Zapisz jako PDF

Transkrypt

Zapisz jako PDF
Między zjawiskiem dyfrakcji a interferencji nie ma zasadniczej różnicy; przyjęto historycznie że
zmiany natężenia powstające w wyniku superpozycji fal wytwarzanych przez skończoną liczbę
dyskretnych spójnych źródeł nazywamy interferencja, a przez spójne źródła rozłożone w sposób
ciągły przyjęto nazywać dyfrakcją. Ogólnie możemy powiedzieć, że dyfrakcja to zespół zjawisk
powstających podczas rozchodzenia się fal w ośrodku z ostrymi niejednorodnościami — jeżeli fala
napotyka na swej drodze przeszkodę, to ta część fali, która przechodzi za przeszkodę będzie stawać
się źródłem nowych fal kulistych (zasada Huygensa) czyli ulegać ugięciu (dyfrakcji). W każdym
punkcie poza przeszkodą występuje superpozycja tych fal parcjalnych uwzględniająca amplitudę i
fazę fal. W zależności od wielkości przeszkody a w porównaniu z odległością od niej obserwatora r
oraz długości fali do opisu zjawiska dyfrakcji stosujemy różne przybliżenia. Jeśli parametr
, to możemy stosować opis w ramach optyki geometrycznej. Jeśli z kolei
, to
stosujemy przybliżenie Fraunhofera, czyli fali płaskiej — zakładamy, że promienie fal ugiętych są
równoległe. Przypadek
nosi nazwę dyfrakcji Fresnela, przeszkoda i obserwator są na
tyle blisko, że zakrzywienie powierzchni falowej musi być brane pod uwagę. W przypadku, gdy
rozpatrujemy zjawisko dyfrakcji dla obserwatora tuż przy przeszkodzie stosowane jest tzw.
przybliżenie Kirchoffa.
Nasze rozważanie zaczniemy od opisu w ramach przybliżenia Fraunhofera. Załóżmy, że obszar
rozpraszający ma powierzchnię , natomiast
jest funkcją uwzględniająca amplitudę i fazę fali
padającej oraz własności obiektu rozpraszającego, oraz
odpowiednio współrzędne opisujące
obiekt rozpraszający i współrzędne opisujące punkt obserwacji (patrz rysunek Figure 1).
Obiekt rozpraszający.
Funkcja falowa będąca superpozycją fal parcjalnych rozproszonych na obiekcie wyraża się wzorem:
.
Zakładamy następnie, że na obiekt rozpraszający pada fala płaska oraz stosujemy przybliżenie
Fraunhofera, czyli przyjmujemy dla wykładnika eksponensu:
mianownika:
.
jest wersorem w kierunku obserwatora. Wówczas otrzymujemy:
, natomiast dla
.
Jeśli ponadto, obiekt rozpraszający jest płaski i fala płaska o amplitudzie A0 pada prostopadle na
obiekt, to powyższy wzór upraszcza się do postaci:
.
Korzystając z otrzymanych wzorów znajdźmy obraz dyfrakcyjny — rozkład natężenia, w płaszczyźnie
symetralnej płaszczyzny dla szczeliny prostokątnej o wymiarach:
(patrz rysunek Figure 2).
Dyfrakcja na płaskiej
prostokątnej szczelinie.
Dla tego przypadku:
,
a stąd:
.
Ostatecznie rozkład natężenia w płaszczyźnie symetralnej wynosi:
,
gdzie przyjęto oznaczenie:
.
Na rysunku Figure 3 pokazano obraz dyfrakcyjny pojedynczej szczeliny. Z otrzymanego wzoru
wynika, że na osi układu powstaje maksimum główne. Kolejne maksima maja znacznie mniejsze
natężenie. Szerokość maksimum głównego silnie zależy od stosunku szerokości szczeliny do długości
fali, im szerokość szczeliny większa tym maksimum główne jest węższe. Minima natężenia powstają
dla katów spełniających warunek:
, (m jest liczbą całkowitą) natomiast kąty dla których
obserwujemy maksima boczne wyznaczamy z równania uwikłanego:
. Analogiczne rachunki
możemy wykonać dla dwóch szczelin o szerokości a i odległych od siebie o d. W takim przypadku
wartość całki wynosi:
,
a stąd rozkład natężenia:
, gdzie przyjęto oznaczenia:
.
Obraz dyfrakcyjny
pojedynczej szczeliny.
Otrzymaliśmy obraz dyfrakcyjny, który jest splotem (iloczynem) rozkładu natężenia od pojedynczej
szczeliny (dyfrakcji na pojedynczej szczelinie) oraz rozkładu natężenia związanego z interferencją fal
z dwóch źródeł, co pokazano na rysunku Figure 4.
Podobny wynik otrzymujemy dla N szczelin (czyli tzw. siatki dyfrakcyjnej), rozkład natężenia jest
iloczynem czynnika dyfrakcyjnego od pojedynczej szczeliny i czynnika interferencyjnego od N źródeł
(patrz rysunek Figure 5 i Figure 6):
.
Dla dużej liczby N, boczne minima są bardzo małe i praktycznie obserwowane są tylko maksima
główne, których położenie określa warunek:
(m jest liczbą całkowitą
nazywaną rzędem).
Dla siatki dyfrakcyjnej szerokość linii (maksimów głównych) opisana jest wyrażeniem:
. Wprowadza się też następujące wielkości charakteryzujące siatkę:
dyspersję:
,
oraz chromatyczną zdolność rozdzielczą:
