie w samochodach osobowych znacznie wpływają na
bezpieczeństwo ruchu, lecz ich działanie ograniczone jest tylko do fazy
przyśpieszania i hamowania (z niewielkimi modyfikacjami rozszerzającymi u
niektórych producentów).
__________________________________________
* Politechnika Poznańska.
208
Jarosław Jajczyk, Michał Filipiak
Rozbudowaniem możliwości systemów wspomagających bezpieczeństwo
czynne pojazdów w trakcie jazdy jest układ ESP (ang. Electronic Stability
Program). Układ ten w sposób ciągły kontroluje zachowanie się pojazdu nie tylko
w trakcie przyspieszania lub hamowania, ale również podczas poruszania się ze
stałą prędkością [1, 2, 4, 7, 10, 11].
2. ZADANIA STAWIANE UKŁADOWI ESP
Systemem ESP ma za zadanie stabilizować tor jazdy pojazdu. Układ ten
integruje systemy ABS i ASR zwiększając ich możliwości o dodatkowe funkcje [2,
10, 11]. Dzięki szeregu urządzeń pomiarowych i sterujących zapewnia
prowadzenie pojazdu po wyznaczanym przez kierowcę torze jazdy. System ESP
kontroluje zachowanie się pojazdu w sytuacjach nadsterowności i podsterowności
pojazdu. Tego typu stabilizacja jest szczególnie przydatna w nagłych i
nieprzewidzianych sytuacjach, w których należy wykonać gwałtowny manewr
ominięcia przeszkody. Nadsterowność i podsterowność występuje również w
sytuacji utraty przyczepności wywołanej zbyt dużą prędkością podczas zmiany
pasa ruchu lub pokonywania zakrętu [2, 10, 11].
Nadsterowność pojazdu występuje, jeśli tył pojazdu zaczyna tracić przyczepność.
Kierowca zaczyna wyczuwać poślizg tylnich kół, a jego reakcja wymusza skierowanie
kół w takim kierunku, aby wyprowadzić pojazd na właściwą drogę. System ESP w tej
sytuacji przyhamowuje odpowiednie przednie koło pojazdu.
Ze zjawiskiem podsterowności mamy do czynienia, gdy przyczepność tracą
koła przedniej osi. W przypadku podsterowności samochód nie reaguje z należytą
siłą na skręt kierownicy. Przednie koła wpadające w poślizg utrudniają
manewrowanie pojazdem i poruszanie się w zadanym kierunku. W tej sytuacji
system ESP przyhamowuje odpowiednie koło znajdujące się na tylnej osi, aby
nakierować pojazd na właściwy tor jazdy. Działanie systemu ESP jest
sygnalizowane miganiem lampki ostrzegawczej.
3. BUDOWA I DZIAŁANIE SYSTEMU ESP
Poprawna praca systemu ESP wymaga zapewnienia sterownikowi wielu
sygnałów pozwalających na kontrolę zachowania się kierowcy i pojazdu.
Do niezbędnych czujników można zaliczyć [10, 11]:
 czujniki prędkości obrotowej kół – najczęściej czujniki indukcyjne te
same, które wykorzystuje system ABS i ASR,
 czujnik kąta obrotu kierownicy – możliwe rozwiązania to: czujniki
wykorzystujące zjawisko Halla, czujniki magnetorezystancyjne i czujniki
fotooptyczne,
Diagnostyka systemu elektronicznej stabilizacji toru jazdy
209
 czujnik przyspieszenia poprzecznego – dostarcza informację o zachowaniu się
pojazdu, który wykonuje manewry skrętu,
 czujnik prędkości kątowej – służy do przekazania informacji o prędkości
obrotowej pojazdu wokoło jego osi pionowej (najczęściej wykorzystuje się w
nim działanie sił Coriolisa),
 czujnik ciśnienia – umożliwia kontrolę wartości ciśnienia w układzie
hydraulicznym.
Głównym elementem układu ESP, który analizuje wszystkie sygnały jest
sterownik systemu (rys. 1). Do zakresu jego działań zalicza się [10, 11]:
 zasilanie elektryczne czujników działających w tym systemie,
 przetwarzanie danych wejściowych i wyjściowych za pomocą przetwornika
analogowo-cyfrowego,
 obliczanie na podstawie dostarczonych danych wartości elementów
nastawczych,
 wysyłanie danych do elementów nastawczych oraz ich wzmocnienie,
 kontrola poprawnej pracy czujników i połączeń elektrycznych w układzie,
 współpraca z innymi sterownikami systemu samochodowego (np.: sterownik
silnika, skrzyni biegów itp.).
Sterownik taki powinien być odporny na wstrząsy pochodzące od silnika i drogi
na której porusza się pojazd.
Rys. 1. Schemat ogólny sterownika ESP [11]: 1 – czujniki prędkości obrotowej kół, 2 – czujnik
położenia kątowego z czujnikiem przyspieszenia, 3 – czujnik kąta obrotu kierownicy, 4 – czujniki
położenia włącznika zapłonu, 5 – czujnik ciśnienia płynu w układzie hamulcowym, 6 – czujniki
położenia pedału hamulca oraz dźwigni hamulca ręcznego, 7 – akumulator, 8 – moduł wejściowy,
9 – stabilizator napięcia, 10 – mikroprocesor, 11 – złącze CAN, 12 – moduł wyjściowy, 13 – pamięć
diagnostyczna, 14 – napięcie stabilizowane, 15 – zawory elektromagnetyczne modulatora,
16 – gniazdo diagnostyczne, 17 – lampka ostrzegawcza, 18 – lampka kontrolna
210
Jarosław Jajczyk, Michał Filipiak
Głównym urządzeniem wykonawczym układu ESP jest modulator ciśnienia płynu
hamulcowego (rys. 2). Najważniejszymi elementami składowymi modulatora są:
pompa przetłaczająca, tłumiki pulsacji, akumulatory ciśnienia, zawory zwrotne i
zawory elektromagnetyczne 2/2 oddzielne dla każdego z obwodów hamulcowych.
Całość jest umieszczona w zwartej obudowie wraz z silnikiem pomp przetłaczających
umieszczonej na zewnątrz. Sygnały wysyłane przez sterownik ESP wysterowują
zawory elektromagnetyczne, które odpowiednio kierują przepływem płynu
hamulcowego. Najczęściej modulator ciśnienia znajduje się w przedziale silnikowym
pomiędzy zaciskiem hamulcowym a pedałem hamulca. Jest umiejscowiony tak, by
długość przewodów hamulcowych była jak najkrótsza.
Rys. 2. Schemat układu modulatora [11]: 1 – pompa hamulcowa, 2 – czujnik ciśnienia, 3 – pompa
wstępna, 4 – modulator, 5 – obwód drugiej sekcji pompy hamulcowej, 6 – obwód pierwszej sekcji
hamulcowej, 7 – zawory ssące, 8 – zawory przetłaczające, 9 – tłumiki pulsacji, 10 – pompy
przetłaczające, 11 – zawory zwrotne, 12 – akumulator ciśnienia, 13 – zawory wlotowe,14 – zawory
wylotowe, 15 – hamulce kół
Silnik pompy przetłaczającej działa w czasie hamowania tak, aby płyn
hamulcowy wracał do pompy hamulcowej, natomiast w czasie hamowania
aktywnego (bez udziału kierowcy) zastępuje kierowcę wytwarzając wzrost
ciśnienia płynu hamulcowego. Akumulator ciśnienia ma za zadanie gromadzić
napływający płyn z zacisków hamulcowych, natomiast tłumik pulsacji zmniejsza
zmiany ciśnienia i redukuje pulsacje oddziałujące na pedał hamulca. W obudowie
modulatora są umieszczone cztery pary zaworów elektromagnetycznych. Dwie
pary służą jako zawory wlotowe, a dwie pozostałe jako wylotowe. Oprócz tych są
Diagnostyka systemu elektronicznej stabilizacji toru jazdy
211
jeszcze dwie pary zaworów ssących i przełączających, które służą do hamowania
aktywnego. Zawory zwrotne zapobiegają nagłemu zmniejszeniu ciśnienia w
zaciskach hamulcowych [10, 11].
Układ ESP integruje działanie układów ABS i ASR dodatkowo rozbudowując
je o dodatkowe funkcje. Działanie systemu ESP podczas hamowania w zasadzie
nie różni się niczym od funkcjonowania systemu ABS. W trybie pracy hamowania
aktywnego następuje załączenie zaworu przełączającego w pozycje zamkniętą
(jeśli zawór nie jest zasilany jest on otwarty), zawór ssący jest w pozycji otwartej i
załączona zostaje pompa przetłaczająca (rys. 2).
W trybie pracy ASR lub ESP zostaje załączona pompa wstępna, której
zadaniem jest wyeliminowanie opóźnienia działania systemu w sytuacjach
zwiększenia lepkości płynu hamulcowego w bardzo niskich temperaturach. Pompa
ta jest podłączona bezpośrednio ze zbiorniczka płynu hamulcowego.
4. BADANIA DIAGNOSTYCZNE
W pracy przeprowadzono badania diagnostyczne systemu ESP zamontowanego
w samochodzie osobowym Volkswagen Passat 1.9 tdi kombi. Pojazd ten
wyposażony był w system ESP TRW 440. Jako urządzenie diagnostyczne
wykorzystano nowoczesny tester diagnostyczny KTS 570 firmy Bosch (rys. 3).
Umożliwia on m.in.: odczyt i kasowanie kodów błędów, wygaszanie kontrolek
serwisowych, pomiar wartości w czasie rzeczywistym, sprawdzenie przebiegów
sygnałów dzięki wbudowanemu oscyloskopowi. Dzięki bezprzewodowemu
połączeniu z komputerem PC lub notebooka za pomocą standardu Bluetooth
zapewnia w pewnym zakresie mobilność badań. Diagnoskop ten w pełni obsługuje
standard OBD (ang. On-Board Diagnostic), a dzięki rozbudowanej bazie danych
umożliwia badania pojazdów różnych producentów [1, 3, 5, 6, 7, 8, 9].
