Know-how bomby atomowej

Transkrypt

Know-how bomby atomowej
Know-how bomby atomowej
(wtorek, 22 marzec 2005) - Dodał wtorek
2 sierpnia 1939, na krótko przed wybuchem II wojny światowej, Albert Einstein napisał list do
ówczesnego prezydenta USA, Franklina D. Roosvelta, w którym wraz z kilku innymi naukowcami
zawiadomił Roosvelta o podjętych w Hitlerowskich Niemczech pracach nad otrzymaniem wzbogaconego U235, mogącego posłużyć do zbudowania bomby atomowej.
Wkrótce potem rząd Stanów Zjednoczonych podjął wielkie przedsięwzięcie, znane pod nazwą Projektu
Manhattan. Celem Projektu Manhattan było przeprowadzenie koniecznych badań i wyprodukowanie
nadającej się do praktycznego użycia bomby atomowej.
Najbardziej skomplikowanym zadaniem, z którym trzeba było się uporać, było wyprodukowanie
wystarczającej ilości "wzbogaconego" uranu, zdolnego do podtrzymania reakcji łańcuchowej.
W Oak Ridge w stanie Tennessee zbudowano ogromne laboratorium-fabrykę wzbogacania uranu.
W przeciągu sześciu lat od 1939 do 1945 na Projekt Manhattan wydano ponad 2 miliardy dolarów.
Metody wzbogacania uranu i konstrukcji bomby atomowej zostały zaprojektowane i pomyślnie
wprowadzone do praktycznego zastosowania przez kilka najtęższych umysłów naszej epoki. Pośród tych,
którzy rozpętali potęgę bomby atomowej był J. Robert Oppenheimer.
Był on głównym motorem Projektu Manhattan. Dbał o to, by wszystkie biorące w nim udział wielkie
umysły pracowały na najwyższych obrotach. Nadzorował całe to przedsięwzięcie od początku do końca.
W końcu nadszedł dzień, w którym wszyscy w Los Alamos mogli sprawdzić, czy The Gadget (tak w trakcie
prac nazywano bombę) będzie największym niewypałem stulecia, czy doprowadzi do zakończenia wojny.
To rozstrzygające wydarzenie miało miejsce pewnego letniego poranka 1945.
O godzinie 5:29:45 (Mountain Time War) 16 lipca 1945 ponad zagłębieniem w górach Jemez w północnej
części stanu Nowy Meksyk na nocnym niebie ukazał się biały rozbłysk. The Gadget (kodowa nazwa
bomby) zapoczątkował Wiek Atomu. Światło eksplozji zmieniło barwę na pomarańczową, a atomowa
ognista kula zaczęła unosić się w górę z szybkością 100 m/s, czerwieniejąc i pulsując w miarę jak stygła.
Charakterystyczna chmura w kształcie grzyba z radioaktywnych par zaczęła się formować na wysokości 9
tys. m. Wszystko co pozostało w miejscu eksplozji na ziemi poniżej chmury było jakby zielonym,
radioaktywnym szkłem. Spowodowało to wydzielenie ogromnych ilości energii cieplnej przez tę reakcję.
Jaskrawe światło eksplozji przeszyło niebo przedświtu z takim natężeniem, że mieszkańcy oddalonych
sąsiednich miejscowości mogliby przysiąc, że Słońce tego dnia wzeszło dwukrotnie. Pewna niewidoma
dziewczynka zobaczyła błysk z odłegłości około 200 km. Pośród obserwujących eksplozję ludzi, którzy byli
jej twórcami, reakcje były różne. Isidor Rabi odczuł to jako naruszenie równowagi wszechświata - jak
gdyby ludzkość zagroziła światu, który zamieszkuje. Robert Oppenheimer, chociaż bardzo zadowolony z
powodzenia projektu, zacytował zapamiętany fragment Bhagvad Gita, "Stałem się śmiercią", powiedział
"niszczycielem światów". Ken Bainbridge rzekł:"teraz wszyscy jesteśmy sukinsynami". Kilku uczestników
testu, wkrótce po zobaczeniu jego wyników, podpisało petycję przeciwko uwolnieniu potwora, którego
sami stworzyli, ale nie doczekali się reakcji na nią. Jak się wkrótce okazało, na nieszczęście dla ludzkości,
Jornada del Muerto w Nowym Meksyku nie było jedynym miejscem na naszej planecie, które
doświadczyło skutków eksplozji jądrowej. Jak powszechnie wiadomo, bomba atomowa została użyta w
wojnie tylko (aż?) dwukrotnie.
