Development prospects of biorefinery technologies

Transkrypt

Development prospects of biorefinery technologies
science • technique • market
Development prospects of biorefinery technologies
Marlena OWCZUK*, Magdalena ROGULSKA, Dorota BOGUMIŁ – Automotive Industry Institute,
Warsaw, Poland; Krzysztof BIERNAT – Automotive Industry Institute, Warsaw, Poland; Institute for
Ecology and Bioethics of Cardinal Stefan Wyszynski University, Warsaw, Poland
Please cite as: CHEMIK 2015, 69, 11, 749–758
Introduction
One of the priorities of the European Union is to strengthen
the use of raw materials of biological origin in various industrial
sectors, aimed at growth and economic recovery of countries [1].
For this purpose different kinds of initiatives addressing agricultural
productivity and sustainability [2], smart specialization strategies
of individual countries and regions [3] appeared as well as several
actions in the environmental field were identified. In response to these
trends, a key role in implementing the priorities will play a biorefinery,
in which biomass – renewable biological resource – is used for wastefree production of a wide variety of bioproducts (biofuels, bioliquids,
biochemicals, consumable goods from biomass etc.) and energy.
These systems combine various industries and previously unrelated
raw material producers, creating new value chains, replacing the
production based on fossil fuels. The main objective of this joint
technological initiative is to strive for a resource-efficient and
sustainable low carbon economy and economic growth (especially in
rural areas), as a result of the creation of sustainable and competitive
industry, using technologically advanced biorefineries processing
biomass in a sustainable manner [4, 5].
Biorefinery concept
The concept of a system development of industry based on raw
materials of biological origin (Bio-Based Industries) was proposed as
a result of the review done in the EU countries concerning the progress
in deployment of renewable energy sources [6]. Main assumption idea
is to develop industry optimally using land and ensuring food safety:
through sustainable, efficient processes and limiting the amount of
waste, renewable biomass processing in a wide range of products of
biological origin. In order to implement these principles Innovation Plan
and Strategic Research (SIRA) was developed including following value
chains [4,7]:
1. From lignocellulosic feedstock for advanced biofuels, chemicals
and biomaterials, through the selection of raw material base and
technology for a new generation of fuels, chemicals and materials.
2. Utilize the full potential of forest biomass through rationalization
of afforestation and creating new markets and value-added
products.
3. The use of agro raw materials enable sustainability of production
through efficient agricultural production and new markets and
value-added products.
4. Waste management, through the implementation of sustainable
technologies for processing waste into valuable products.
5. Integrated biorefineries as a means of sustainable production of
bioenergy, including biofuels, biomaterials, biochemicals etc.
Achieving the objectives in accordance with proposed value chains
could lead to the creation of biorefineries processing biomass in
complex and waste-free way and will ensure the availability of biomass
for foodstuffs, chemicals, transport, energy, etc. In addition, it may
Corresponding author:
Marlena Owczuk M.Sc. Eng., e-mail: [email protected]
754 •
increase the productivity and efficiency of biomass from agricultural
land and forests, while utilizing the potential of streams byproducts
and waste products [7]. Providing new markets for biomass producers
will strengthen the economy and allow intensification of production in
the sustainable system.
To implement the actions contained in the SIRA consortium “BioBased Industry Consortium” (BIC) was formed, with tasks including
the implementation of research projects aimed at filling the gaps in
technological innovation and deployment of developed technologies
on a commercial scale.
Biorefinery characteristics
There are many methods of converting biomass into energy sources
which differ in the complexity of the process, the costs and availability of
the installation and the degree of knowledge of the process. In general,
biomass conversion can be carried out using mechanical processes (eg.
disintegration) thermochemical (eg. pyrolysis, gasification), biological
(eg. methane fermentation) and / or chemical (eg. esterification,
hydrolysis) [8]. Biorefinery is a comprehensive integrated system,
combining various biomass conversion processes and equipment to its
processing in a single manufacturing facility. During the biorefinery design
it is particularly important to optimize the selection of transformation
chain, depending on the type of feedstock, the conversion technology,
final products, as well as economic efficiency. Depending on the
processes bioproducts (eg. alcohols, chemicals), biofuels (eg. synthetic
fuels / hydrocarbons, gaseous fuels) and energy will be produced.