Rys. 3. Tester diagnostyczny Bosch KTS 570 wraz z osprzętem [5]
212
Jarosław Jajczyk, Michał Filipiak
W trakcie badań sprawdzono działanie systemu ESP. Ponieważ odczyt kodów
usterek dał wynik negatywny, przeprowadzono pomiary parametrów rzeczywistych
najważniejszych dla działania tego układu podzespołów.
Na rysunku 4 przedstawiono zrzut ekranu diagnostycznego podczas weryfikacji
współpracy układu z wybranymi podzespołami, które są połączone ze
sterownikiem głównym za pośrednictwem magistrali CAN (ang. Controller Area
Network) [2, 3, 4, 6, 7]. Jak widać nie zanotowano żadnych zakłóceń w działaniu.
Rys. 4. Weryfikacja współpracy układu ESP z wybranymi podzespołami
Na kolejnym rysunku przedstawiono wyniki pomiaru prędkości obrotowej
poszczególnych kół (rys. 5). Pojazd wyposażony był w czujniki indukcyjne, które
generowały sygnał analogowy o częstotliwości zależnej od prędkości. Na jego
podstawie sterownik systemu po dokonaniu obliczeń wyznaczył prędkości
obrotowe. Podczas pomiarów pojazd nie wykonywał manewrów, dlatego prędkości
poszczególnych kół są takie same.
Rys. 5. Pomiar prędkości poszczególnych kół
Diagnostyka systemu elektronicznej stabilizacji toru jazdy
213
W dalszy pracach diagnostycznych odczytano sygnały z czujników: kąta skrętu
kierownicy, przyspieszeń poprzecznych, szybkości zarzucania pojazdu oraz
przyspieszeń wzdłużnych. Zrzut ekranu z testera diagnostycznego podczas
przykładowego pomiaru przedstawiono rysunek 6.
Rys. 6. Pomiar sygnałów z wybranych czujników
Prezentowane przez diagnoskop wyniki pomiarów są wartościami
przeliczonymi na jednostki z układu SI. Na uwagę zasługuje fakt wskazania
niezerowych wartości przez czujniki przyspieszeń poprzecznych i szybkości
zarzucania (pomimo, że pojazd nie poruszał się). Tak małe wartości tych
parametrów mogą być wywołane drganiami pojazdu, wynikającymi m.in. z pracy
silnika lub poruszania się osoby znajdującej się podczas pomiarów w kabinie
pasażerskiej.
5. WNIOSKI
System elektronicznej stabilizacji toru jazdy jest systemem niewątpliwie
wpływającym korzystnie na bezpieczeństwo w ruchu drogowym. Jego działanie
wspiera kierowcę w prowadzeniu pojazdu. Dzięki zastosowaniu skomplikowanych
systemów sterujących wykorzystujących układy mikroprocesorowe i
zaawansowane technologicznie czujniki układ ten potrafi na czas zareagować na
pojawiające się niebezpieczeństwa. Tak wyrafinowane systemy wymagają
odpowiedniego sprzętu do ich diagnostyki. W zasadzie użyteczne są tylko
urządzenia testujące współpracujące z komputerami.
W pracy przeprowadzono szereg podstawowych badań diagnostycznych
wybranego układu ESP. Działał on poprawnie i nie zanotowano żadnych błędów.
Zanotowano niezerowe wartości niektórych sygnałów, choć ze względu na brak
poruszania się pojazdu podczas badań spodziewano się wartości zerowych. Wyniki
takie mogły być wywołane zakłóceniami zewnętrznymi jak również
niedokładnością pomiarów urządzenia diagnostycznego. Zauważono, że pomimo
214
Jarosław Jajczyk, Michał Filipiak
występowania sygnału informującego o przyspieszeniu poprzecznym i zarzucaniu
pojazdu układ ESP nie reagował. Spowodowane to jest tym, że nie zostały
przekroczone wartości progowe zadziałania układu (wartości te były zbyt małe).
6. LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
Bosch Team, Sieci wymiany danych w pojazdach samochodowych, Wydawnictwa
Komunikacji i Łączności, Warszawa 2008.
Filipiak M., Jajczyk J., Nawrowski R., Putz Ł.: Systemy bezpieczeństwa czynnego i
ich diagnostyka, Poznan University of Technology Electrical Engineering
Academic Journals, zeszyt 69, s. 219-226, Poznań, kwiecień 2012, s. 219-226.
Filipiak M., Jajczyk J., Nawrowski R., Putz Ł.: Urządzenia diagnostyczne w
pojazdach samochodowych, Poznan University of Technology Electrical
Engineering Academic Journals, zeszyt 69, Poznań, kwiecień 2012, s. 227-234.
Herner A., Riehl H.J., Elektrotechnika i elektronika w pojazdach samochodowych,
Wydawnictwa Komunikacji i Łączności, Warszawa 2002.
KTS 570 User Manual.
Myszkowski S., Poradnik serwisowy. Diagnostyka pokładowa. Standard
OBD II/EOBD, Instalator Polski, Warszawa 5/2003.
Schmidgall R., Zimmermann W., Magistrale wymiany danych w pojazdach.
Protokoły i standardy, Wydawnictwa Komunikacji i Łączności, Warszawa 2008.
Sitek K., Syta S., Pojazdy samochodowe. Badania stanowiskowe i diagnostyka,
Wydawnictwa Komunikacji i Łączności, Warszawa 2011.
Trzeciak K., Diagnostyka samochodów osobowych, Wydawnictwa Komunikacji i
Łączności, Warszawa 2010.
Konwencjonalne i elektroniczne układy hamulcowe, Praca zbiorowa, WKŁ 2006.
Układ stabilizacji toru jazdy, Praca zbiorowa, WKŁ 2000.
DIAGNOSTICS OF ELECTRONIC STABILITY CONTROL SYSTEM
This paper presents the electronic control system used to track vehicles. Discuss its
construction and operation. Presents a method for testing the system and the results of
diagnostic testing sample.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Tomasz WAWRZYNIAK*
BADANIE POBORU ENERGII W UKŁADZIE
ZAPŁONOWYM STOSOWANYM W JEDNOSTKACH
BEZZAŁOGOWYCH
W artykule przedstawiono wyniki badań zużycia energii przez układ zapłonowy CDI
stosowany w jednostkach bezzałogowych. Szczególną uwagę zwrócono na wyjaśnienie
zjawisk elektrycznych odpowiedzialnych za dynamiczne zmiany poboru prądu w funkcji
prędkości obrotowej.
1. WSTĘP
Układ wybrany do badań należy do grupy układów zapłonowych działających
na zasadzie gromadzenia energii w kondensatorze - CDI. Przeznaczeniem układu
są jednostki bezzałogowe – latające, wodne oraz lądowe, gdzie istotna jest masa,
rozmiary oraz pobór energii ze źródła zasilania bateryjnego. Jego specyficzne
zastosowanie wymusiło na producencie znalezienie rozwiązań, które w efekcie
przyczyniły się do utraty pewnych cech przypisywanych układom CDI. Badania
skierowano na wyjaśnienie i zrozumienie działania tak skonstruowanego układu,
począwszy od sposobu montażu elementów a skończywszy na analizie
uzyskanych wyników pomiarów oraz przebiegów zarejestrowanych na
oscyloskopie. Wnikliwa obserwacja oddziaływania zmian parametrów
wejściowych układu na parametry wyjściowe oraz wewnętrzne, pozwoli
oszacować możliwości modyfikacji układu.
2. OPIS BADANEGO UKŁADU
Przedmiotem badań jest dostępny obecnie na rynku układ zapłonowy firmy
Rcexl. Znajduje on szerokie zastosowanie wśród konstruktorów jednostek
sterowanych radiowo – bezzałogowe samoloty, pojazdy lądowe oraz łodzie.
Zasilany z małych akumulatorów zapewnia poprawny zapłon mieszanki paliwowej
w użytych do napędu silnikach spalinowych. Podstawowe parametry dostarczone
przez producenta zamieszczono w tabeli 1, natomiast poglądowe zdjęcie na
rysunku 1. Niewielkich rozmiarów układ zapłonowy do pracy wymaga jedynie
instalacji magnesu na piaście silnika, ustawienia wstępnego kąta wyprzedzenia
zapłonu oraz podłączenia do pakietu akumulatorów zalecanych przez producenta.
__________________________________________
* Politechnika Poznańska.
216
Tomasz Wawrzyniak
Tabela 1. Dane techniczne badanego układu [4]
PARAMETER
Type
(single
and twin)
Input voltage
all
Current consuption
all
rpm range
Output voltage
all
all
single
twin
Weight
MIN
TYPICAL
MAX
UNIT
4.0V
4.8V
6V
V
35mA(0rpm)
45mA(0rpm)
60mA(0rpm)
300mA(8000rpm) 430mA(8000rpm) 580mA(8000rpm)
900-9000
rpm
10
12-16
35
kV
105
110
125
g
155
160
175
g
Range of working
temperature
all
-10
25
85
C
Hall sensor Range of
working temerature
all
-45
25
150
C
Angle of controling
the pre-ignition
all
4
10(<2000rpm)
35(>4000rpm)
35
degres
Sixe of Magnet
all
3
4
5
mm
Guaranteed Hours of
Operation
all
>2000 hours
Ignition Case
all
ABS+nickiel-plate
Rys. 1. Fotografia badanego układu zapłonowego [3]
25C
(5000r
pm)
Badanie poboru energii w układzie zapłonowym stosowanym …
217
2. BADANIE POBORU PRĄDU
Badany układ zapłonowy zasilany jest z baterii akumulatorów, gdzie bardzo
istotną rzeczą staje się fakt czasu pracy urządzenia. Wiąże się to z poborem energii
w czasie, a zatem prądu przy znanym napięciu znamionowym baterii. Z danych
technicznych (tab.1) możemy odczytać wartość pobieranego prądu dla dwóch
prędkości obrotowych silnika przy zadanym napięciu zasilania. Pobór prądu
zbadano w całym zakresie prędkości obrotowych domniemanego silnika
dwusuwowego. W miejsce czujnika magnetycznego podłączono odpowiednio
zaprogramowany mikrokontroler, za pomocą którego imitowano impulsy
odpowiadające danej prędkości obrotowej sczytywane z piasty domniemanego
silnika. Jako źródła zasilania użyto regulowanego zasilacza stabilizowanego
z dołączoną szeregowo rezystancją odpowiadającą uśrednionej wartości rezystancji
wewnętrznej połączonych w szereg czterech typowych ogniw NiMh. W celu
zbadania wpływu wartości napięcia na odpowiedź układu, pomiarów dokonano
przy trzech poziomach napięcia zasilającego odpowiadających zakresom podanym
przez producenta. Wyniki pomiarów zamieszczono w tabeli 2 i zilustrowano na
wykresie (rys 2).