Głównym miejscem wybuchu atomowego była Hiroszima. 6 sierpnia 1945 roku na Hiroszimę została
zrzucona ważąca ponad 4,5 tony bomba uranowa o nazwie "Little Boy". Punktem docelowym bomby był
most na rzece Aioi, jeden z 81 mostów łączących brzegi jednego z siedmiu ramion delty rzeki Ota.
Poziom zerowy został wyznaczony na wysokość 600 m. Bomba została zrzucona z bombowca B-29
Superfortress o nazwie Enola Gay. Minęła cel zaledwie o 240 m. O godzinie 08:16 w jednej chwili
eksplozja jądrowa o sile dziesięciu kiloton*) zabiła 66000 ludzi, a 69000 zostało rannych. Obszar
zupełnego odparowania w podmuchu mierzył 800 m średnicy. Poważnym zniszczeniom od podmuchu
uległo wszystko na obszarze o średnicy 3,2 km, a w obrębie 4 km wszystko zostało spalone. Pozostały
obszar rażenia, rozciągający się do średnicy ponad 5 km pokrywały znaczne zniszczenia.
http://atomowe.pl - Elektrownie atomowe
Powered by Mambo
Utworzono: 2 March, 2017, 17:50
Zobacz archiwalny film o Hiroszimie i Nagasaki! (bomba.rar - 1.21MB, czas trwania: 18s, typ: asf).
9 sierpnia Nagasaki zostały potraktowane w taki sam sposób jak Hiroszima. Tym razem na miasto została
zrzucona bomba plutonowa o nazwie "Fat Man". Pomimo, że "Fat Man" zboczył o ponad 2 km, to i tak
zrównał z ziemią niemal pół miasta. Ludność Nagasaki zmniejszyła się w ułamku sekundy z 422000 do
383000. 39 tys. zostało zabitych, a ponad 25000 rannych. Ten wybuch również miał siłę poniżej 10 kt *).
Fizycy, którzy badali skutki każdej z tych eksplozji, oceniają, że w tych bombach został wykorzystany
tylko promil (0,1%) ich zdolności wybuchowej(!!!). Chociaż sama bomba jest wystarczająco
śmiercionośna, to jej siła niszcząca nie kończy się na eksplozji. Dodatkowe zagrożenie powoduje opad
radioaktywny. Deszcz następujący po każdym wybuchu niesie radioaktywne cząstki. Wielu z ludzi, którzy
przeżyli eksplozję w Hiroszimie i Nagasaki, zmarło potem z powodu promieniowania, któremu zostali
poddani. Wybuchy atomowe mają także ukryte śmiercionośne skutki, przez wpływ na potomków tych,
którzy przeżyli. Białaczka należy do najczęstszych chorób, które są przekazywane potomstwu przez
pozostałych przy życiu.
Główny powód stosowania bomb atomowych jest oczywisty, ale jest jeszcze brane pod uwagę wiele
skutków ubocznych ich użycia. Za pomocą EMP (impulsu elektromagnetycznego) jednej mnałej bomby
jądrowej może zostać unieruchomiona cała infrastruktura (łączność, komunikacja, urządzenia) na dużej
powierzchni. Takie eksplozje na dużej wysokości nie są bardzo śmiercionośne, ale wytwarzają tak silny
EMP, że wszystkie urządzenia elektroniczne w promieniu 80 km, poczynając od miedzianych przewodów a
kończąc na komputerach zostają zniszczone. Swego czasu, w początkach istnienia broni atomowej,
modne było przekonanie, iż bomby atomowe posłużą kiedyś do prac minerskich, np. w rodzaju Kanału
Panamskiego. Nie trzeba przypominać, że na szczęście dla środowiska naturalnego nikt nie zrealizował
tego idiotycznego pomysłu. Zamiast tego rozrosły się arsenały broni jądrowych. Próby jądrowe na Atolu
Bikini i w różnych miejscach naszego globu stały się powszechne aż do wprowadzenia w życie Traktatu o
Zakazie Prób Jądrowych. Fotografie poligonów prób jądrowych są dostępne na podstwie Aktu o Wolności
Informacji. Rozszczepienie jądra - synteza jądra
Przy użyciu U-235 można dokonać dwóch rodzajów eksplozji jądrowych, rozszczepienia i syntezy.
