Nr 182–183 17 Andrzej KSIĄŻKIEWICZ Politechnika

Transkrypt

Nr 182–183 17 Andrzej KSIĄŻKIEWICZ Politechnika
Instalacje elektryczne
Andrzej KSIĄŻKIEWICZ
Politechnika Poznańska
Instytut Elektroenergetyki
AUTOMATYKA BUDYNKOWA W OBIEKTACH ROZLEGŁYCH
NA PRZYKŁADZIE SYSTEMÓW KNX I LCN
Streszczenie: Systemy automatyki budynkowej stosowane są w obiektach użyteczności publicznej, biurowych czy w centrach handlowych. Obiekty te często zajmują znaczne powierzchnie, a niekiedy podzielone są na kilka oddzielnych budynków. Rodzi to dodatkowy problem
związany z komunikacją pomiędzy częściami budynku lub budynkami. Powiązany jest on
z ograniczonym zasięgiem stosowanych mediów transmisyjnych w różnych systemach automatyki. W artykule przedstawiona zostanie propozycja rozwiązania problemu komunikacji pomiędzy elementami automatyki budynkowej w obiektach rozległych, z wykorzystaniem urządzeń
z systemu KNX i LCN.
1. Zdecentrealizowane systemy automatyki budynkowej
Stosowane obecnie systemy automatyki budynkowej można podzielić na systemy
zdecentralizowane oraz scentralizowane. W systemach zdecentralizowanych nie występuje jeden, centralny sterownik zarządzający pracą całej instalacji. Rozwiązanie
to opiera się na wzajemnej komunikacji pomiędzy urządzeniami połączonymi magistralą.
Urządzenia przesyłają między sobą rozkazy bądź informację o stanie, na podstawie których wykonywane są polecenia. Do systemów zdecentralizowanych można zaliczyć systemy KNX i LCN. W obu tych systemach nie występują centralne
sterowniki, obecna jest natomiast magistrala komunikacyjna służąca do wymiany
informacji pomiędzy urządzeniami.
Topologia systemu KNX składa się z następujących elementów (rys. 1):
• linia, do której podłącza się elementy magistralne (maksymalnie 255 urządzeń),
• obszar, który buduje się poprzez łączenie wielu linii razem za pośrednictwem
sprzęgieł liniowych (do 15 linii),
• system, który tworzony jest przez obszary połączone wzajemnie za pomocą sprzęgieł obszarowych (do 15 obszarów).
W ten sposób, jeżeli urządzenia z różnych linii lub obszarów nie wymagają łączności pomiędzy sobą, to nie zachodzi konieczność przesyłania pomiędzy nimi telegramów.
Takie podejście pozwala na zmniejszenie obciążenia magistrali i zwiększa jej
przepustowość.
W systemie KNX magistrala komunikacyjna może zostać wykonana jako przewodowa lub bezprzewodowa. Jako magistralę przewodową stosuje się skrętkę dwuparową (twistedpair KNX.TP) 2×2×0,8, w której to jedna para żył czerwowo-czarna
wykorzystywana jest do komunikacji, a druga para żółto-biała jest rezerwowa (rys. 2).
Nr 182–183
17
Instalacje elektryczne
Rys. 1. Topologia systemu KNX: UM – urządzenie magistralne, Z/C – zasilacz, SL – sprzęgło
liniowe, SO – sprzęgło obszarowe [1]
Rys. 2. Magistrala przewodowa w systemie KNX – skrętka dwuparowa [1]
Podstawowym medium transmisyjnym wykorzystywanym w instalacji KNX jest
skrętka dwuparowa. Medium to służy do zapewnienia zasilania urządzeniom magistralnym oraz do przekazywania informacji pomiędzy nimi. Informacje przekazywane są w postaci telegramów, czyli paczek bitów zawierających dane między innymi
o nadawcy, odbiorcy oraz rozkazie do wykonania.
Każde urządzenie magistralne posiada swój własny, niepowtarzalny adres fizyczny składający się z trzech liczb. Określają one położenie danego elementu w topologii systemu. Do identyfikacji odbiorcy lub grupy odbiorców wykorzystuje się adres
grupowy. Każdy element magistralny może posiadać więcej niż jeden adres grupowy.