Products of biorefinery processes may be a final ones or intermediate
ones to be used in other processes.
The concept of biorefineries is based on the use in the processes
in the field of WTL (wastes to liquid) or BtL (biomass to liqiud) of waste
materials of biological origin. For this purpose are used:
• byproducts of other substances processing,
• biodegradable waste products of vegetable or animal origin,
• dedicated plants grown for energy purposes,
• waste from forestry,
• biodegradable fraction of industrial and municipal waste.
The general scheme of the complex biorefinery is shown in Figure 1.
There are four basic biorefinery systems due to the nature of the
raw materials used and technological capabilities [10, 11, 12]:
• whole crop biorefinery in which the substrate is a whole plant
crop. A variety constitute oleorafinerie, which use oil seeds (eg.
rapeseed, sunflower, soya),
• biorefineries “green” using inedible “green” parts of plants or
entire energy crops (eg. wet biomass, green grass, alfalfa, clover,
immature grain, not suitable for farming and the food industry
plants or parts of them),
• lignocellulosic biorefineries, based on lignocellulosic biomass (eg.
wood, straw, waste from the forest industry, wood, paper),
• 2-platform biorefineries (producing syngas and sugars in a single
technological platform, with simultaneous production of fuels in
the second platform), based on renewable raw materials (biomass
waste from agriculture, forestry, food industry, biodegradable
municipal waste).
nr 11/2015 • tom 69
Biorefinery systems in the world – examples
There are more than 80 biorefineries (pilot, demonstration and
commercial ones), of which approximately 31% is located in the
Netherlands, 16% in Canada and approx. 12.5% ​​in Austria. The rest
is located in Denmark, Germany, Italy, New Zealand, United States,
Australia and Ireland [9]. In addition, planned is commissioning of new
installations in other countries, eg. in the UK and in Finland.
Currently, work is underway on the optimization of the use
of existing raw material (forest and agricultural biomass) and the
development of new raw material supply chains (eg. forest waste,
agricultural waste, or lignocellulosic dedicated crops), as well as the
use of organic streams of industrial and municipal wastes.
The following figures (4 – 11) are block diagrams of selected
biorefinery systems divided into commercial, demonstration and pilot
projects. Figure 4 shows the idea of ​​2-platform biorefinery, located in
Pischelsdorf (Austria), using a sustainable agricultural raw materials for
the production of bioethanol, starch, gluten and animal feed.
Fig. 1. General scheme of biorefinery installation [9]
Fig. 4. Agrana biorefinery, Austria [9]
Fig. 2. Pyramid of market value of products from biomass [9]
Fig. 5. INEOS biorefinery, USA [9]
Fig. 3. Estimation of EU market demand on bioproducts till 2030 [13]
Figure 2 shows a pyramid of products that could potentially
be produced from biomass. According to the forecasts of market
development of bio-products in the EU countries the increase
of market size of bioproducts from EUR 28 billion (2013) to 50
billion EUR in 2030 is expected [13]. Looking at individual product
segments, the biggest increase is forecasted for bioethanol, base
chemicals and biopolymers , with moderate growth in biogas and
antibiotics (Fig. 3).
nr 11/2015 • tom 69
Figure 5 shows a commercial 2-platform installation producing
bioethanol and energy from organic wastes by fermentation of synthesis
gas. Installation can produce annually 8 million liters of third generation
bioethanol from biomass (plants, biodegradable municipal solid waste),
also generating 6 MW (gross) of clean “green” energy. Surplus energy
can be made available to the local community.
Another solution is shown in Figure 6, it is 2-platform biorefinery
Victoria, located in Barnawartha in Australia. It produces biogaseous fuel
(biogas), liquid biofuels and technical glycerin (98.5%) and potassium
sulphate, from oilseeds, used frying oils and low quality animal fats.
Waste oils, using the methods of extraction and refining are converted
to crude oil, which then is converted by transestrification to the methyl
ester (biodiesel) and glycerol.