Rozszczepienie jest to reakcja jądrowa, w której jądro atomowe dzieli się na dwa fragmenty, zazwyczaj o
porównywalnej masie, z równoczesnym uwolnieniem od stu do kilkuset milionów elektronowoltów energii.
W bombie jądrowej energia ta jest wydzielana w postaci gwałtownego wybuchu. Reakcja syntezy musi
zostać zapoczątkowana przez reakcję rozszczepienia, ale w przeciwieństwie do bomby rozszczepieniowej,
energia bomby syntezy (wodorowej) wydziela się z syntezy jąder różnych izotopów wodoru w jądro helu.
W niniejszym tekście omawiana jest wyłącznie bomba atomowa, przeto pozostałe aspekty bomby
wodorowej zostaną pozostawione na boku.
Ogromna energia bomby atomowej bierze się z sił spajających atom. Są to siły pokrewne siłom
magnetycznym, ale ich charakter jest inny.
Atomy składają się z trzech cząstek elementarnych. Związane ze sobą protony i neutrony tworzą jądro
(centrum masy) atomu, a elektrony obiegają orbity wokół jądra jak planety wokół słońca. Od tych
cząstek zależy stabilność atomu.
Atomy większości pierwiastków naturalnych dają się rozszczepić wyłącznie w akceleratorach przez
bombardowanie cząstkami. Jedynym naturalnym pierwiastkiem, którego jądra atomowe dają się w
praktycznych warunkach stosunkowo łatwo rozszczepić jest metal, uran. Jądra uranu są niezwykle duże,
trudno im więc utrzymywać się mocno w całości. Jest to przyczyną wyjątkowej podatności uranu na
rozszczepienie.
Istnieją dwa izotopy uranu. Uran naturalny składa się w większości z izotopu U-238, którego jądro
zawiera 92 protony i 146 neutronów (92 + 146 = 238). Oprócz niego zawiera on jeszcze 0,6% U-235,
którego jądro zawiera tylko 143 neutrony. W przeciwieństwie do U-238 jądra tego izotopu dają się
rozszczepiać, nazywa się go zatem "rozszczepialnym" i nadaje się on do wytwarzania bomb atomowych.
U-238 jest bogaty w neutrony i raczej odbija neutrony, zamiast je pochłaniać jak U-235. (U-238 nie
bierze żadnego udziału w reakcji rozszczepienia, ale dzięki swoim własnościom odbijania neutronów jest
http://atomowe.pl - Elektrownie atomowe
Powered by Mambo
Utworzono: 2 March, 2017, 17:50
doskonałym ekranem dla U-235 w bombie.) Pozwala to zapobiegać przypadkowej reakcji łańcuchowej w
bombie pomiędzy większą masą U-235 a jej mniejszym "pociskiem".
Oba naturalne izotopy uranu są radioaktywne. Ich wielkie atomy rozpadają się z upływem czasu. W ciągu
bardzo długiego czasu znaczna część atomów uranu zmieni się w ołów (połowa przez 5 miliardów lat).
Jednak przemiany te można przyspieszyć. Taki proces nazywa się reakcją łańcuchową. Zamiast
powolnego rozpadu, neutrony przenikające do jąder wymuszają przyspieszone ich rozszczepienie. Jądro
U-235 jest na tyle niestabilne, że jeden neutron powoduje jego rozszczepienie, wywołujące reakcję
łańcuchową. Może ona się zdarzyć gdy masa jest bliska krytycznej. W trakcie reakcji łańcuchowej jądra
uranu rozszczepiają się na dwa mniejsze jądra różnych pierwiastków, jak na przykład baru i kryptonu.