Tabela 2. Wyniki pomiaru prądu w zależności od prędkości obrotowej
4,0V
Obroty
[obr/min]
0
600
1200
1800
2400
3000
3720
4260
4980
5400
6000
6660
7500
8520
9960
[mA]
59
115
166
211
248
275
303
319
343
356
372
391
407
430
451
4,8V
I
[mA]
68
133
194
248
290
324
359
380
407
423
438
457
478
503
528
6,0 V
[mA]
83
161
236
302
353
398
438
465
495
505
533
550
575
596
610
218
Tomasz Wawrzyniak
mA
700
4,0V
600
4,8V
6,0V
500
400
300
200
100
0
0
2000
4000
6000
8000
10000 12000rpm
Rys. 2. Wykres zależności poboru prądu w funkcji prędkości obrotowej silnika
3. POMIAR NAPIĘCIA NA KONDENSATORZE
GROMADZĄDZYM ENERGIĘ
Decydującym elementem układu zapłonowego CDI jest kondensator, w którym
to gromadzona jest energia potrzebna do wytworzenia iskry za pomocą cewki
zapłonowej. Dla wyjaśnienia działania układu na rysunku 3 umieszczono schemat
jego fragmentu. Napięcie podniesione przez przetwornicę do wartości kilkuset
Voltów przez diodę D1 powoduje ładowanie kondensatora C. W chwili zmiany
stanu sygnału z czujnika układ cyfrowy załącza tyrystor T. W efekcie naładowany
kondensator zostaje zwarty do uzwojenia cewki zapłonowej. Gwałtowny przyrost
prądu w uzwojeniu pierwotnym cewki zapłonowej, a więc i strumienia
magnetycznego, powoduje wyindukowanie wysokiego napięcia w uzwojeniu
wtórnym i przeskok iskry na elektrodach świecy zapłonowej.
Rys. 3. Schemat ideowy fragmentu badanego układu zapłonowego
Badanie poboru energii w układzie zapłonowym stosowanym …
219
Miarą przekazanej do cewki zapłonowej energii jest wartość napięcia, do
którego został naładowany kondensator C tuż przed załączeniem tyrystora.
Natomiast szybkość, z jaką kondensator C jest ładowany przez przetwornicę,
będzie miała odbicie w pobieranym przez układ prądzie. By móc oszacować
wartość energii gromadzonej w pojemności oraz wyjaśnić kształt charakterystyk
z rysunku 2 wykonano pomiary napięcia względem prędkości obrotowej oraz
napięcia zasilania układu zapłonowego. Wyniki pomiarów i obliczeń energii
przedstawiono w tabeli 3 oraz zilustrowano rysunkach 4 i 5.
Tabela 3. Wyniki pomiarów napięcia i obliczeń energii zgromadzonej w kondensatorze
4,0 V
Obroty
[obr/min]
0
600
1200
1800
2400
3000
3720
4260
4980
5400
6000
6660
7500
8520
Uc
[V]
280
276
272
264
260
252
236
232
224
216
212
208
200
192
4,8 V
Wc
[mJ]
18,4
17,9
17,4
16,4
15,9
14,9
13,1
12,6
11,8
11,0
10,6
10,2
9,4
8,7
Uc
[V]
336
332
328
320
312
304
288
280
264
260
252
248
236
228
6,0 V
Wc
[mJ]
26,5
25,9
25,3
24,1
22,9
21,7
19,5
18,4
16,4
15,9
14,9
14,5
13,1
12,2
Uc
[V]
404
402
400
392
380
368
348
336
324
316
308
300
288
276
Wc
[mJ]
38,4
38,0
37,6
36,1
33,9
31,8
28,5
26,5
24,7
23,5
22,3
21,2
19,5
17,9
V 450
400
350
300
250
200
150
100
50
0
4,0V
4,8V
6,0V
0
2000
4000
6000
8000
10000
rpm
12000
Rys. 4. Charakterystyka napięcia na kondensatorze w funkcji prędkości obrotowej
220
Tomasz Wawrzyniak
mJ
45,0
40,0
35,0
30,0
4,0V
25,0
4,8V
20,0
6,0V
15,0
10,0
5,0
0,0
0
2000
4000
6000
8000
10000
rpm
12000
Rys. 5. Charakterystyka energii zgromadzonej w kondensatorze w funkcji prędkości obrotowej
Już pierwsze spojrzenie na wyżej wymienioną tabelę daje wiele do myślenia,
układy CDI znane są z faktu stałej energii wyładowania iskrowego wynikającego z
możliwości szybkiego ładowania kondensatora. W badanym układzie mamy do
czynienia z wyraźnym spadkiem napięcia, a więc i energii gromadzonej w
kondensatorze. Dla wyjaśnienia takiego zachowania układu poniżej przedstawiono
przebiegi zarejestrowane na oscyloskopie. Można z nich odczytać, że czas
ładowania kondensatora jest dłuższy niż odstępy pomiędzy jego rozładowaniem na
cewce zapłonowej.
Rys. 6. Czas pełnego naładowania kondensatora zarejestrowany na oscyloskopie (1)
1200obr/min, 4,8 V
Badanie poboru energii w układzie zapłonowym stosowanym …
221
Rys. 7. Czas ładowania kondensatora zarejestrowany na oscyloskopie (1) 3000rpm, 4,8 V
Rys. 8. Czas ładowania kondensatora zarejestrowany na oscyloskopie(1). 6000rpm, 4,8 V
Na powyższych rysunkach widać wyraźnie wpływ prędkości obrotowej na
napięcie, do którego przetwornica podnosząca napięcie jest w stanie naładować
kondensator. Ta charakterystyczna cecha układu pozwala wyjaśnić przebiegi prądu
pobieranego z baterii (rys. 2). Można więc przypuszczać, że producent celowo
określił wydajność przetwornicy napięcia by zachować niski pobór prądu,
zapewniając jednocześnie minimalną energię iskry zapłonowej przy maksymalnej
prędkości obrotowej silnika.
4. PODSUMOWANIE
Przedstawione wyniki badań pozwalają zrozumieć zasadę działania układu
zapłonowego wykorzystującego zjawisko gromadzenia energii w kondensatorze.
Głębsza analiza pozwala stwierdzić, iż istnieje możliwość ograniczenia poboru
prądu przez układ bez negatywnego wpływu na pracę silnika spalinowego.
222
Tomasz Wawrzyniak
Producent układu zapłonowego zapewnia poprawną pracę silnika w pełnym, przez
siebie podanym, zakresie prędkości obrotowej. Oznacza to, że przy maksymalnych
obrotach, kiedy mamy do zapalenia większą ilość mieszanki paliwowo
powietrznej, układ generuje najmniejszą energię iskry zapłonowej. Można zatem
założyć, że minimalna wartość energii, do której ładowany jest kondensator
wystarczy do poprawnego zapłonu w całym zakresie prędkości obrotowej.
Skutkiem takiego podejścia będzie znaczne zmniejszenie poboru prądu przez
układ zapłonowy w środkowym zakresie prędkości obrotowej silnika.
LITERATURA
[1]
[2]
[3]
[4]
Ocioszyński J., “Elektrotechnika i elektronika pojazdów samochodowych”,
Warszawa 2008.
Parchański J., ”Miernictwo elektryczne i elektroniczne”, Warszawa 2012.
www.semodelproducts.com (26.01.2013)
www.rcexl.com (26.01.2013)
STUDY OF ENERGY CONSUMPTION IN THE IGNITION SYSTEM
USED IN UNMANNED UNITS
This paper presents the results of energy consumption CDI ignition system used in
unmanned units. Particular attention was paid to the explanation of electrical effect
responsible for the dynamic changes in power consumption as a function of speed.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Marcin JUKIEWICZ*
KONCEPCJA STEROWANIA MAŁYM POJAZDEM
ZA POMOCĄ INTERFEJSU MÓZGKOMPUTER
Interfejs mózg-komputer to system pozwalający na bezpośrednią komunikację
pomiędzy mózgiem a urządzeniem zewnętrznym. Każda aktywność mózgu przejawia się
w postaci pojawiającego się w nim potencjału elektrycznego. Jego pomiar możliwy jest za
pomocą elektroencefalografu wyposażonego w elektrody zamontowane na powierzchni
czaszki. Jest to rozwiązanie najczęściej obecnie stosowane w interfejsach mózg-komputer.
Poza prezentacją aktualnego stanu wiedzy, celem niniejszej pracy jest prezentacja prostego
interfejsu mózg-komputer. W tym rozwiązaniu sygnał z powierzchni czaszki jest mierzony
za pomocą jednoelektrodowego urządzenia MindWave firmy NeuroSky, a następnie
bezprzewodowo przekazywany do układu Arduino. Układ Arduino, na podstawie
otrzymanego sygnału, steruje jeżdżącą platformą. U użytkownika skupiającego uwagę (np.
na wspomnianej platformie) w sygnale pomierzonym z powierzchni czaszki, pojawiają się
tzw. fale beta. Na podstawie wartości ich amplitudy (czyli przekroczenia określonego
progu), układ Arduino decyduje o ewentualnym ruchu platformy.