• 755
science • technique • market
In 2014 IEA Bioenergy Task 42 has developed a new clasification of
biorefineries based on platforms, products, feedstocks and processes,
which allows on consistent description of different systems [9].
science • technique • market
Fig. 6. Victoria biorefinery, Australia [9]
Fig. 7. BioGasol/Estibio biorefinery, Denmark [9]
Among the pilot plant particularly noteworthy is 3-platform
biorefinery BioGasol/Estibio, located in Denmark, in Ballerup. The
substrate is lignocellulosic biomass (straw) as well as agricultural
waste, from which gaseous fuel (biogas, biomethane), solid biofuels,
bioethanol, chemicals and fertilizer are produced. The pre-treatment
of lignocellulosic waste is done at Carbofrac and Estibio installations,
where by enzymatic hydrolysis and under high temperatures, individual
sugars are extracted.
Fig. 9. LanzaTech biorefinery, New Zeland [9]
In the 2-platform biorefinery Lanza Tech (Fig. 9) for the production
of bio-ethanol and hydrocarbons C2-C5 waste biomass from the
manufacture of wood and solid organic fraction of municipal waste
is used. Installation was founded in New Zealand in 2005, based on
original technology of synthesis gas fermentation to bioethanol.
A different concept is illustrated in Figures 10 and 11, where in
the biorefineries algae (microalgae) are used. The first installation
(ACRRES), which is in the pilot phase, is located in the Netherlands.
This biorefinery is supplied by biodegradable waste and waste water
from which the biogas is produced a well as proteins, microalgae,
bioethanol and components of feed and fertilizers. The possibility of
processing wastes eg. from farms is analysed.
The second one (3-platform demo installation) located in Bruckan
der Leitha in Austria, produces from microalgae biofuels, electricity
and heat, omega-3/6 and fertilizer. The company Ecodua is a global
technology leader in the construction of the algae cultivation systems.
Innovative technology enables the production of biomass of microalgae
on an industrial scale.
Fig. 10. ACRRES biorefinery, Netherlands [9]
Fig. 8. Bioliq biorefinery, Germany [9]
Another pilot plant, 3-platform Bioliq biorefinery is located in
the German city Karlsruhe (Fig. 8), producing from biomass (straw,
wood) pyrolysis oil, syngas, BTL (Biomass to liquid) fuels as well as
electricity and heat. By gasification of the organic wastes the synthesis
gas is obtained which can be converted further into transport fuel or
by catalytic processes in the chemicals.
756 •
On the basis of presented above examples, we can conclude that
there are a number of concepts of biorefinery systems that differ in
the type of feedstock, used technological processes and final products
obtained. In these plants the biomass of various origins is converted
into a mixture of liquid components, and then undergoes processing
(treating, fermentation, purification, etc.) to receive biofuels, bio-based
products and energy.
The authors of this paper have developed their own concept of
the construction of 2-platform biorefinery, based on biomass feedstock
rich in carbohydrates and lignocellulose (Fig. 12). Due to the designed
chemical and biochemical platform sugar carbohydrate fraction is
converted into a biofuel, bioethanol and biopolymers. The use of hightemperature and high-pressure processes can convert lignocellulosic
fraction of the biochemicals and energy into synthesis gas platform.
nr 11/2015 • tom 69
Literature
1.
Fig. 11. EcoduaAlgae biorefinery, Austria [9]
2.
3.
4.
5.
6.
Fig. 12. 2-platform biorefinery – PIMOT concept [14]
However, the implementation of such solutions in Polish conditions
requires the performance of several works, including studies on the
physicochemical properties of the biomass in order to optimize its
composition and analysis of possible ways of the pentose conversion
into biofuels or high-value chemicals with particular emphasis on
furan compounds and biopolymers. Also research on optimization of
all processes (eg. hydrolysis of the carbohydrate fraction, alcoholic
fermentation, gasification of biomass) is required. In the final stage, it is
necessary to develop techniques for optimizing the quality of the final
products according to the regulatory requirements (eg. the purification
of fermentation synthesis gas), recycled catalyst, and refining and
separation of the resulting bio-chemicals.