Gdy jądro U-235 rozszczepia się, zostaje wydzielona energia w formie ciepła i promieniowania gamma,
najbardziej przenikliwego i śmiercionośnego promieniowania radioaktywnego. W trakcie tej reakcji,
rozszczepiane jądro emituje jeszcze dwa lub trzy ze swoich "nadmiarowych" neutronów, nie potrzebnych
w powstających jądrach baru i kryptonu. Są one wyrzucane z energią na tyle dużą, aby spowodować
rozszczepienie następnych napotkanych atomów, które z kolei wywołają następne rozszczepienia itd.
Odbywa się to nie arytmetycznie, ale geometrycznie. A wszystko dzieje się w milionowej części sekundy.
Minimalna ilość pierwiastka rozszczepialnego, potrzebna do rozwinięcia się opisanej reakcji łańcuchowej,
jest znana pod nazwą masy krytycznej. Masa ta zależy od czystości materiału. Dla czystego U-235
wynosi otia 110 funtów (50 kg), ale uran nigdy nie jest całkowicie czysty, w praktyce więc jest ona
większa. Mechanizmy bomby
Wysokościomierz
W zwykłym wysokościomierzu lotniczym stosuje się aneroid barometryczny, który mierzy zmiany od
wysokości ciśnienia. Jednakże wpływ pogody na ciśnienie zwiększa błąd odczytu wysokości. Do
wyznaczania pozomu zerowego bomby wygodniejszy w użyciu jest wysokościomierz radarowy lub
radiowy.
Wysokościomierz z falą ciągłą o modulowanej częstotliwości (FM CW) jest bardziej skomplikowany,
znacznie jednak przewyższa inne rodzaje wysokościomierzy. Jak w zwykłych systemach inmpulsowych,
sygnały emitowane przez antenę radarową bomby po odbiciu się od ziemi zostają odebrane przez
wysokościomierz. Systemy impulsowe są stosowane w bardziej zaawansowanych wysokościomierzach,
tylko sygnał jest ciągły o wysokiej częstotliwości około 4200 MHz. Częstotliwość ta jest stopniowio
zwiększana co 200 MHz, po czym spada do wielkości początkowej.
Gdy bomba zaczyna się obniżać, nadajnik wysokościomierza wysyła impuls, zaczynając od częstotliwości
4200 MHz. W momencie powrotu odbitego impulsu nadajnik wysokościomierza nadaje już na wyższej
częstotliwości. Różnica zależy od drogi przebytej przez sygnał. Gdy te dwie częstotliwości zostaną
elektronicznie "zmieszane" pojawi się nowa częstotliwość, będąca ich różnicą. Zostaje ona zmierzona, jest
bowiem wprost proporcjonalna do drogi przebytej przez impuls jest miarą aktualnej wysokości.
W praktyce typowy obecnie radar dokonuje 120 pomiarów na sekundę. Jego zasięg wynosi do 3000 m
nad lądem i do 6000 m nad morzem, ponieważ odbicie od powierzchni wody jest wyraźniejsze.