W systemie LCN wykorzystuje się do transmisji danych dodatkową żyłę transmisyjną oraz żyłę neutralną tradycyjnej instalacji elektrycznej (rys. 3). Każdy moduł
LCN może dzięki tym dwóm żyłom komunikować się z całą magistralą.
18
Instalacje elektryczne
Rys. 3. Wykorzystanie dodatkowej żyły przewodu wielożyłowego do komunikacji między modułami LCN – żyła danych D [2]
Wykorzystanie konwencjonalnej instalacji poszerzonej o jedną dodatkową żyłę
pozwala na prostsze układanie instalacji ze względu na brak dodatkowego przewodu
magistralnego. Moduły LCN są chronione przed zwarciem i przepięciem w magistrali sieciowej do 230 V lub 2 kV [2].
Magistrala systemu LCN stosowana jest w systemach posiadających ponad
250 modułów lub jeśli budynek ma być podzielony na strefy, w celu optymalizacji
transmisji danych i lepszej przejrzystości systemu [3], dopuszcza się połączenie do
120 sprzęgów w jedną magistralę, która musi zawsze być okablowana liniowo (rys. 4).
Długość tej magistrali zależna jest od liczby zainstalowanych sprzęgów, jak i od prędkości transmisji danych.
Rys. 4. Wykorzystanie sprzęgów LCN-SK do łączenia segmentów w jeden system [3]
Nr 182–183
19
Instalacje elektryczne
2. Dopuszczalne odległości pomiędzy elementami systemu
W obiektach o niewielkiej powierzchni dopuszczalne maksymalne długości magistrali najczęściej nie stanowią większego problemu. W systemie KNX, jak i LCN
pojedynczy odcinek magistrali dwużyłowej może mieć długość 1000 m, co jest wystarczające dla większości budynków mieszkalnych jednorodzinnych, czy też małych
obiektów biurowych.
Tab. 1. Maksymalne i minimalne odległości pomiędzy elementami systemu KNX [1]
Długość kabla
Dopuszczalne odległości
Maksymalna całkowita długość kabla
1000 m
Maksymalna odległość
między dwoma komunikującymi się urządzeniami
700 m
Maksymalna odległość między urządzeniem
(niebędącym zasilaczem) a zasilaczem
350 m
Minimalna odległość
dwóch urządzeń zasilających magistralę
200 m
Dopiero w kontekście obiektów budowlanych o znacznych powierzchniach, jak
na przykład centra handlowe, bądź całych kompleksów budynków oddalonych od
siebie, należy brać pod uwagę zarówno maksymalne, jak i minimalne odległości pomiędzy elementami systemu.
Magistrala dwużyłowa, tzw. twisted-pair, w systemie KNX musi spełniać pewne
ograniczenia związane z odległościami pomiędzy elementami systemu, przedstawione w tabeli 1. Należy pamiętać, że magistrala ta wymaga dodatkowych zasilaczy, co
wiąże się z ostatnim, przedstawionym w tabeli 1, ograniczeniem minimalnej odległości pomiędzy zasilaczami wyposażonymi w dławik. Odległość ta liczona jest według
długości przewodu magistralnego, a nie odległości między samymi urządzeniami.
Magistrala w systemie LCN nie wymaga dodatkowego zasilacza, ponieważ każde
z urządzeń ma własne zasilanie. Niemniej jednak nadal występuje ograniczenie maksymalnej długości żyły danych wynoszące 1000 m. Ograniczenie to występuje w obu
systemach i wynika z możliwości przesyłania telegramów na skończoną odległość.
3. Przedłużanie magistrali przewodowej
Dla obiektów budowlanych o znacznych powierzchniach, jak na przykład centra
handlowe, bądź całych kompleksów budynków oddalonych od siebie, dopuszczalna
odległość 1 km może okazać się zbyt mała. Twórcy systemów przewidzieli takie okoliczności i zaproponowali swoje rozwiązania problemu.
W systemie KNX jako zastępczą magistralę można wykorzystać sieć komputerową IP. Pozwala to na zastosowanie dostępnych urządzeń, takich jak przełączniki czy
routery, oraz okablowania strukturalnego. Typowa budowa systemu KNX wykorzystującego skrętkę dwuparową przedstawiona została na rysunku 5.