1. WPROWADZENIE
Interfejs mózg-komputer BCI (ang. Brain–Computer Interface) to
interdyscyplinarne zagadnienie łączące nauki z pogranicza inżynierii
biomedycznej, sztucznej inteligencji oraz neuronauk. Interfejs jest
wykorzystywany do bezpośredniej komunikacji pomiędzy mózgiem a otoczeniem
do sterowania robotem, telewizorem, oświetleniem lub do pisania w edytorze
tekstowym. Za jeden z głównych celów badań nad BCI uważa się umożliwienie
komunikacji z otoczeniem pacjentom sparaliżowanym lub dotkniętym syndromem
zamknięcia (ang. locked-in syndrome) [1]. W obecnie prowadzonych badaniach
wykorzystuje się sygnał pobrany w sposób inwazyjny (z powierzchni kory
mózgowej) lub nieinwazyjny z powierzchni czaszki.
2. AKWIZYCJA SYGNAŁU
Aktualnie prowadzone są badania nad interfejsami nieinwazyjnymi, w których
mierzona jest aktywność elektryczna (elektroencefalograf, EEG) i magnetyczna
(magnetoencefalograf, MEG) mózgu, lub odpowiedź hemodynamiczna
__________________________________________
* Politechnika Poznańska.
224
Marcin Jukiewicz
(funkcjonalny rezonans magnetyczny, fMRI lub spektroskop bliskiej podczerwieni,
NIRS). Prowadzone są także badania z użyciem inwazyjnych metod pomiaru
sygnału, polegające na otwarciu czaszki i pomiarze zmian elektrycznych
bezpośrednio z kory mózgowej (elektrokortykografia, ECoG) [1].
Prawdopodobnie najczęściej stosowanym sposobem pozyskiwania sygnału na
potrzeby interfejsu mózg-komputer jest wykorzystanie elektroencefalografu.
2.1. Elektroencefalograf
Elektroencefalograf (rys. 1) jest używany w medycynie głównie do diagnozowania
uszkodzeń lub zmian patologicznych w pracy mózgu, takich jak np. padaczka.
Bioelektryczna aktywność mózgu jest mierzona za pomocą elektrod umieszczonych
(na przykład za pomocą specjalnego czepka) na powierzchni głowy badanej osoby.
Liczba zamontowanych elektrod jest zależna od celu badania, zwykle jest ich od 16 do
32 [2, 5]. Sygnał pobrany z powierzchni zewnętrznej czaszki przyjmuje wartości rzędu
dziesiątek mikrowoltów i dlatego konieczne jest jego wzmocnienie.
Rys. 1. Schemat blokowy przedstawiający budowę typowego elektroencefalografu
Mózg generuje fale o częstotliwości od około 0,5 Hz do 100 Hz, ale do
wykorzystania w interfejsach mózg-komputer za użyteczne przyjmuje się pasmo
do 40 Hz. Wyróżnia się kilka charakterystycznych fal:
 fala alfa (od 8 Hz do 12 Hz), która jest podstawowym rytmem występującym
w prawidłowym zapisie sygnału EEG osoby dorosłej, główne w stanie spoczynku;
 fale beta (od 13 Hz do 30 Hz), obserwowalne w okolicy czołowej i związane ze
stanem świadomego relaksu;
 fale theta (od 4 Hz do 8 Hz) i delta (od 0,5 Hz do 4 Hz) dotyczące czynności
związanych z zasypianiem i snem;
 falę gamma (ponad 30 Hz), której występowanie świadczy o aktywności
ruchowej i funkcjach motorycznych oraz o procesach poznawczych, takich jak:
percepcja, zapamiętywanie i przywoływanie z pamięci [2].
W porównaniu do innych metod wymienionych we wstępie, komputerowo
wspomagana elektroencefalografia jest najczęściej stosowaną metodą do
pozyskiwania sygnału na potrzeby interfejsu mózg-komputer ze względu na swoją
nieinwazyjność (nie trzeba otwierać czaszki badanego), możliwość przenoszenia
Koncepcja sterowania małym pojazdem za pomocą interfejsu mózgkomputer
225
urządzenia pomiarowego, a także niską cenę i  co jest bardzo ważne w przypadku
interfejsów mózg-komputer  niewielkie opóźnienia pomiędzy wystąpieniem
bodźca a dostarczeniem go do komputera.
3. POTENCIAŁY WYWOŁANE
W przeciwieństwie do wymienionych wyżej fal, które powstają spontanicznie w
mózgu w związku z funkcjonowaniem organizmu, występują także tzw. potencjały
wywołane. Pojawiają się one na powierzchni głowy w wyniku zarejestrowania
przez człowieka zewnętrznego bodźca. Takim bodźcem może być: pojawienie się
lub zmiana tonu dźwięku, błysk światła, zmiana lub pojawienie się obrazu
wzrokowego, bądź dostarczenie impulsu elektrycznego do nerwu.
W podrozdziale 3.1 zaprezentowano trzy najbardziej istotne zjawiska,
wykorzystywane w interfejsach mózg-komputer.
3.1. SSVEP
Wzrokowe potencjały wywołane stanu ustalonego SSVEP (ang. Steady State
Visually Evoked Potentials) należą do najprostszych zjawisk wykorzystywanych w
interfejsach mózg-komputer [8]. Działanie systemu opiera się na sygnale zebranym
nad korą wzrokową.
Badana osoba obserwuje monitor: jeśli pojawia się na nim krótkotrwały
bodziec, migający z określoną częstotliwością, to sygnał o tej samej częstotliwości
(dominującej) zostanie zmierzony nad korą wzrokową. Wykorzystanie tego
zjawiska pozwala stwierdzić, na który z obiektów patrzy badany, gdy na ekranie
jest więcej bodźców i każdy pulsuje z inną częstotliwością.
Interfejsy oparte o potencjały wzrokowe działają poza percepcją użytkownika,
są skuteczne dla większości osób i dzięki temu są dziś dość często stosowane.
Ponieważ nie wymagają treningu, korzystanie z nich jest możliwe bez wstępnych
przygotowań, co jest ich główną zaletą. Niestety niosą one ryzyko napadu
padaczkowego dla niektórych osób, z powodu konieczności skupiania przez nich
uwagi na pulsującym, monotonnym źródle światła [6].
3.2. Potencjał P300
Potencjał P300 należy do grupy potencjałów kognitywnych, które pozwalają ocenić
procesy pamięci, podejmowania decyzji, koncentracji uwagi. Są to symetryczne
dodatnie fale o latencji (250–600) ms, w zależności od parametrów bodźca i stanu
skupienia osoby badanej. Interfejs wykorzystujący potencjał P300 posługuje się
odpowiedzią aktywności elektrycznej mózgu na wystąpienie oczekiwanego bodźca
wzrokowego lub słuchowego, pojawiającą się po około 300 ms po jego wystąpieniu.
226
Marcin Jukiewicz
Jako przykład można przedstawić interfejs, w którym użytkownik obserwuje
podświetlane pola zawierające litery lub inne znaki. W momencie, gdy "oczekiwane"
pole, czyli takie na którym użytkownik skupia swoją uwagę, zostaje podświetlone, na
szczycie czaszki, po 300 ms można zmierzyć odpowiedź elektryczną o amplitudzie
równej kilka mikrowoltów. W celu poprawnego "zadziałania" takiego interfejsu,
badana osoba wielokrotnie skupia się na wybranym bodźcu, dzięki czemu wielokrotnie
mierzone sygnały zostają uśrednione [8].
Możliwe jest wykorzystanie takiego interfejsu to pisania „za pomocą myśli”.
Według dostępnych wyników badań, w ciągu jednej minuty można napisać na
komputerze jeden wyraz o długości pięciu znaków. Te same badania wykazują, że
prawdopodobne jest dalsze poprawienie tego wyniku [8].
System zbudowany w oparciu o P300 jest prosty i dzięki temu często stosowany.
3.3. ERD/ERS
Ze względu na wymóg stosowania zaawansowanych metod przetwarzania
sygnałów i algorytmów klasyfikujących, interfejsy asynchroniczne uważane za
najtrudniejsze i stanowiące największe wyzwanie podczas realizacji. Interfejsami
asynchronicznymi nazywa się takie, których działanie nie jest związane z
bodźcami zewnętrznymi, jak to jest w przypadku interfejsów synchronicznych,
lecz te, o których ewentualnym zadziałaniu decyduje sam użytkownik [4, 5].
Wykazano, że aktywność mózgu w przypadku, gdy został wyobrażony ruch
kończyną, jest zbliżona do aktywności mózgu w sytuacji, gdy ruch ten realnie
wystąpił. Zależnie od tego, która z kończyn ma zostać użyta lub ruch której z
kończyn został wyobrażony, odpowiedź występuje w innym obszarze mózgu.
Analizując sygnały powstające w wyniku wyobrażania ruchu, mówi się o
desynchronizacji i synchronizacji potencjałów mózgowych skojarzonych z tymi
intencjami,
stąd
ich
nazwa
ERD/ERS
(ang.
Event-Related
Desynchronization/Synchronization) [7].
Interfejs wykorzystujący desynchronizację i synchronizację potencjałów
mózgowych można zastosować do sterowania wózkiem inwalidzkim. Wyobrażenie
ruchu prawą ręką powoduje, że wózek skręca w prawą stronę, wyobrażenie ruchu
lewą ręką powoduje, że wózek skręca w lewą stronę, a wyobrażony ruch stopą
(niestety, nie udało się jeszcze wyodrębnić w elektrycznej aktywności mózgu
każdej stopy z osobna) jazdę do przodu. Ponadto, można jeszcze wykorzystać ruch
wyobrażony za pomocą języka.
W porównaniu do dwóch wcześniej opisanych systemów, to rozwiązanie ma
znaczące wady. Nauka rozpoznawania przez komputer danych fal jest procesem
długotrwałym i indywidualnym dla każdego człowieka, a także jest zmienna w
czasie. Naukę trzeba podjąć od nowa w przypadku długiej przerwy w nieużywaniu
interfejsu. Ponadto, bardzo istotna jest ekstrakcja cech sygnału, ich selekcja i
klasyfikacja.
Koncepcja sterowania małym pojazdem za pomocą interfejsu mózgkomputer
227
4. STEROWANIE MAŁYM POJAZDEM
Podstawowymi komponentami proponowanego rozwiązania są: komercyjny
produkt MindWave firmy NeuroSky i układ Arduino (rys. 2).