Dokładność tych wysokościomierzy wynosi przy większych wysokościach około 1,5 m. Za optymalną
wysokość eksplozji bomb atomowych często uważa się 600 m, więc błąd ten nie ma praktycznie żadnego
znaczenia. Duży koszt takich wysokościomierzy utrudnia ich użycie w zwykłych zastosowaniach, jednak wobec stale
malejących cen podzespołów elektronicznych niedługo będą konkurować z barometrycznymi. Detonator cisnieniowy
Detonator czuły na ciśnienie powietrza może być mechanizmem bardzo skomplikowanym, ale do celów
praktycznych stosuję się najczęściej prostszy rodzaj. Ciśnienie powietrza na dużych wysokościach jest
niższe. W miarę zmniejszania się ciśnienie powietrza wzrasta. Jako detonator ciśnieniowy może zostać
bardzo cienki skrawek namagnesowanego metalu. W środku tego paska musi zostać wprasowany
wzgórek z bardzo cienkiego metalu, a środek powinien być umieszczony bezpośrednio pod stykiem
elektrycznym, który wyzwoli eksplozję materiału wybuchowego klasycznego. Przed wmontowaniem paska
trzeba go wepchnąć tak, by się odwrócił. Gdy ciśnienie powietrza osiągnie wymagany poziom, wzgórek
przeskoczy na swoje początkowe położenie, zewrze styki i zainicjuje wybuch. Głowica detonacyjna
http://atomowe.pl - Elektrownie atomowe
Powered by Mambo
Utworzono: 2 March, 2017, 17:50
Głowica detonacyjna (lub głowice), umieszczona w konwencjonalnym materiale wybuchowym jest
podobna do zwyczajnej spłonki. Służy po prostu jako katalizator głównego wybuchu. Bardzo ważna jest
kalibracja tego urządzenia. Za mała głowica detonacyjna może stać się przyczyną kolosalnego niewypału,
który może być podwójnie niebiezpieczny, ktoś bowiem mógłby bombę rozbroić i wyposażyć w inną
głowicę detonacyjną. Dodatkowym zmartwieniem jest też świadomość, że ładunek konwencjonalny może
wybuchnąć z siłą zbyt małą do zespolenia materiału rozszczepialnego, co mogłoby utworzyć masę bliską
krytycznej, mogącą w każdej chwili eksplodować. Głowica detonacyjna otrzyma impuls elektryczny z
detonatora ciśnieniowego lub z wysokościomierza radarowego, zależnie od użytego typu. Francuska firma
Du Pont produkuje doskonałe spłonki, które dadzą się łatwo modyfikować w zależności od potrzeb. Konwencjonalne ładunki wybuchowe
Ładunek ten jest potrzebny do wstrzelenia (i zespolenia) wewnątrz obudowy bomby mniejszej części
uranu z częścią większą. Ciśnienie potrzebne do tego nie jest znane i prawdopodobnie uznane jest przez
rząd Stanów Zjednoczonych jako tajne ze względu na bezpieczeństwo narodowe.
Do tego celu najlepiej nadaje się plastyczny materiał wybuchowy, można bowiem go dowolnie
kształtować, zależnie od potrzeby do bomby uranowej lub plutonowej.
Reflektor neutronów
Reflektor neutronów składa się z czystego U-238. Jest nie tylko nierozszczepialny, ale ma właściwość
zawracania neutronów z powrotem. Wykonany z U-238 reflektor neutronów służy do dwóch celów. W
bombie uranowej służy on jako dodatkowe zabezpieczenie przed powstaniem masy nadkrytycznej z
dwóch oddzielnych części U-235. W bombie plutonowej reflektor zmniejsza straty neutronów w
segmentach plutonu przez zawracanie ich w stronę centralnej części urządzenia.
Uran i pluton
Wydzielenie U-235 jest bardzo trudne. Z każdych 25.000 ton wydobytej rudy uzyskuje się tylko 50 ton
metalicznego uranu, z czego 99,3 % stanowi U-238, nie nadający się do eksplozji jądrowych. Co gorsza,
do separacji tych dwóch izotopów nie nadaje się żadna chemiczna metoda ekstrakcji, ich właściwości
chemiczne są bowiem identyczne. W praktyce do rozdzielenia ich nadają się jedynie metody mechaniczne.
U-235 jest odrobinę lżejszy od U-238. Do ich wstępnej separacji jest stosowany system dyfuzji gazowej.
W tym systemie uran jest wiązany z fluorem, tworząc gazowy sześciofluorek uranu. Gaz ten jest
następnie za pomocą niskociśnieniowych pomp przeciskany przez szereg niezmiernie subtelnych
porowatych przepon. Atomy U-235 są lżejsze, więc ich migracja jest szybsza niż atomów U-238. W
rezultacie po przejściu przez każdą kolejną przeponę zawartość U-235 w gazie jest większa. Po
sforsowaniu wielu tysięcy przepon otrzymuje się stosunkowo dużą zawartość U-235, 2% dla paliwa
reaktorowego, a dalsza rafinacja mogłaby doprowadzić do zawartości 95 % nadającego się w użytku do
bomby atomowej. Dalsze wzbogacanie uranu odbywa się metodą separacji magnetycznej. Polega ona na
przepuszczeniu przez słaby elektromagnes naładowanego gazowego czterochlorku uranu. Oddziaływanie
magnetyczne jest słabsze na lżejsze cząsteczki z U-235, więc są one stopniowo wydzielane z
przepływającego strumienia gazu.
