Wyznaczenie wysokości zorzy polarnej na

Komentarze

Transkrypt

Wyznaczenie wysokości zorzy polarnej na
Ćwiczenie edukacyjne 3.
Obliczanie wysokości formowania się zorzy polarnych
wykonane przez
Mr. Juan Carlos Casado. Fotograf ciał niebieskich tierrayestrellas.com, Barcelona.
Dr. Miquel Serra-Ricart. Astronom Instituto de Astrofísica de Canarias, Tenerife.
Mr. Miguel Ángel Pio, Astronom Instituto de Astrofísica de Canarias, Tenerife.
1 – Cele zadania
•
Poprzez to zadanie nauczymy się obliczać wysokości formowania się zorzy polarnych ze
zdjęć, wykonanych techniką cyfrową.
Cele które chcemy osiągnąć to:
•
•
•
•
Zastosować metodę naukową do wyznaczenia fizycznego parametru
(wysokości nad powierzchnią Ziemi) na podstawie cyfrowych obrazów
nieba, jako techniki stosowanej w nauczaniu, filmach dokumentalnych
oraz badaniach naukowych.
Zastosowanie trygonometrii oraz podstawowej fizyki atomowej.
Zrozumienie oraz zastosowanie podstawowych technik analitycznych ,
stosowanych w analizie obrazów (skali kątowej, wysokości gwiazd , ...).
Budowa zespołu, w którym doceniany jest indywidualny wkład, oraz w
którym rządzą demokratyczne zasady.
2 – Instrumentacja.
Zadanie będzie oparte an cyfrowych obrazach uzyskanych w Grenlandii (Dania) w sierpniu
2012.
3 – Zjawiska.
Zorze Polarne są jednym z najwspanialszych naturalnych spektakli, które mogą być
obserwowane na Ziemi. W tym zadaniu zajmiemy się odpowiedziami na pytania czym są zorze,
jak powstają i gdzie mogą być obserwowane.Pokażemy także dwie metody obliczania lub
oszacowania wysokości na której się formują.
3.1.- Czym są zorze polarne.
Zorze polarna jest zjawiskiem poświaty w nocy na niebie, widocznym na wysokich
szerokościach geograficznych ( Arktyka oraz Antarktyda). Czasami, na krótko, może pojawiać się
także na niższych szerokościach.
Rycina 1 : Zorza polarna sfotografowana ze stacji Amundsen-Scott położonej na geograficznym
Biegunie Południowym, 14 lipca, 2011 przez Roberta Schwarz.
Na półkuli północnej zorza znana jest pod nazwą Aurora Borealis (określenie
pochodzące od francuskiego filozofa i naukowca Pierre Gassendi w 1621r ) lub
popularnie "Zorza polarna ". Na półkuli południowej występuje Aurora Australis, która
jest tym samym zjawiskiem co zorza na półkuli północnej. Zorza polarna ( Aurora
Australis ) jest głównie widoczna na Antarktydzie (Rycina 1), chociaż można ją również
obserwować na obszarach południowej Australii i Ameryki Południowej.
Zorze nie są zjawiskiem wyjątkowym tylko dla ziemi. Na innych planety takich jak
Jowisz czy Saturn, które charakteryzują się silnymi polami magnetycznymi również
występuje podobne zjawisko.
3.2.- Jakie jest pochodzenie zórz polarnych.
Słońce stale emituje cząsteczki o wysokiej energii, jak również wszelkiego rodzaju
promieniowanie elektromagnetyczne, w tym światło widzialne. Strumień się tych cząsteczek to
nc innego jak tak zwany wiatr słoneczny (gorący gaz lub plazma), który składa się głównie z
dodatnich jonów i elektronów. Na Słońcu występują wysoce energetyczne zjawiska takie jak
wybuchy lub koronalne wyrzuty masy (w skrócie CMEs coronal mass ejections = z języka
angielskiego), które zwiększają intensywność wiatru słonecznego. Cząsteczki wiatru słonecznego
przemieszczają się z prędkością od 300km/s (powolny wiatr słoneczny) do 1000km/s (szybki
wiatr słoneczny) tak że pokonują dystans od Ziemi do Słońca w dwa do trzech dni. W pobliżu
Ziemi wiatr słoneczny jest odchylany w kierunku przestrzeni kosmicznej przez pole magnetyczne
Ziemi czyli magnetosferę.