.
Zdolność rozdzielcza jest tym wyższa im więcej jest szczelin (N) i im wyższy rząd obserwujemy. W
życiu codziennym przykładem siatki dyfrakcyjnej są płyty CD i DVD. Efekty o których pisaliśmy wyżej
możemy zaobserwować używając płyt i światła laserowego lub światła białego.
Obraz dyfrakcyjny dwóch
szczelin.
Siatka dyfrakcyjna.
Obraz dyfrakcyjny siatki
dyfrakcyjnej.
W przypadku szczelin kołowych jakościowo otrzymujemy podobne obrazy dyfrakcyjne, w przybliżeniu
Fraunhofera występuje zawsze maksimów centralne (patrz rysunek Figure 7). Widoczne pierścienie
nazywamy pierścieniami Airy’ego.
Schematycznie
przedstawiony obraz
dyfrakcyjny szczeliny
kołowej.
Położenie kolejnych minimów (ciemnych prążków) określone są warunkami:
.
Różne obiekty zostaną rozróżnione gdy maksimum dyfrakcyjne drugiego obiektu wypada w minimum
dyfrakcyjnym pierwszego (lub dla większego kąta), co narzuca warunek na minimalną różnicę kątów,
żeby dwa obiekty mogły być rozróżnione:
, gdzie D jest średnicą otworu kołowego.
Warunek ten nosi nazwę kryterium Rayleigha. Dla ludzkiego oka: .
.
Teraz przejdziemy do dyfrakcji na krawędzi ostrej powierzchni, np. żyletki. Obraz dyfrakcyjny
pokazano na rysunku Figure 8, a schemat i przyjęte oznaczenia eksperymentu przedstawiono na
rysunku Figure 9.
Obraz dyfrakcyjny
otrzymany na krawędzi
żyletki.
Dyfrakcja na ostrej
krawędzi.
W tym przypadku nie można zastosować przybliżenia Fraunhofera. Zakładając dyfrakcję dla małych
kątów oraz w obszarze ,math>z\gg x, x’, y’</math> stosujemy następujące przybliżenia:
w wykładniku eksponensu funkcji falowej:
.
Natomiast w mianowniku:
.
Stąd otrzymujemy wyrażenie na funkcję falową:
.
Wynik całkowania wyraża się za pomocą całek Fresnela zdefiniowanych:
.
Ostatecznie obserwowane natężenie światła ugiętego na krawędzi wyraża się wzorem:
.
Z własności całek Fresnela wynika:
to
.
Wykres zależności natężenia światła ugiętego na krawędzi przedstawiono na rysunku Figure 10
Przedstawiony opis teoretyczny bardzo dobrze odtwarza wyniki doświadczalne.
Obraz dyfrakcyjny
uzyskany na pojedynczej
krawędzi.
Powróćmy do problemu dyfrakcji na otworze kołowym, ale tym razem w przybliżeniu Fresnela i
poszukajmy natężenia fali ugiętej na osi układu. W przybliżeniu Fraunhofera otrzymujemy zawsze
maksimum centralne na osi układu. Na rysunku Figure 11 pokazano schemat szczeliny kołowej.
Zgodnie z oznaczeniami z rysunku stosujemy przybliżenie:
.
Po scałkowaniu otrzymujemy następujący wynik na funkcje falową:
.
Zwróćmy uwagę, że wynik ten jest bardzo „interesujący” dla:
.
gdzie m jest liczbą całkowitą.
Dyfrakcja Fresnela na
otworze kołowym.
Jeśli m jest nieparzyste to na osi, w środku obrazu otrzymujemy maksimum natężenia światła, a więc
podobnie jak dla dyfrakcji w przybliżeniu Fraunhofera. Jednak gdy m jest nieparzyste zaobserwujemy
w centrum natężenie zero, a więc ciemną plamkę. Efekt ten został po raz pierwszy pokazany i
opisany przez Fresnela. Ciemną plamkę na środku możemy zaobserwować przesuwając ekran
(zmieniając wartość L) lub zmieniając promień otworu R. Jeśli np. ustalimy L i będziemy zwiększać
stopniowo R, to najpierw dla bardzo małych wartości promienia otworu do obserwatora będą
dochodzić fale praktycznie w fazie aż promienie osiągnie wartość:
. Dla
większych R fale ze środka wygaszają się z falami z brzegu otworu, natężenie maleje do zera gdy:
. Gdy R rośnie pojawia się „nowa porcja” fal „nie wygaszonych” i natężenie
rośnie, aż:
, itd.
Na zakończenie rozważań dotyczących fal zwróćmy uwagę, że omawialiśmy fale mechaniczne, fale
na wodzie oraz fale elektromagnetyczne. Własności falowe wykazują również cząstki materialne,
mówimy wówczas o tzw. falach materii. Przykładem takich własności jest dyfrakcja elektronów
wykorzystywana w mikroskopie elektronowym. Każdej poruszającej się cząsteczce możemy przypisać
długość fali, zwanej długością fali De Broglie’a zgodnie ze wzorem:
.
gdzie h jest stałą Plancka, a p pędem cząstki. Zjawisko dyfrakcji elektronów po raz pierwszy
zaobserwowali C. Davisson i L. Germer w roku 1927. Elektrony były rozpędzane za pomocą napięcia
i rozpraszane na krysztale o stałej sieci
. Maksimum dyfrakcyjne
zaobserwowano pod kątem
. Korzystając ze wzoru na długość fali oraz z warunku na
interferencje konstruktywną
znajdujemy długość fali De Broglie’a dla elektronów:
.

Podobne dokumenty