At PIMOT was also developed an original concept of a biorefinery
based on the existing petroleum refinery. This solution is especially costeffective due to the possibility of using the existing technical resources
and administration, including human resources and technological
potential. Research problem which now is studied is the optimization
of the technology of converting biomass to bioliquid phase. The use of
HTU (hydrothermal upgrading) technology, together with the HDO
(hydrodeoxygenation) process is planned.
Conclusions
Biorefinery systems, producing biofuels, energy and various
biomaterials, are a key element of sustainable and competitive
development of the industry. Larger quantities and a wide range of
manufactured products allow the use of different renewable biological
resources (with the reduced amount of non-renewable resources),
as well as to maximize the benefits of such a solution (the sale of
biofuels, energy, the use of products for own use, etc). Beside these,
undoubtedly important benefits are connected with the protection of
nr 11/2015 • tom 69
7.
8.
9.
10.
11.
12.
13.
14.
15.
COM(2012) 582. Komunikat Komisji do Parlamentu Europejskiego, Rady
Europejskiej, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego
i Komitetu Regionów: Silniejszy przemysł europejski na rzecz wzrostu
i ożywienia gospodarczego. Aktualizacja komunikatu w sprawie polityki
przemysłowej.
COM(2012) 79. Komunikat Komisji do Parlamentu Europejskiego i Rady
w sprawie europejskiego partnerstwa innowacyjnego na rzecz wydajnego
i zrównoważonego rolnictwa.
DG REGIO (2012) Connecting Smart and Sustainable Growth through
Smart Specialisation („Łączenie inteligentnego i zrównoważonego
wzrostu dzięki inteligentnej specjalizacji”): Praktyczny przewodnik dla
instytucji zarządzających EFRR.
Dziołak P., Biernat K.: Badania nad technicznymi i technologicznymi
możliwościami kompleksów biorafineryjnych w Polsce, Warsztaty
Naukowe IEiB UKSW, Warszawa, 27 maja 2009r.
COM(2013) 496, Rozporządzenie Rady w sprawie wspólnego
przedsiębiorstwa na rzecz przemysłu opartego na surowcach pochodzenia
biologicznego, Bruksela, dnia 10.7.2013r.
Dirk Carrez, The Bio-based industries Initiative (BBI) and the Bioeconomy Observatory, Brussels, 26th November 2013r.
Biernat K.: Kierunki rozwoju biogospodarki, jako nowej gałęzi przemysłowej
w Unii Europejskiej, Czy Biotechnologia jest inwestycją we własną
przyszłość, materiały konferencyjne, V Warsztaty Biotechnologiczne,
Spytkowice, 5 – 6 Czerwiec 2014r.
Huber G. W., et al.: Synthesis of Transportation Fuels from Biomass:
Chemistry, Catalysis and Engineering. Chemical Review 2006r.
IEA Bioenergy, Task 42, Biorefining: Sustainable and synergetic processing
of biomas into marketable food & feed ingredient, chemical, materials and
energy (fuels, power, heat), Raport IEA, sierpień 2014r.
Biernat K.: Rozwój technologii wytwarzania biopaliw, Czysta Energia,
11/2010.
Final Report Summary – BIOPOL (Assessment of biorefinery concepts
and the implications for agricultural and forestry policy.
Soetaert W.: Defining biorefineries and different concepts, BioreFuture
2009, Biorefinery Euroview BIOPOL, Brussels, 30th March 2009r.
Overcoming hurdles for innovation in industrial biotechnology in Europe,
Market Roadmap: Draft 3, BIO-TIC.
Narodowa Strategiczna Agenda Badawcza w Zakresie Biopaliw”,
opracowanie Polskiej Platformy Technologicznej Biopaliw pod red. K.
Biernata, Warszawa, 2008r.
Strategic Innovation and Research Agenda (SIRA), Bio-based and
Renewable Industries for Development and Growth in Europe, March
2013r.