Wiatr słoneczny napiera na magnetosferę i deformuje ją, tak więc zamiast jednolitych linii
pola magnetycznego które zwykle są pokazywane jako wyimaginowany magnes umieszczony na
osi północ-południe wewnątrz Ziemi, to co otrzymujemy to wydłużona struktura z długim
ogonem w kształcie komety znajdującym się w kierunku przeciwnym do słońca (Rycina 2).
Rycina 2: Artystyczne przedstawienie słońca emitującego wiatr słoneczny oraz koronalny wyrzut masy który
przemieszczają się. Gdy dosięgnie on Ziemi, większość cząsteczek jest odchylonych przez ziemskie pole magnetyczne,
co przyjmuję formę ogonu komety. Niektóre cząsteczki wpadają w atmosferę naszej planety i skierowane są w
kierunku biegunów magnetycznych wzdłuż linii ziemskiego pola magnetycznego co pokazane jest na rysunku
zielonymi liniami.
Mała część cząsteczek wiatru słonecznego penetruje atmosferę wzdłuż linii ziemskiego
pola magnetycznego. Cząsteczki te, uwięzione w magnetosferze, zderzają się z neutralnymi
atomami i molekułami w górnych warstwach ziemskiej atmosfery. Zazwyczaj są to atomowy tlen
(O) oraz cząsteczkowy azot (N2) które znajdują się w stanie neutralnym oraz na najniższym
poziomie energetycznym, zwanym poziomem podstawowym. Energia dostarczona przez
cząsteczki słoneczne przenosi te atomy oraz molekuły do tak zwanych stanów wzbudzonych.
Powrócą one do swojego stanu podstawowego emitując energię w formie światła. To właśnie
światło widzimy z ziemi i nazywamy zorzami.
Zorze pojawiają się zazwyczaj na wysokości pomiędzy 100km do 400km, ponieważ na tej
wysokości, atmosfera, chociaż rozrzedzona jest ciągle wystarczająco gęsta aby zderzenia z
cząsteczkami słonecznymi są dostatecznie częste.
Rycina 3
3.3.- Gdzie, kiedy i jak obserwować zorze.
Zorze występują na niektórych obszarach Ziemi zwanymi owalami zorzowymi
które rozmieszczone są odpowiednio wokół północnych i południowych biegunów
magnetycznych (Rycina 4).
Im bardziej intensywny jest wiatr słoneczny oraz im bardziej naładowane energią są
cząsteczki wyrzucane ze Słońca, tym większe są te owale. Dlatego też, jeżeli aktywność Słońca
jest od umiarkowanej do niskiej to owale są niewielkie i granice zorzy polarnej na północnej
półkuli przesuwają się dalej na północ. A podczas wielkich burz słonecznych północny owal
rozszerza się i przesuwa się dalej na południe.
Rycina 4: Obszary zwiększonego występowania zórz na północnym owalu (lewo) i południowym (prawo).
Pozycja biegunów geomagnetycznych powoli zmienia się z czasem (około 60km na rok), dlatego zasięg zórz polarnych
również zmienia się powoli.
Jeżeli aktywność słoneczna jest bardzo intensywna, czasami owal rozpościera się nad
południowymi Stanami Zjednoczonymi i Europą. Dla danego poziomu aktywności słonecznej
najcieńsza część owalu zorzowego jest zawsze na dziennej stronie Ziemi (południk południowy),
podczas gdy najgrubsza część owalu jest położona na nocnej stronie Ziemi, i dlatego najbardziej
prawdopodobne jest zobaczyć zorzę polarną po lokalnej północy.