20
Instalacje elektryczne
Rys. 5. Hierarchiczny system połączeń magistrali z wykorzystaniem skrętki dwuparowej [4]
W takiej strukturze każda część systemu ma ścisłą budowę hierarchiczną typu
linia → obszar → system. Wszystkie urządzenia wykorzystują skrętkę dwuparową. Dodatkowo na każdym poziomie do zasilania magistrali konieczne jest zastosowanie
dodatkowych zasilaczy. Przy czym każda część systemu nadal posiada ograniczenia
opisane wcześniej.
Możliwe jest zastąpienie części systemu z magistralą KNX.TP i wykorzystać sieć
IP. W tym celu stosuje się sprzęgła KNXnet/IP jako sprzęgła obszarowe (rys. 6).
Pozwala to zdjąć ograniczenia odległościowe narzucone tradycyjnej magistrali i, wykorzystując sieć okablowania strukturalnego, rozszerzyć zasięg działania automatyki
budynkowej.
Rys. 6. System połączeń magistrali z wykorzystaniem skrętki dwuparowej oraz elementów
KNXnet/IP na poziomie obszarowym [4]
Przy takiej budowie systemu należy pamiętać, że hierarchicznie nad sprzęgłami
KNXnet/IP nie może znajdować się żadne urządzenie magistralne KNX.TP.
Można również sprzęgła te wykorzystać na poziomie linii, tak jak przedstawione to zostało na rysunku 7. W takim rozwiązaniu tylko pojedyncze linie magistralne wykonane są za pomocą skrętki dwuparowej, a reszta systemu wykorzystuje sieć
teleinformatyczną.
Nr 182–183
21
Instalacje elektryczne
Rys. 7. Wykorzystanie elementów KNXnet/IP jako sprzęgieł liniowych z pominięciem sprzęgieł
obszarowych [4]
Rys. 8. Wydłużenie pojedynczego segmentu magistrali LCN z wykorzystaniem modułów LCN-IS; każda część żyły danych D może osiągnąć długość do 1000 m [3]
W systemie LCN nie wykorzystuje się sieci internetowej (poza produktami firm
trzecich). Istnieje natomiast kilka możliwości przedłużenia długości pojedynczego
segmentu magistrali. Jedną z nich jest zastosowanie modułu galwanicznej separacji
i wzmacniacza LCN-IS (rys. 8). Moduł ten pozwala na wykorzystanie pojedynczego
odcinka żyły danych o długości do 1 km. W pojedynczym segmencie można zamon22
Instalacje elektryczne
tować maksymalnie 10 takich modułów, oddalonych od siebie o nie więcej niż 20 m
(całkowita długość magistrali dwuprzewodowej, stosowanej do łączenia LCN-IS).
Daje to łącznie możliwość stworzenia segmentu składającego się z 10 odcinków po
1000 m każdy. Należy zaznaczyć, że moduły te nie tworzą dodatkowego segmentu,
a jedynie pozwalają na wydłużenie żyły danych, która nadal traktowana jest jako pojedynczy segment.
Jeżeli konieczne jest połączenie magistralne pomiędzy dwoma budynkami
(rys. 9), to wykorzystać w tym celu można światłowód plastikowy (odległość do
100 m) lub światłowód optyczny (odległość do 2000 m).
Nie ma modułu, który w sposób bezpośredni zamieniałby telegrami z żyły D na
sygnał światłowodowy. Należy zastosować moduły LCN-IS, które zamieniają żyłę
danych D na dwuprzewodową, do której następnie dołącza się odpowiednie moduły
światłowodowe (LCN-LLK lub LCN-LLG).
Rys. 9. Wykorzystanie światłowodów do połączenia dwóch, oddalonych od siebie, budynków [3]
Możliwe jest szeregowe podłączenie kilku sprzęgów światłowodowych. Wykorzystanie tych sprzęgów nie dzieli jednak magistrali na segmenty, a jedynie przedłuża
jego zasięg.