Magdalena ROGULSKA – Ph.D., graduate of the Faculty of Physics at
the University of Warsaw. Ph.D. in agricultural engineering. Since 2011 the
main expert on renewable energy at the Automotive Industry Institute.
She specializes in the sustainable use of biomass for energy and transport.
Coordinator of research and demonstration projects funded by the European Commission (DG Research, DG TREN, EACI). Leads the Polish
secretariat of the Swedish-Polish Sustainable Energy Platform. European
expert evaluating projects under HORIZON 2020.
• 757
science • technique • market
the environment (eg. reducing greenhouse gas emissions and waste)
and economic development (creation of jobs) as well as country’s
economic development (increased decoupling from such media as
crude oil, coal, natural gas).
Innovative and efficient biorefineries can revitalize existing industries
and even contribute to the development of previously unused land in
Europe (up to 35% in 2030). According to the strategic objectives
of the already mentioned the SIRA document a 20% increase in the
supply of biomass, its 30% share in the production of chemicals and
materials, as well as 25% biofuels share in total demand for energy in
transport are assumed to be reached in Europe by 2030 [15].
science • technique • market
*Marlena OWCZUK – M.Sc. Eng., graduate of the Faculty Biotechnology and Food Sciences at Lodz University of Technology. In 2005 she
joined the Automotive Industry Institute. Senior researcher at the Department of Bioeconomy. In her work deals with the development of fuel
production, liquid biofuels and alternative fuels. The author and co-author
of many research papers, publications and presentations.
Dorota BOGUMIŁ – M.Sc. Eng., graduate of the Faculty of
Chemical and Process Engineering at Warsaw University of Technology
(specialization Industrial Biotechnology). Since 2015 employed in the
Automotive Industry Institute in the Department of Bioeconomy. In her
work she focuses on the production of biofuels using biochemical biomass
conversion.
Krzysztof BIERNAT - Ph.D., (Eng.), is a professor of the Automotive
Industry Institute (PIMOT), acting as Head of Bieconomy Department and
Coordinator of Polish Technology Platform for Biofuels, member of Coordinating Committee of Polish Technology Platform for Bioeconomy. He is
also the Deputy Director of Institute of Ecology and Bioethics at state Cardinal Stefan Wyszynski University in Warsaw. He represented Poland in
European Technology Platform of Biofuels and in Renewable Heating and
Cooling European Technology Platform. He is also a member in American
Council on Renewable Energy. He specializes in chemical thermodynamics
of environmental processes as well as obtaining technologies, quality evaluation and use of exploitative liquids, including biofuels, and biorafinery
systems. He is an author of above 200 publications in area of properties
and exploitative conditionings of fuels, biofuels and other liquids as well
as environmental protection. He is a member of many national and foreign scientific societies including American Chemical Society and American
Association for the Advancement of Science.
Aktualności z firm
News from the Companies
Dokończenie ze strony 753
RYNEK
Zakład Badawczy Kopolimerów ICHEMAD – PROFARB
Sp. z o.o w strukturach SYNTHOS SA
Od 1 października br. Zakład Badawczy Kopolimerów będzie prowadzony pod firmą Synthos Dwory 7 spółka z ograniczoną odpowiedzialnością spółka jawna. Długofalowa strategia SYNTHOS SA zakłada
sukcesywne budowanie wartości rynkowej biznesu dyspersji i klejów.
Połączenie to jest kolejnym krokiem w budowaniu pozycji wiodącego
dostawcy produktów chemicznych i lidera rynku oferującego wysokiej jakości rozwiązania w segmencie dyspersji i klejów, realizowanym
przede wszystkim z myślą o odbiorcach i użytkownikach końcowych.
Celem jej jest maksymalne wykorzystanie potencjału zakładu w postaci
wiedzy, receptur i technologii wodorozcieńczalnych produktów chemii organicznej – kopolimerów. (kk)
(http://synthosgroup.com/, 1.10.2015)
Dobre wyniki Grupy ORLEN we wszystkich segmentach
Po 9. miesiącach tego roku Grupa ORLEN wypracowała wynik
EBITDA wg LIFO (bez uwzględnienia odpisów wartości aktywów)
o prawie 3 mld PLN wyższy niż rok wcześniej. Ostatni, III kwartał br.