Strefy najczęstszego występowania zórz polarnych odpowiadają okręgom umieszczonym
w zorzowych owalach (Rycina 5). Na półkuli północnej ta strefa rozciąga się od Alaski,
północnej Kanady, południowej Grenlandii, Islandii, północnej Skandynawii (Norwegia,
Szwecja, Finlandia) do północnej Syberii. Strefa maksymalnego występowania zorzy polarnej
(Aurora Australis) jest na Antarktydzie. W tych owalach, częstotliwość występowania zórz w
roku może przekroczyć 240 nocy podczas okresów wysokiej aktywności słonecznej (dyskretne
zorze), zmniejszając się zarówno w kierunku wewnętrznym, jak i zewnętrznym owalu
(rozproszona zorza). Dla kontrastu mieszkańcy południowego USA, Meksyku, południowej
Europy oraz obszarów przylegających mogą zaobserwować zorze (typ rozproszony) tylko raz w
ciągu całego życia. Ocenia się że na równiku zorza występuje raz na 200 lat.
Rycina 6: Zorza
polarna
północna
(Aurora
borealis) (typ
rozproszony)
widzialny jako
intensywne
czerwone
świecenie, na
północy od
Figueres
(Girona), 6
kwiecień , 2000.
Zdjęcie Peter
Horst.
Słońce, nasza gwiazda ma swoje cykle aktywności. Podczas szczytowych okresów wiatr
słoneczny nasila się i dlatego łatwo jest obserwować zorze. Główną godną uwagi rzeczą, jeśli
chodzi o aktywność słoneczną jest ilość plam jakie słońce ma na swej powierzchni. Plamy
słoneczne są obszarami chłodniejszymi od ich otoczenia więc ukazują się jako ciemne obszary.
Po wielu latach zbierania danych odkryto że ilość plam na powierzchni słońca wzrasta co około
11 lat, tak więc cykl aktywności wynosi 11 lat. Ostatni szczyt wystąpił pod koniec 2000 roku a
według najnowszych danych nowy szczyt jest oczekiwany na początku 2013r.
Zorze polarne świecą słabo, więc mogą być obserwowane tylko w nocy. Słabe zorze mają
jasność podobną do jasności Drogi Mlecznej, podczas gdy najjaśniejsze mogą mieć jasność
księżyca w pełni. Ze względu na ten fakt zorze polarne można zobaczyć tylko na obszarach
okołobiegunowych, nie występują latem z powodu zjawiska słońca o północy. Zorze można
obserwować od sierpnia do maja, a zjawisko zórz nasila się w okolicach równonocy (wrzesień,
marzec) z powodu korzystnego ułożenia pala magnetycznego Ziemi. Występujące w tym okresie
burze geomagnetyczne umożliwiają naładowanym cząstkom wiatru słonecznego penetrację
atmosfery w okolicach biegunów.
Zorze polarne mogą przybierać różne formy, kształty i mieć różne kolory i generalnie
szybko zmieniają się w czasie. Podczas jednej nocy, zorza polarna może zacząć się jako prosty
wydłużony łuk który rozpościera się na horyzoncie, najczęściej na wschodzie lub zachodzie.
Około północy łuk może zacząć zwiększać swą jasność. Zaczynają formować się fale lub wiry
wzdłuż łuku oraz również pionowe struktury które wyglądają jak kurtyny światła i promieni
wydłużone w kształcie. W jednym miejscu niebo wypełnione być może wstęgami, spiralami i
promieniami światła które drgają i przesuwają się szybko z horyzontu na horyzont. Może to trwać
od kilku minut do kilku godzin, ale zazwyczaj trwa około 15 do 20 minut. Gdy nadchodzi świt
aktywność zmniejsza się i tylko niewielkie obszary nieba jaśnieją dopóki nie nastanie świt.
W normalnych warunkach świecenia, nasze ludzkie oko może zobaczyć kolory od fioletu,
który w zakresie widma spektroskopowego ma długość około 390nm do czerwieni mającej około
700nm. Kiedy zorza jest słaba, wydaje się że nie posiada żadnego koloru, ponieważ w warunkach
słabego oświetlenia nasze oczy rejestrują światła za pomocą wrażliwych komórek zwanych
pręcikami, które jednak nie są czułe na kolor światła. Gdy jasność wzrasta, człowiek zaczyna
widzieć kolory za pomocą czopków które są światłoczułymi receptorami siatkówki oka.