Wykorzystując sprzęgło LCN-SK dzieli w sposób logiczny instalacje na segmenty. Długość odcinka magistrali w pojedynczym segmencie może zostać przedłużona
na kilka sposobów (rys. 10). Wykorzystane zostały dwa rodzaje sprzęgów światłowodowych: dla światłowodu plastikowego, jak i optycznego. Wykorzystanie ich w segmencie możliwe jest poprzez magistralę dwużyłową, którą tworzy się za pomocą
modułu LCN-IS. W ułożeniu gwiazdowym instalacji w pojedynczym węźle mogą
zostać połączone ze sobą maksymalnie trzy urządzenia, np. LCN-IS + LCN-LLK +
LCN-LLG.
Nr 182–183
23
Instalacje elektryczne
Rys. 10. Przedłużenie pojedynczego segmentu magistralnego LCN z wykorzystaniem konwerterów światłowodowych LCN-LLK i LCN-LLG
4. Propozycja rozwiązania komunikacji w obiektach rozległych
Na podstawie powyższych informacji przedstawiona zostanie propozycja rozwiązania komunikacji pomiędzy częścią budynków kampusu jednej z uczelni wyższych.
Na rysunku 11 zaprezentowano podział na segmenty w systemie LCN.
Rys. 11. Rozprowadzenie poszczególnych segmentów po terenie obiektu w systemie LCN: D1D25 – kolejne segmenty
24
Instalacje elektryczne
Jeden segment może obsłużyć do 250 urządzeń, jednak żaden nie jest w pełni wykorzystany. Zastosowanie większej liczby sprzęgieł, w tym wypadku 25, ma poprawić komunikację, a także umożliwić dalszą rozbudową poszczególnych segmentów.
Istotnym elementem jest pojawienie się rozdzielnicy głównej RG, w której znajdują
się wszystkie sprzęgi systemowe LCN-SK (rys. 12).
Rys. 12. Schemat części rozdzielnicy głównej RG z elementami LCN
System pracuje w sposób zdecentralizowany na poziomie połączeń logicznych
(komunikacja pomiędzy modułami). Natomiast połączenia elektryczne pomiędzy
sprzęgami LCN-SK należy wykonać w jednej rozdzielnicy. Takie rozwiązanie wynika z ograniczenia, jakim jest możliwość wykorzystania tylko jednej magistrali dwużyłowej, łączącej moduły LCN-SK, w danej instalacji.
Każdy segment instalacji, który ma być w innym budynku lub odległej części tego
samego obiektu, należy przedłużyć. W tym celu zastosowano moduł wzmacniacza
LCN-IS, do którego następnie podłączono moduł światłowodowy (LCN-LLK lub
LCN-LLG). W ten sposób zamieniono tradycyjną żyłę komunikacyjną D na światłowód. Na drugim końcu należy zamontować kolejny sprzęg światłowodowy oraz
moduł wzmacniacza, aby stworzyć żyłę danych D. Wykorzystanie światłowodu plastikowego lub optycznego uzależnione jest od faktycznej długości połączenia, liczonej wzdłuż przewodu.
Nr 182–183
25
Instalacje elektryczne
Wykonanie połączeń segmentów w jednej rozdzielnicy może wpłynąć na jej działanie w przypadku przerwy w zasilaniu. Jeżeli tak się stanie, to utracona zostanie
możliwość komunikacji pomiędzy poszczególnymi częściami budynku lub pomiędzy budynkami. Poszczególne segmenty, dopóki będą zasilone, będą mogły działać
niezależnie od siebie. Z tego powodu można rozważyć, czy zastosowanie zasilania
gwarantowanego, przynajmniej w minimalnym stopniu tylko do zasilania sprzęgieł
systemowych, nie byłoby zasadne.
Rozprowadzenie poszczególnych linii w instalacji KNX przedstawiono na rysunku 13. Ponieważ system dzieli się na linie i obszary, a nie tylko segmenty jak LCN,
zastosowano inną numerację.
Rys. 13. Rozprowadzenie poszczególnych linii po terenie obiektu w systemie KNX
Dla przykładu identyfikator 1/3 oznacza pierwszy obszar i trzecią linię, a 4/5 oznacza czwarty obszar i piątą linę. Jak pokazano na rysunkach: 6. oraz 7. topologia sieci
możliwa jest do wykonania na dwa sposoby.