Po dwóch pierwszych stosuje się trzeci proces wzbogacania w wirówkach gazowych, w których do
separacji cząsteczek o różnej masie służy siła odśrodkowa.
Po zakończeniu separacji pozostaje tylko właściwe ukształtowanie segmentów uranu i umieszczenie ich w
głowicy w sposób umożliwiający zainicjowanie eksplozji jądrowej. Krytyczna masa czystego U-235 wynosi
110 funtów - 50 kg.
Zależnie od użytych procesów wzbogacania U-235, rodzaju mechanizmów detonacyjnych i wysokości, na
której następuje wybuch, siła wybuchowa bomby atomowej może wynieść od 1 kt do 20 Mt *), mocy
najmniejszych ze strategicznych głowic, jakie obecnie istnieją. Jeden z atomowych okrętów podwodnych
klasy Trident jest wyposażony w siły niszczące odpowiadające 25 drugim wojnom światowym.
Uran jest idealnym materiałem rozszczepialnym, nie jest jednak jedynym. W bombie atomowej można
również użyć plutonu. Umieszczony przez dłuższy czas w reaktorze jądrowym U-238 pochłania neutrony i
stopniowo przekształca się w pluton. Pluton jest rozszczepialny, choć nie tak łatwo ja U-235. Uran daje
się zdetonować jak proste urządzenie z dwóch wstrzeliwanych do siebien części, ale pluton, ułożony w
formie bardziej złożonej, 32-częściowej komory implozyjnej, trzeba detonować silniejszym
konwencjonalnym materiałem wybuchowym, o większej szybkości reagowania. Zaś mechanizm
http://atomowe.pl - Elektrownie atomowe
Powered by Mambo
Utworzono: 2 March, 2017, 17:50
detonujący ten materiał musi zapewniać równoczesność zapłonu wszystkich jego fragmentów. Oprócz tej
detonacji potrzebna jest jeszcze czysta mieszanina polonu z berylem.
Krytyczna masa plutonu wynosi 16 kg. W przypadku otoczenia plutonu reflektorem z U-238 masa ta
wynosi 10 kg.
Zobacz też w słowniku - uran pluton. Detonator uranu
Składa się z dwóch części. Większa ma kształt kulisty z wnęką. Kształt mniejszej odpowiada kształtowi
wnęki. Zdetonowanie ładunku konwencjonalnego powoduje gwałtownego wbicie mniejszej masy w
większa i ich zespolenie. Zostaje przekroczona masa krytyczna i w ciągu jednej milionowej sekundy
rozwija się reakcja łańcuchowa rozszczepiania.
Detonator plutonu
Składa się z 32 oddzielnych segmentów, razem tworzących wydrążoną kulę, obejmująca mieszaninę
plonu z berylem. Kształty i masa wszystkich segmentów muszą być jednakowe. Kształt detonatora
przypomina piłkę. Detonacja materiału konwencjonalnego musi doprowadzić do jednoczesnego scalenia
wszystkich 32 sekcji z mieszaniną polonu z berylem w przeciągu jednej dziesięciomilionowej części
sekundy. Osłona ołowiana
Jedynym zadaniem osłony ołowianej jest ochrona mechanizmów bomby przed radioaktywnościa ładunku.
Gęstość strumienia neutronów ładunku wystarcza do wywoływania zwarć wewnętrznych obwodów
elektronicznych i spowodowania przedwczesnego przypadkowego wybuchu.
*) kt - kilotona TNT - kilotona trotylu = ~1012kalorii = ~4,186*1012J
Mt - megatona TNT
http://atomowe.pl - Elektrownie atomowe
Powered by Mambo
Utworzono: 2 March, 2017, 17:50

Podobne dokumenty