Grupa ORLEN zakończyła z zyskiem operacyjnym (EBITDA wg LIFO)
na poziomie 2,1 mld PLN (przed odpisem wartości czeskich aktywów
petrochemicznych w kwocie 0,1 mld PLN). Koncern osiągnął wyższą
sprzedaż we wszystkich segmentach i rekordowy wynik w detalu.
Sprzyjające otoczenie makroekonomiczne, tj. wzrost marży downstream oraz dalszy spadek cen ropy naftowej, wspierało osiągnięcie
dobrych wyników. Miniony kwartał był szczególnie istotny w kontekście realizacji strategicznych projektów rozwojowych Grupy ORLEN.
W obszarze petrochemii zawarto umowę budowy nowej instalacji
polietylenu (PE3) w zakładzie w czeskim Litvínovie. We wrześniu
br. rozpoczęto w Płocku prace budowlane w projekcie największej
w Polsce elektrociepłowni o mocy 596 MWe. Rozpoczęto również
proces przejęcia perspektywicznych złóż ropy oraz gazu w Polsce i Kanadzie. (kk)
(http://www.orlen.pl/, 22.10.2015)
758 •
PGE pozyskała kredyt o wartości 2 mld PLN
od Europejskiego Banku Inwestycyjnego
PGE Polska Grupa Energetyczna zawarła z Europejskim Bankiem Inwestycyjnym dwie umowy kredytowe na łączną kwotę prawie 2 mld PLN. To kolejne, po kredycie konsorcjalnym o wartości
5,5 mld PLN, środki pozyskane przez Grupę PGE na finansowanie
planu inwestycyjnego. Wśród kluczowych projektów inwestycyjnych
prowadzonych przez Grupę PGE wymienić należy budowę nowych,
efektywnych mocy wytwórczych, na czele z flagowym projektem –
budową bloków 5 i 6 w Elektrowni Opole. Grupa PGE założyła sobie
także ambitny program modernizacyjny, mający na celu dostosowanie
funkcjonujących w jej portfelu aktywów wytwórczych do stopniowo
zaostrzanych norm środowiskowych. Grupa sukcesywnie poprawia
również parametry w obszarze dystrybucji zapewniając niezawodność dostaw. Łącznie, na inwestycje budujące wartość Grupy, PGE
zamierza przeznaczyć do 2020 r. kilkadziesiąt mld PLN. (kk)
(http://www.gkpge.pl/, 27.10.2015)
ORLEN przejmuje kolejną spółkę wydobywczą w Kanadzie
PKN ORLEN, za pośrednictwem spółki zależnej ORLEN Upstream Canada, zawarł umowę rozpoczynającą proces nabycia 100%
akcji spółki Kicking Horse Energy. Ich wartość uzgodniono na poziomie 293 mln CAD (ok. 842 mln PLN), co oznacza cenę 4,75 CAD
(13,65 PLN) za jedną akcję. Finalizacja transakcji możliwa będzie
po wypełnieniu wszystkich warunków umowy i planowana jest
w czwartym kwartale br. (kk)
(http://www.orlen.pl/, 13.10.2015)
ORLEN kupuje aktywa wydobywcze w Polsce
PKN ORLEN za pośrednictwem swojej spółki zależnej ORLEN
Upstream zawarł umowę, która rozpoczyna procedurę przejęcia całościowego pakietu akcji FX Energy, spółki notowanej na nowojorskiej
giełdzie NASDAQ. Uzgodniona kwota 1,15 USD (4,27 PLN) za akcję
zwykłą i 25 USD (92,87 PLN) za akcję uprzywilejowaną, przekłada się
na wartość transakcji wynoszącą ok. 83 mln USD (około 308 mln PLN).
Akwizycja powiększy bazę zasobową (2P) Koncernu o 8,4 mln baryłek
ekwiwalentu ropy (boe). (kk) (http://www.orlen.pl/, 13.10.2015)
Dokończenie na stronie 764
nr 11/2015 • tom 69

Podobne dokumenty