MindWave jest urządzeniem, które wykorzystuje jedną pozłacaną i suchą
elektrodę (w odróżnieniu od standardowych rozwiązań, gdzie pomiędzy elektrodą a
skórą umieszcza się żel przewodzący). Elektroda pomiarowa zamontowana jest na
czole użytkownika, a na jego uchu zamontowana jest elektroda odniesienia.
Urządzenie na swoje potrzeby używa sygnałów o częstotliwości od 0,5 do 50 Hz, z
częstotliwością próbkowania 512 Hz [9].
Mobilną platformą wyposażoną w dwa silniki oraz kulkę podporową ma
sterować sterownik DFRduino na bazie Arduino, wykorzystujący między innymi
mikroprocesor Atmega328. Układ jest wyposażony w ultradźwiękowy czujnik
odległości, mający uchronić pojazd przed ewentualną kolizją z przeszkodą. Do
zestawu MindWave jest dołączany odbiornik pracujący w standardzie Bluetooth,
umożliwiający komunikację tego urządzenia z komputerem. W tym przypadku
odbiornik powinien zostać połączony bezpośrednio z układem Arduino [10].
Rys. 2. Schemat blokowy proponowanego rozwiązania
Niestety, MindWave nie dostarcza sygnału w sposób bezpośredni, tzn. taki,
który pozwoliłby na dalszą jego analizę przy użyciu komputera. Jedyne
przekazywane informacje to wartości przedstawiające poziom zrelaksowania lub
poziom skupienia uwagi, tak więc sygnał budowany jest z opisanych wcześniej fal
beta. Taka ilość informacji dostarczanej przez urządzenie nie pozwala na
sterowanie np. wózkiem inwalidzkim (jazda prosto, skręty w prawo i lewo), ale w
zupełności wystarcza do sterowania typu zero-jedynkowego czyli włącz-wyłącz
lub jedź-nie jedź.
Do układu Arduino dostarczana jest więc wartość, w zakresie od 0 do 100,
jedynie dwóch czynników. Do wysterowania pojazdu potrzebna jest znajomość
wartości tylko jednego z nich. Ostatnim krokiem jest ustalenie wartości progu
228
Marcin Jukiewicz
zadziałania całego układu i czasu trwania przekroczenia tego progu, tak by jazda
odbywała się w sposób płynny. Dodatkowo możliwe jest skorelowanie prędkości
platformy z wartością otrzymywanego z MindWave sygnału.
5. PODSUMOWANIE
W pracy zaprezentowano wybrane zagadnienia związane z interfejsami mózgkomputer, które wykorzystują do akwizycji sygnału elektroencefalograf, a także
opis przykładowego, prostego interfejsu do sterowania małym pojazdem.
Obecnie badania nad tą tematyką skupiają się na minimalizacji liczby stosowanych
elektrod, maksymalizacji wydobycia użytecznych informacji z sygnału i optymalizacji
wykorzystania algorytmów klasyfikujących. Innym kierunkiem badań jest próba
wykorzystania jednocześnie dwóch urządzeń pomiarowych, np. najczęściej
stosowanego w tym celu elektroencefalografu (EEG) jako urządzenia głównego i
spektroskopu bliskiej podczerwieni jako urządzenia wspomagającego, co ma miejsce
w badaniach prowadzonych przez japońską firmę Honda.
Niniejsza praca dotyczy wstępnego etapu podjętych prac konstrukcyjnobadawczych. W zależności od zrealizowanego rozwiązania układu możliwy będzie
opis występujących w nim sygnałów oraz analiza ewentualnych oddziaływań
obwodów silnoprądowych na wejściowe elementy, w tym elektrody pomiarowe.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
Birbaumer N., Breaking the silence: Brain–computer interfaces (BCI) for
communication and motor control. Psychophysiology, Volume 43, 517–532, ISSN
0048-5772, 2005.
van Drongelen W., Signal Processing for Neuroscientists, Academic Press, 2006.
Enzinger Ch., Ropele S., Fazekas F., Loitfelder M., Gorani F., Seifert T., Reiter G.,
Neuper Ch., Pfurtscheller G., Müller-Putz G., Brain motor system function in a
patient with complete spinal cord injury following extensive brain–computer
interface training, Experimental Brain Research, Volume 190, Issue 2, 215-223,
ISSN 1432-1106, 2008.
Graimann B., Brendan Z., Pfurtscheller G., Brain-Computer Interfaces:
Revolutionizing Human-Computer Interaction. Brain–Computer Interfaces: A
Gentle Introduction. Springer, 2011.
Pfurtscheller G., Lopes da Silva F., Event-related EEG/MEG synchronization and
desynchronization: basic principles, Clinical Neurophysiology, Volume 110, 18421857, ISSN 1388-2457, 1999.
Rak R., Kołodziej M., Majkowski A., Interfejs mózg-komputer: wybrane problemy
rejestracji i analizy sygnału EEG, Przegląd Elektrotechniczny, Numer 12, 277-280,
ISSN 0033-2097, 2009.
Koncepcja sterowania małym pojazdem za pomocą interfejsu mózgkomputer
[7]
[8]
[9]
[10]
229
Ramoser H., Müller-Gerking J., Pfurtscheller G., Optimal spatial filtering of single
trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation
Engineering, Volume 8, Number 4, 2000, 441-446, ISSN 1063-6528, 1999.
Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M.,
Brain–computer interfaces for communication and control, Clinical
Neurophysiology, Volume 113, 767-791, ISSN 1388-2457, 2002.
www.neurosky.com
www.dfrobot.com
CONCEPT OF SMALL VEHICLE CONTROL BY BRAIN-COMPUTER
INTERFACE
The brain-computer interface makes possible to do the direct connection between brain
and an external device. Every brain activity causes a rise in electrical potential.
Measurement of that potential is possible by electrodes mounted on the surface of the
skull. This method is the most popular and is called electroencephalography. This article
presents brain-computer interface technology overview and its simple implementation. In
this implementation, signal is measured by one-electrode device MindWave from
NeuroSky, and then it is wirelessly transmitted to Arduino board. Microcontroller controls
the mobile platform based on the received signal. When the user is focusing his attention,
for example, on a mobile platform, it is possible to measure the beta waves from the
surface of the skull. If the threshold value is exceeded, Arduino moves of the mobile
platform.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Łukasz PUTZ*
Tomasz JARMUDA*
BADANIA SAMOCHODU Z SILNIKIEM JTS - SYSTEMEM
ELEKTRONICZNEGO STEROWANIA BEZPOŚREDNIM
WTRYSKIEM BENZYNY
Streszczenie. W artykule zaprezentowano szczegółową analizę systemu
bezpośredniego wtrysku benzyny JTS (Jet Thrust Stoichiometric) stosowanego w autach
marki Alfa Romeo. W pracy przedstawiono charakterystyczne elementy budowy z opisem
ich wpływu na działanie tego typu silnika. Następnie przedstawiono wyniki badań mocy
silnika, momentu obrotowego, emisji zanieczyszczeń oraz zużycia paliwa,
przeprowadzonych na modelu Alfa Romeo 156 2.0 JTS oraz porównano z wynikami
badań odpowiednika o wtrysku pośrednim Alfa Romeo 156 2.0 TS.
1. WSTĘP
Pierwszym silnikiem z systemem bezpośredniego wtrysku benzyny
zaprojektowanym oraz produkowanym przez włoski koncern samochodowy Fiat
była jednostka 2.0 JTS. Omawiany silnik oferowany był od 2002 jako jedna z
opcji napędu w produkowanej seryjnie Alfie Romeo 156.
Głównym sygnałem decydującym o trybie pracy silnika 2.0 JTS jest prędkość
obrotowa wału korbowego. Do 1500 obr/min spalana jest mieszanka uwarstwiona, zaś
powyżej praca odbywa się na mieszance stechiometrycznej. Niski przedział prędkości
obrotowej dla mieszanki ubogiej powoduje, że nie jest wydzielana duża ilość tlenków
azotu. Nie ma więc potrzeby stosowania zasobnikowego reaktora katalitycznego NOX.
Korzyścią takiego rozwiązania jest to, że silnik może bez problemu pracować na
zasiarczonym paliwie (siarka niszczy reaktor katalityczny NOX) [2].
2. CECHY CHARAKTERSTYCZNE SILNIKA 2.0 JTS
W silnikach JTS wnętrze komory spalania oraz wtryskiwacze są tak
skonstruowane, że paliwo wtryskiwane pod dużym ciśnieniem (około 10 MPa)
dostaje się w pobliże świecy zapłonowej i tam miesza się z powietrzem. W efekcie
w jednostkach JTS uzyskuje się dość niski stopień uwarstwienia o współczynniku
__________________________________________
* Politechnika Poznańska.
232
Łukasz Putz, Tomasz Jarmuda
λ ≈ 2. W konsekwencji oszczędność paliwa jest mniejsza, ale za to cała budowa
silnika jest mniej skomplikowana. Denko tłoka jest wypukłe i posiada cztery
wyfrezowania, które zapobiegają stykaniu się korony tłoka z grzybkami zaworów
(rys. 1) [1].
Układ zasilania w paliwo ma tradycyjną konstrukcję systemów bezpośredniego
wtrysku benzyny – składa się obwodów niskiego oraz wysokiego ciśnienia. W
części niskociśnieniowej utrzymywane jest 0,45 MPa. Część wysokociśnieniowa
pracuje w zakresie 5÷10 MPa, zależnie od obciążenia silnika. Maksymalne
dopuszczalne ciśnienie (w przypadku zablokowania regulatora ciśnienia) wynosi
12 MPa. Gdy silnik przestaje pracować ciśnienie zaczyna stopniowo spadać, aż do
zrównania się z obwodem niskiego ciśnienia. Podczas rozruchu zimnego silnika w
kolektorze paliwa ciśnienie wynosi 0,45 MPa i szybko wzrasta na biegu jałowym
do 5 MPa [2, 5].
Rys. 1. Ukształtowanie denka tłoka [5]
Do kontroli pracy silnika JTS zastosowano zintegrowany sterownik
zapłonowo-wtryskowy firmy Bosch serii Motronic MED 7.1.1. Głównymi
zadaniami sterownika są:
a) wyznaczenie dawki paliwa dostarczanej do komory spalania i momentu jej
wtrysku,
b) kontrolowanie momentu zapłonu,
c) sterowanie przepływem powietrza za pomocą elektronicznej przepustnicy.