W pierwszym z nich tylko linia obszarowa zbudowana jest w oparciu o sieć informatyczną. W takim rozwiązaniu połączenia pomiędzy poszczególnymi sprzęgłami
liniowymi w danym obszarze muszą być wykonane w sposób tradycyjny, na przykład
skrętką dwuparową KNX.TP. Przykładowo linie 4/1 do 4/9 powinny być w ten sposób ze sobą połączone. Ze względu na ograniczenia nałożone na skrętkę dwuparo26
Instalacje elektryczne
wą mogło toby okazać się zadaniem trudnym. Z kolei przy zastosowaniu sprzęgieł
KNXnet/IP jako sprzęgieł liniowych (rys. 7), można wszystkie przedstawione na rysunku 13 połączenia wykonać na bazie sieci informatycznej. Przy takim rozwiązaniu
należy zaznaczyć, że pojawia się w systemie większa liczba sprzęgieł liniowych.
W instalacji KNX.TP możliwe jest wykorzystanie tylko 15 linii w każdym obszarze.
Natomiast w przedstawionym układzie każdy sprzęg KNXnet/IP spełnia podwójną funkcję (rys. 14.). Zastosowany został ten sam podział, co w przypadku instalacji LCN, na ilość linii z tych samych powodów.
W tym rozwiązaniu nie występuje rozdzielnica główna, w której byłyby umieszczone wszystkie sprzęgła liniowe.
Część okablowania strukturalnego, na bazie którego jest wykonane połączenie
pomiędzy liniami, nie stanowi przedmiotu niniejszych rozważań.
Rys. 14. Wykorzystanie elementów KNXnet/IP jako sprzęgieł liniowych z zaznaczeniem ich
adresów fizycznych [4]
Schemat ideowy fragmentu połączeń przedstawiono na rysunku 15. Zastosowane sprzęgła KNXnet/IP z jednej strony połączone są do sieci teleinformatycznej,
z drugiej podłączone są tradycyjne skrętki dwuparowe KNX.TP.
Rys. 15. Schemat ideowy połączeń w systemie KNX
Nr 182–183
27
Instalacje elektryczne
Zaznaczone zostały przykładowe adresy fizyczne. Dla każdej linii obowiązują
podstawowe zasady tworzenia topologii KNX, stąd musi pojawić się przynajmniej
jeden zasilacz z dławikiem.
5. Podsumowanie
Zastosowanie systemów automatyki budynkowej w obiektach rozległych stawia
przed projektantem takiego systemu dodatkowe trudności. Oprócz zaprojektowania
elementów systemu, przeznaczonego do sterowania pracą instalacji w budynku, należy także zaplanować sposób komunikacji pomiędzy poszczególnymi częściami instalacji. Sposób komunikacji jest silnie związany z wybranym systemem automatyki
i nie można podać ogólnego rozwiązania tego problemu.
Zarówno w systemie LCN, jak i KNX możliwe jest stworzenie rozległej sieci
komunikacyjnej, umożliwiającej wykonanie automatyki nawet dla tak rozległego
terenu jaki został przedstawiony w przykładzie. Różnice w rozwiązaniu problemu
rozległej komunikacji dla tych dwóch systemów są znaczne, a stworzenie działającego systemu wymaga wiedzy z zakresu działania tych systemów.
Pewną niedogodnością przy tworzeniu projektu LCN może okazać się konieczność wykonania pojedynczej rozdzielnicy, wyposażonej we wszystkie sprzęgi systemowe.
Z kolei budowa systemu KNX w oparciu o sieć informatyczną IP będzie wiązała
się z dodatkowymi elementami infrastruktury okablowania strukturalnego, tak aby
móc wykorzystać ją jako część systemu.
6. Bibliografia
1. KNX Association, KNX Basic Course Documentation, 2009.
2. LCN, Katalog produktów, 2009/2010.
3. LCN, Inteligentne Instalacje Elektryczne, 2010.
4. Langels H.J., KNX IP – using IP networks as KNX medium, KNX Scientific
Conference, 2010.
Dane mapy dostępne są na licencji Open Database License http://www.openstreetmap.
org/copyright
Tekst artykułu prezentowano w postaci referatu
na XVII Sympozjum Oddziału Poznańskiego SEP,
które odbyło się w Poznaniu 19–20 listopada 2014 r.
28

Podobne dokumenty