Oprócz powyższych zadań sterownik ma zaprogramowanych kilkadziesiąt
funkcji kontrolnych, diagnostycznych, regulacyjnych oraz zabezpieczających.
Schemat przepływu informacji przez złącze sterownika pokazano na rys. 2 [4, 5].
Badania samochodu z silnikiem JTS – systemem elektronicznego sterowania … 233
Rys. 2. Przepływ informacji przez sterownik MED 7.1.1 [5]: 1 - pompa paliwa, 2 - klimatyzacja,
3 - wentylator chłodnicy, 4 - sondy lambda, 5 - czujnik ciśnienia, 6 – pedał hamulca i sprzęgła,
7 - czujnik fazy, 8 - prędkościomierz, 9 - sondy lambda, 10 - czujnik temperatury, 11 - czujnik
podciśnienia, 12 - czujnik spalania stukowego, 13 - czujnik prędkości obrotowej, 14 - czujnik pedału
przyspieszenia, 15 - przepływomierz powietrza, 16 - napięcie akumulatora, 17 – zespół przepustnicy,
18 - magistrala CAN, 19 - złącze immobilizera, 20 – złącze EOBD, 21 - recyrkulacja par paliwa,
22 – cewki zapłonowe, 23 - lampka sygnalizacyjna, 24 - obrotomierz, 25 - wtryskiwacze,
26 - regulacja długości przewodów dolotowych, 27 - regulator faz rozrządu
3. ZAKRES BADAŃ SILNIKA 2.0 JTS
W celu sprawdzenia wydajności silnika 2.0 JTS zostały na nim wykonane
badania w zakresie mocy użytkowej, momentu obrotowego, emisji zanieczyszczeń
oraz zużycia paliwa. Jednocześnie dla uzyskania obiektywnego porównania
przebadano także silnik pośredniego wtrysku benzyny 2.0 TS. Obydwa omawiane
silniki były zamontowane w modelu Alfa Romeo 156 o nadwoziu typu sedan.
Wszystkie badania przeprowadzone zostały zgodnie z Europejską Dyrektywą
98/69/WE, na hamowni podwoziowej [3].
4. TEST JEZDNY NEDC
Pierwszą część przeprowadzanych badań stanowił test jezdny NEDC. Pozwolił
on wyznaczyć ilość emitowanych zanieczyszczeń oraz zużycie paliwa (tabela 1).
Test NEDC jest symulacją jazdy samochodem w mieście i poza miastem. Przed
testem badany pojazd nie powinien pracować przez przynajmniej 6 h. Po
uruchomieniu pojazdu test się natychmiast rozpoczyna i włączane są urządzenia
pomiarowe.
234
Łukasz Putz, Tomasz Jarmuda
Pierwszą częścią testy nazywaną UDC (Urban Driving Cycle) jest symulacja
jazdy po mieście. Stanowią ją 4 identyczne cykle, trwające po 195 s i
przeprowadzane bez przerwy czasowej między nimi. Omawiana część badania
charakteryzuje się częstymi przyspieszeniami, hamowaniami oraz postojami.
Łącznie samochód pokonuje nieco ponad 4 km w 780 s, a maksymalna prędkość
wynosi 50 km/h. Zaraz po cyklu miejskim przeprowadzana jest część pozamiejska
zwana EUDC (Extra Urban Drive Cycle). Tutaj już maksymalna prędkość pojazdu
wynosi 120 km/h. Pokonywany jest dystans blisko 7 km, w czasie 400 s. Łącznie w
całym teście NEDC, który trwa blisko 20 minut, przejechane zostaje 11,007 km.
W czasie trwania testu, odpowiednio przygotowane spaliny, pobierane były do
tzw. worka pomiarowego. Przygotowanie spalin polegało na schłodzeniu i
wymieszaniu ich z pewną ilością powietrza oraz uzyskaniu odpowiedniego
ciśnienia i temperatury. Analizatory spalin (CO2, CO, HC i NOx) dokonywały co
sekundę pomiarów chwilowych toksyczności spalin zawartych w worku
pomiarowym i zapisywały je jako wartości zmodulowane odpowiednio do
obciążenia silnika. Ostatecznie wartości chwilowe pomiarów zostały zsumowane,
dając pełny wynik pomiaru w teście NEDC [3].
Tabela 1. Zestawienie wyników przeprowadzonych testów
Wyniki badań
Dane producenta
Parametry
Moc użyteczna
[kW]
Moment obrotowy
[N∙m]
Miasto
[dm3/100 km]
Zużycie
paliwa
Trasa
wg testu
[dm3/100 km]
NEDC
Średnio
[dm3/100 km]
CO2
[g/km]
Emisja
CO
drogowa
[g/km]
spalin
HC
wg testu
[g/km]
NEDC
NOx
[g/km]
2.0 JTS
2.0 TS
2.0 JTS
2.0 TS
125
(6200)
207
(3300)
113
(6200)
184
(3750)
122
(6400)
206
(3250)
110
(6300)
181
(3800)
11,8
11,5
12,2
12,3
7,0
7,4
6,6
6,6
8,5
8,6
8,6
8,7
200
205
206
207
0,330
0,679
< 2,3
< 2,3
0,193
0,206
< 0,2
< 0,2
0,141
0,089
< 0,15
< 0,15
Badania samochodu z silnikiem JTS – systemem elektronicznego sterowania … 235
5. CHARAKTERYSTYKI PRĘDKOŚCIOWE SILNIKA 2.0 JTS
Drugą część badań stanowiło wyznaczenie charakterystyk prędkościowych
silników o wtrysku bezpośrednim (rys. 3) oraz pośrednim (rys. 4) wraz z
wyznaczeniem maksymalnej mocy użytecznej i maksymalnego momentu
obrotowego. Charakterystyki zostały wyznaczone zgodnie z Dyrektywą 98/69/WE.
Rys. 3. Charakterystyka prędkościowa silnika Alfa Romeo 156 2.0 JTS [6]
Rys. 4. Charakterystyka prędkościowa silnika Alfa Romeo 156 2.0 TS [6]
Przed pomiarem w pojeździe rozgrzano silnik. Następnie wprowadzono go na
rolki pomiarowe hamowni i odpowiednio zabezpieczono. Dalsze przygotowanie do
pomiaru polegało na wyznaczeniu przekładni skrzyni biegów oraz przekładni
głównej biegu, na którym wykonywany był pomiar (w tym przypadku biegu
czwartego). Następnie sprawdzany był promień dynamiczny kół samochodu.
Wyznaczone dane zostały wprowadzone do programu hamowni podwoziowej i
pomiary można było rozpocząć.
236
Łukasz Putz, Tomasz Jarmuda
Pojazd został rozpędzony do maksymalnej prędkości obrotowej. W tym
momencie została pomierzona moc użyteczna i moment obrotowy przekazany na
koła samochodu. Następnie rozłączone zostało sprzęgło i samochód swobodnie
zaczął wytracać prędkość, aż do całkowitego zatrzymania. W tym czasie
zmierzono moc użyteczną i moment strat układu napędowego. Ostatecznie osiągi
samego silnika są sumą wcześniej zmierzonych wielkości. Cały pomiar trwał dość
krótko, około 1 minuty rozpędzania oraz około 5 min. swobodnego toczenia, aż do
zatrzymania pojazdu [3].
6. ANALIZA OSIĄGÓW SILNIKA 2.0 JTS
Przeprowadzone testy pozwalają dokonać analizy na dwa różne sposoby. Po
pierwsze można porównać wyniki z danymi producenta. W tym wypadku wyraźnie
widać podobieństwo (tabela 1). Charakterystyki mocy użytkowej i momentu
obrotowego silnika w zależności od prędkości obrotowej wyznaczone na hamowni
podwoziowej odzwierciedlają wykresy publikowane przez koncern Fiata.
Niewielkie różnice między wynikami badań, a danymi producenta należy
wytłumaczyć przede wszystkim niejednakowym stanowiskiem pomiarowym oraz
tym, że badane samochody miały już pewien niezerowy przebieg (około 200 tys.
km) – zużycie lub starzenie się materiałów [6].
W drugim przypadku dokonano porównania dwóch rodzajów silników: o
bezpośrednim oraz pośrednim wtrysku benzyny. Z analizy wyraźnie wynika, że
silnik o pośrednim wtrysku benzyny ustępuje parametrami silnikowi o wtrysku
bezpośrednim. Moc użyteczna oraz moment obrotowy są znacznie większe dla
silnika 2.0 JTS.
Zużycie paliwa nieznacznie odbiega od danych producenta. Jednak jak podaje
producent, oba silniki, zarówno o wtrysku bezpośrednim jak i pośrednim wykazują
zbliżone zużycie paliwa. Mimo jednakowego poboru energii z paliwa, lepszą
sprawność uzyskuje silnik 2.0 JTS, przekazując ostatecznie na koła pojazdu
większą moc.
Emisja zanieczyszczeń w przypadku tlenków azotu jest mniejsza dla silnika o
wtrysku pośrednim. Emisja węglowodorów i dwutlenku węgla są porównywalne
dla obu silników. Natomiast na uwagę zasługuje dwukrotne zmniejszenie emisji
tlenku węgla w silniku o wtrysku bezpośrednim (2.0 JTS) w porównaniu do silnika
o wtrysku pośrednim (2.0 TS) [6].
7. PODSUMOWANIE
Analiza otrzymanych charakterystyk mocy użytecznej i momentu obrotowego
prowadzi do jednoznacznego stwierdzenia, że korzystniejsze charakterystyki
uzyskuje silnik z systemem bezpośredniego wtrysku benzyny. Samochody
Badania samochodu z silnikiem JTS – systemem elektronicznego sterowania … 237
wyposażone w tego typu silniki, charakteryzują się zwiększoną dynamiką i
elastycznością, pozytywnie wpływając na komfort jazdy.
Przeprowadzone badania i ich analiza porównawcza wykazała wyższość
systemów bezpośredniego wtrysku benzyny nad układami wtrysku pośredniego.
Niniejsza praca dowiodła, że możliwe jest uzyskanie większej mocy użytecznej i
momentu obrotowego silnika, przy względnie mniejszym zużyciu paliwa oraz przy
mniejszej emisji tlenku węgla do atmosfery.
Silniki z bezpośrednim wtryskiem benzyny stają się obecnie coraz bardziej
popularne. Coraz więcej koncernów samochodowych zaczyna stosować tego typu
silniki w swoich pojazdach. Przedstawione zalety systemów bezpośredniego
wtrysku benzyny wskazują, że mogą one zastąpić układy wtrysku pośredniego i
stać się poważnym konkurentem dla silników o zapłonie samoczynnym, pod
względem zużycia paliwa i emisji spalin [6].
LITERATURA
[1] Auto Moto Serwis (3/2007). Magazyn motoryzacyjny.
[2] Bosch Team: Informatory techniczne Bosch. Sterowanie silników ZI. Zasada
działania. Podzespoły. WKiŁ, Warszawa 2008.
[3] Dyrektywa 98/69/WE Parlamentu Europejskiego i Rady z dnia 13 października
1998 r.
[4] Herner A., Riehl H.J.: Elektrotechnika i elektronika w pojazdach samochodowych.
WKiŁ, Warszawa 2002.
[5] Materiały szkoleniowe firmy Alfa Romeo: Budowa i działanie silnika 2.0 JTS.
[6] Putz Ł.: Praca dyplomowa magisterska. Samochodowe systemy bezpośredniego
wtrysku benzyny. Politechnika Poznańska, Poznań 2009.
VEHICLE RESEARCH WITH JTS ENGINE – ELECTRONIC CONTROL
SYSTEM OF GASLIN DIRECT INJECTION
The paper presents a detailed analysis of the system of gasoline direct injection JTS (Jet
Thrust Stoichiometric) used in Alfa Romeo cars. The article presents the characteristic
elements of the construction of a description of their impact on the operation of this type of
engines. Then presents the results of engine power, torque, emissions and fuel
consumption, carried out on the Alfa Romeo 156 2.0 JTS, and compared with the results of
the indirect injection counterpart to Alfa Romeo 156 2.0 TS.
P O Z N A N UN I VE RS I T Y O F T E C HN O L O G Y ACA D E MI C J O URN A L S
No 75
Electrical Engineering
2013
Stanisław MIKULSKI*
METODY TRIANGULACJI LASEROWEJ W SKANERACH
TRÓJWYMIAROWYCH
Skanery trójwymiarowe znajdują coraz szersze zastosowanie w różnych dziedzinach
nauki (m. in. medycynie, grafice komputerowej, architekturze) oraz przemysłu. Istnieje
bardzo dużo różnorodność metod skanowania obiektów, a ich dobór zależy przede
wszystkim od rodzaju badanego obiektu, a także jego umiejscowienia. Do często
stosowanych metod należy gałąź metod triangulacji laserowej. Celem niniejszej pracy jest
przedstawienie metody triangulacji laserowej. Opisano w niej układ pomiarowy. W
szczególności praca ta rozpatruje metody triangulacyjne oparte jedynie o układ pomiarowy
z ruchem obrotowym badanego obiektu. Wynikiem takiego pomiaru jest chmura punktów
opisana w układzie współrzędnych prostokątnych. W ramach pracy zostaną
scharakteryzowane przykładowe modele matematyczne laserowych skanerów
triangulacyjnych.
1. PODZIAŁ METOD INŻYNIERII REKONSTRUKCYJNEJ
W inżynierii rekonstrukcyjnej istnieje znaczna różnorodność zjawisk fizycznych
wykorzystywanych do pobrania informacji o kształcie badanego obiektu. Sama zasada
pomiaru skanera trójwymiarowego o konkretne zjawisko fizyczne nie precyzuje
dokładnie jego metody pomiaru, gdyż w praktyce każdy skaner stosuje
charakterystyczną metodę przetwarzania sygnałów pomiarowych na końcowy wynik
pomiaru. Dlatego właśnie istnieje duża grupa prac naukowych zajmujących się
uporządkowaniem metod pomiarowych inżynierii rekonstrukcyjnej.
Najbardziej ogólnym i podstawowym podziałem metod pomiarowych jest
podział na metody stykowe i bezstykowe. W metodach stykowych określenie
kształtu badanego obiektu wykorzystuje bezpośredni kontakt głowicy stykowej z
obiektem. Wyróżnia się tutaj także metody destruktywne polegające na krojeniu
obiektu w plastry i w konsekwencji jego zniszczenie.
Znacznie większe znaczenie dla inżynierii rekonstrukcyjnej mają natomiast
metody bezstykowe. Metody te dzielone są na prześwietlające oraz bazujące na
odbiciach. Metody prześwietlające znalazły swoje zastosowanie przede wszystkim
w medycynie, gdzie wykorzystywane są do bezinwazyjnego badania narządów
wewnętrznych pacjenta. Jest to tomografia komputerowa oraz rezonans
magnetyczny[1, 3].
__________________________________________
* Politechnika Poznańska.
240
Stanisław Mikulski
Metody optyczne, do których zalicza się metody triangulacyjne są metodami
bezstykowymi bazującymi na odbiciu światła od badanego obiektu i określeniu jego
geometrii przy pomocy światłoczułego detektora. Dalszy podział metod optycznych
jest uzależniony od źródła światła. W metodach optycznych pasywnych,
wykorzystywana jest jedynie analiza obrazu obiektu z jednej lub wielu kamer. Do tych
metod można zaliczyć fotogrametrię, która polega na analizie kształtu przy pomocy
obrazu z kilku kamer, ustawionych w znanych położeniach. Celem zwiększenia
efektywności takiego pomiaru, na badany obiekt nanoszone są specjalne znaczniki,
które ułatwiają lokalizację punktu wspólnego obiektu na kilku różnych kamerach.
Aktywne metody optyczne polegają na projekcji na badany przedmiot określonego
rodzaju światła i obserwacji światła odbitego. Metoda triangulacji laserowej polega na
projekcji wiązki lasera. Znając odległość pomiędzy laserem i kamerą oraz kąt
pomiędzy wiązką lasera, a płaszczyzną obrazu kamery można określić odległość
punktu pomiarowego od obiektywu kamery. Pozyskana zostaje w ten sposób
informacja o trzecim wymiarze obiektu, która w połączeniu ze współrzędnymi, obrazu
daje pełne informacje przestrzenne o obiekcie. Jednym ze sposobów przyśpieszenia
pomiarów jest wyświetlenie na obiekcie linii lasera, dzięki temu przy pomocy jednego
pomiaru (obrazu z kamery) układ pomiarowy może odczytać informację o punktach
pomiarowych położonych na całej linii pomiarowej[1, 3].
2. METODA TRIANGULACJI LASEROWEJ
Układ pomiarowy każdej z metod triangulacji laserowej składa się ze źródła
światła laserowego (punktowego lub w postaci linii), obiektu pomiarowego oraz
odbiornika światłoczułego, najczęściej jest to kamera. W zależności od obiektu,
zwłaszcza jego gabarytów oraz dostępności układ pomiarowy może być
skonstruowany na kilka różnych sposobów. Podstawowym problemem
projektowania każdego urządzenia pomiarowego jest określenie najbardziej
odpowiedniego sposobu przesuwania wiązki światła laserowego po obiekcie.
Można tu rozróżnić dwa podstawowe typy sterowania skanerem. Pierwszy typ
skanerów to urządzenia, w których wiązka porusza się po nieruchomym obiekcie.
Metoda taka sprawdza się najlepiej w przypadkach gdy interesuje nas obraz
obiektu z określonej strony (np. odwzorowanie twarzy), jednak w sytuacjach gdy
interesuje nas pełny obraz przestrzenny obiektu pomiary należy wykonać dla kilku
położeń obiektu. Przykładowy schemat takiego urządzenia został przedstawiony
poniżej. Układ pomiarowy składa się z lasera liniowego i kamery zamontowanych
na ruchomym statywie. Znając stałą odległość pomiędzy źródłem światła, a
kamerą oraz kąt pomiędzy płaszczyzną linii lasera, a płaszczyzną prostopadłą do
obrazu kamery można odczytać informacje o głębokości obiektu w miejscu
odbicia linii kamery od obiektu.
Metody triangulacji laserowej w skanerach trójwymiarowych
241
Rys 1. Schemat skanera trójwymiarowego mierzącego obiekt w układzie kartezjańskim XYZ
Otrzymany obraz można przekształcić na współrzędne przestrzenne przy
pomocy następujących wzorów:
 X  x ' x "
Yk y

Y pic

Z

ctg
  x"

 x"  k X x pic
(1)
gdzie: X, Y, Z – są to współrzędne docelowego układu współrzędnych
kartezjańskich, x’ – położenie układu pomiarowego na sprzęgle liniowym, x” –
wynik pomiaru w kierunku osi X w jednostkach miary, xpic, ypic – współrzędne
linii lasera odczytane z kamery w pikselach, kX, kY – przeliczniki pikseli kamery
na jednostki miary.
Drugi typ skanerów trójwymiarowych steruje położeniem obiektu względem
lasera. Takie rozwiązanie związane jest najczęściej z komplikacją modelu
matematycznego obiektu oraz mechanicznego układu pozycjonującego obiekt,
daje też jednak większą pewność uzyskania poprawnych pomiarów.
Przykładem takiego skanera może być układ pomiarowy złożony z linii
laserowej, kamery oraz tacki obrotowej na której znajduje się badany obiekt. Linia
jest wyświetlana pionowo na obiekcie. Układ kamery i źródła światła jest
nieruchomy, ruchoma natomiast jest tacka obrotowa. Pomiar wykonywany jest po
przesunięciu tacki obrotowej o stały kąt dθ. Znając kąt α nachylenia pomiędzy
płaszczyzną obrazu kamery, a płaszczyzną linii lasera oraz kąt β nachylenia
płaszczyzny obrazu względem płaszczyzny tacki, istnieje możliwość zrzutowania
współrzędnych obiektu na płaszczyźnie linii lasera rejestrowane przez kamerę, na
płaszczyznę obrazu przechodzącą przez oś Z” obrotu tacki. Sytuację tą
przedstawia rysunek 2.
242
Stanisław Mikulski
Rys. 2. Układy współrzędnych dla skanera z nieruchomym układem pomiarowym i tacką obrotową [2]:
gdzie: X, Y – układ współrzędnych obrazu kamery (w pikselach), X’, Z’ – układ współrzędnych
leżących na płaszczyźnie linii lasera, nachylonej pod kątem α do płaszczyzny obrazu,
X”, Y”, Z” – docelowy układ współrzędnych nachylony pod kątem β do płaszczyzny obrazu
Punkty pomiarowe takiego układu można opisać przy pomocy wzorów:
z"  y 0  ( y  ( x ' x 0 )) tan 

 x"  x  x 0  ( y' y 0 ) tan 

y"  0

(2)
gdzie: y0 i x0 – oznaczają współrzędne piksela odpowiadającego środkowi tacki
obrotowej.
Łączenie wyników pomiarów z poszczególnych obrotów tacki dokonuje się
przez obrót otrzymanych powyżej punktów pomiarowych o kąt θ względem osi
Z”. Macierz obrotu względem osi Z” ma postać:
cos   sin  0
M ()   sin  cos  0
 0
0
1
(3)
 x" ' cos   sin  0  x"
 y" '   sin  cos  0  y"
  
 
 z" '   0
0
1   z"
(4)
stąd wzory końcowe:
W ten sposób otrzymane wyniki tworzą wstępną chmurę punktów,
przedstawiającą badany obiekt.
3. DETEKCJA LINII LASERA
Proces detekcji linii lasera jest niezwykle istotnym elementem pracy skanera.
Pierwszym problemem napotykanym w procesie identyfikacji linii lasera jest jej
szerokość. Większość modeli matematycznych w procesie analizy zakłada, że linia
Metody triangulacji laserowej w skanerach trójwymiarowych
243
lasera jest albo nieskończenie cienka, albo w każdym przypadku jej szerokość
wynosi 1 piksel. W rzeczywistych układach linie zawsze mają szerokość od kilku
do kilkunastu pikseli i wymiar ten jest zmienny. Różnice w szerokości linii lasera
wynikają z dwóch czynników. Pierwszy (stały, niezależny od badanego układu) to
niedokładność układu optycznego rozszczepiającego laser punktowy na linię
laserową. Drugim czynnikiem jest kąt pod jakim światło lasera pada na
powierzchnię obiektu.
Na początku procesu detekcji linii należy wyznaczyć luminancję każdego
piksela obrazu kamery. Następnie obraz zostaje poddany progowaniu, jest to
proces transformacji obrazu zgodnie ze wzorem :
(5)
Powyższy wzór przedstawia progowanie z progiem pojedynczym, nazywane
binaryzacją. Czasami stosowane jest progowanie z progiem wielokrotnym np. z
progiem podwójnym, opisane wzorem:
(6)
W wyniku progowanie otrzymujemy obraz linii złożony z pikseli białych
(piksele o wartości 1) oraz obraz tła złożony z pikseli czarnych. Tak powstałą linię
lasera należy uśrednić do szerokości jednego piksela. Ostatecznie współrzędne
pikseli należących do uśrednionej linii lasera zostają przeliczone przy pomocy
wzorów (2) i (4) na współrzędne obiektu. Poszczególne etapy detekcji linii
przedstawia rysunek 3 [4].
Rys 3. Detekcja linii lasera: a) obraz początkowy b) binaryzacja obrazu c) uśrednienie linii lasera
4. POMIARY WYKONANE PRZY POMOCY METODY
TRIANGUALCJI LASEROWEJ
Przedstawiony w rozdziale 2 model matematyczny skanera stosującego metodę
triangulacji laserowej, posłużył do zbudowania układu pomiarowego. Układ ten
przedstawiony jest na rysunku 4. W jego skład wchodzi wysokiej rozdzielczości
244
Stanisław Mikulski
kamera (z maksymalną rozdzielczością 1920 na 1080 pikseli), laser liniowy koloru
czerwonego, tacka z układem napędowym, oraz obudowa. Do sterowania tacką
obrotową wykorzystano silnik krokowy o kroku 1,8˚, co pozwala uzyskać 200
pomiarów na pełny obrót. Taka rozdzielczość pomiarów nie była zadowalająca
dlatego do sterowania silnika zastosowano sterowanie mikrokrokowe o podziale
kroku 1/2, 1/4, 1/8, 1/16 i 1/32. Dało to możliwość zwiększenie ilości pomiarów
na obrót tacki maksymalnie do 6400 pomiarów.
Rys 4. Obraz układu pomiarowego [2]
W ramach projektu stworzono także program komputerowy sterujący silnikiem
krokowym oraz analizujący obraz z kamery. W programie można jednocześnie
ustawić rozdzielczość kamery, dobrać ilość kroków oraz wyświetlić powstałą, w
wyniku przetworzenia obrazu z kamery, chmurę punktów. Dodatkowo w trakcie
pomiarów w programie wyświetlony jest podgląd obrazu z kamery. Program
opracowano w środowisku Microsoft Visual Studio C# 2010 z zastosowaniem
technologii DirectX 10 (prezentacja obiektu).
Na rysunku 5 przedstawiono pomiary przykładowego obiektu. Wyniki
pomiarów świadczą o poprawności zastosowanej metody pomiarowej.
Rys 5. Wyniki pomiarów przykładowego obiektu [2]
Metody triangulacji laserowej w skanerach trójwymiarowych
245
5. PODSUMOWANIE
W artykule przedstawiono obszar zastosowania metody skanowania obiektów.
Opisano klasyfikację tych metod oraz podstawowe zjawiska fizyczne, na których
dana grupa metod pomiarowych bazuje. W szczególności skupiono się na grupie
metod triangulacji laserowej. Przedstawiono przykładowe modele matematyczne
wykorzystując triangulację laserową, dla układu kartezjańskiego XYZ oraz układu
z ruchem obrotowym obiektu.
W dalszej części pracy przedstawiono wyniki pomiarów i ich analizę dla
stanowiska pomiarowego opartego o metodę triangulacji laserowej opisanej w
artykule. Otrzymane wyniki świadczą o poprawności metody. Wyznaczona na
podstawie pomiarów obiektu wzorcowego dokładność pomiarów wyniosła 0.1 mm,
przy rozdzielczości obrazu kamery 1200 x 800 pikseli.
LITERATURA
[1] Karbowski K., Reconstruction of pictures in reverse engineering system, Advances in
Manufacturing Science and Technology, Vol. 29, No. 3, 2005, s. 35-46.
[2] Latuszek B., Mikulski S. “Projekt i realizacja trójwymiarowego skanera laserowego”
– Praca Magisterska 2012.
[3] Varady T., Martin R.R., Cox J., Reverse engineering of geometric models – an
introduction, Computer-Aided Design, Vol. 29, No. 4, 1997, s. 255-268.
[4] Wojnar L., Majorek M., Komputerowa analiza obrazu, Fotobit Design, Kraków 1994.
TRIANGULATION METHOD FO THREE-DIMENSIONAL LASER SCANNERS
Three-dimensional scanners are becoming widely used in various fields of science
(among others. Medicine, computer graphics, architecture) and industry. There are a
variety of methods for scanning objects and their selection depends mainly on the type of
the object and its location. To frequently used methods to branch laser triangulation
methods. The objectives of this work is to present a method of laser triangulation. It was
described in the measurement system. In particular, this work examines triangulation
method based only on the measurement system of the rotary motion of the object. The
result of such a measurement is a cloud of points described in the Cartesian coordinate
system. The work will be characterized examples of mathematical models of laser
triangulation scanner.
Authors index
Authors
Norbert
Marcin
Ramia
Piotr
Krzysztof
Mateusz
Bogdan
Michał
Jacek
Wiktor
Jarosław
Marcel
Kazimierz
Tomasz
Leszek
Sławomir
Marcin
Dariusz
Leszek
Łukasz
Janusz
Eugeniusz
Marcin
Marian
Wiesław
Zbynek
Stanisław
Piotr
Ryszard
Łukasz
Lech
Teresa
Tomasz
Sławomir
Łukasz
Krzysztof
ADAMKIEWICZ
ANTCZAK
DEEB
DERUGO
DRÓŻDŻ
DYBKOWSKI
FABIAŃSKI
FILIPIAK
HORISZNY
HUDY
JAJCZYK
JANDA
JARACZ
JARMUDA
JARZĘBOWICZ
JUDEK
JUKIEWICZ
KAPELSKI
KASPRZYK
KNYPIŃSKI
KOŁODZIEJ
KORNATOWSKI
KOWOL
ŁUKANISZYN
ŁYSKAWIŃSKI
MAKKI
MIKULSKI
MYNAREK
NAWROWSKI
NIEWIARA
NOWAK
ORŁOWSKAKOWALSKA
PAJCHROWSKI
PLUTA
PUTZ
SIEMBAB
247
No of paper
Page
22
2
3
11
20
11
8
25, 26
13
4
25, 26
3
4
29
18, 19
18, 19
28
2
23
1, 12
6
15
6, 7
7
12
3
30
6, 7
14
10
1, 12
9
173
17
25
85
157
85
63
199, 207
101
33
199, 207
25
33
231
141, 149
141, 149
223
17
181
9, 93
49
119
49, 57
57
93
25
239
49, 57
109
79
9, 93
71
16, 17
24
29
5, 21
127, 135
191
231
41, 165
248
Authors index
Authors
Jerzy
Piotr
Zbigniew
Krzysztof
Wojciech
Łukasz
Tomasz
Krzysztof
Maria
Dariusz
SIWIEC
SOBAŃSKI
STEIN
SZABAT
SZELĄG
WARGIN
WAWRZYNIAK
ZAWIRSKI
ZIELIŃSKA
ZMARZŁY
No of paper
Page
2
9
14
11, 20
2
24
27
10
14
22
17
71
109
85, 157
17
191
215
79
109
173

Podobne dokumenty