Widzimy barwy zielone, najbardziej powszechny kolor, na który jesteśmy wrażliwi
(zielony 555nm). Za pomocą kamer cyfrowych, można zobaczyć, oprócz barw zielonej i
czerwonej, cały zakres kolorów (niebieski, fioletowy, żółty...)
Niektórzy obserwatorzy twierdzą że słyszeli dźwięki dochodzące od zorzy takie jak
syczenie, trzaski i strzały. Chociaż zorze są na wysokościach powyżej 100km to wydaje się że
pole magnetyczne powiązane z zorzą może wytworzyć elektrostatyczny ładunek elektryczny,
1
jednak pomiary nie potwierdzają tej hipotezy .
1
por. artykuł naukowy http://www.acoustics.hut.fi/projects/aurora/BNAM-ukl.pdf
4 – Metodologia
4.1.- Ocena wysokości za pomocą kolorów . Metoda 1 – Kolory.
Kolory które widzimy w zorzy zależą od atomowego lub cząsteczkowego składu górnej
atmosfery, od energii wzbudzających je cząstek wiatru słonecznego (głównie elektronów) oraz
poziomów energii, który te atomy lub molekuły osiągają. Jak zaznaczono powyżej, wzbudzony
atom lub molekuła powraca do stanu pierwotnego emitując foton o specyficznej energii, co jest
widziane jako konkretny kolor. Na wysokości setek kilometrów, oprócz normalnego powietrza
(złożonego głównie z cząsteczkowego tlenu i azotu) znajduje się również atomowy tlen. Główne
składniki atmosfery, azot i tlen wytwarzają cały zakres kolorów zorzy, chociaż czasami takie
gazy jak wodór czy hel również mogą emitować światło w różnych kolorach.
-Tlen
Emisja energii z atomów tlenu, które są wzbudzone przez elektrony ma pewne ciekawe
cechy, warte wyjaśnień. Zazwyczaj wzbudzony atom lub molekuła powraca do stanu normalnego
natychmiast emisja fotonu następuje w czasie mikosekund. W przypadku atomu tlenu zajmuje to
znacznie więcej czasu. Dopiero po czasie ¾ sekundy powraca on do stanu podstawowego
emitując zielony foton. Dla czerwieni zajmuje to prawie 2 minuty! Jeśli podczas tego czasu atom
zderzy się z inną cząsteczką, traci energię z powodu zderzenia i nie emituje światła. Zderzenia są
bardziej prawdopodobne jeśli atmosfera jest gęstsza (na niskich wysokościach). Jest to powód,
dla którego świecący na czerwono tlen pojawia się dopiero na wysokościach większych niż 200
km, gdzie zderzenia pomiędzy cząsteczkami powietrza a atomami są rzadkie. Poniżej wysokości
100km nawet pojawienie się koloru zielonego nie jest możliwe. Na niższych krawędziach zorzy:
emisja zielonego koloru jest tłumiona poprzez zderzenia, a to co pozostaje to mieszanina kolorów
niebieskiego i czerwonego (różowego) pochodzących od emisji cząsteczkowego azotu.
Rycina 7 : Na wykresie który pokazuje widmo emisji atomowego
tlenu, są zaznaczone główne tory emisji odpowiadające kolorowi zielonemu
który jest najbardziej powszechny w zorzach polarnych.
Podsumowując, tlen odpowiada za dwa główne kolory zorzy, zielony odpowiada przejściu
z emisją fotonu o długości fali 557.7 nm (pamiętaj że jeden nanometr to 10-9 m podczas gdy
Angstrem to 10-10 m). Kolor czerwony jest wytwarzany przez mniej częste przejście o długości
630 nm (Rycina 7).
-Azot
Azot, u którego zderzenie może wyrzucić niektóre z jego zewnętrznych elektronów w
przestrzeń (jonizacja) wytwarza niebieskie światło, podczas gdy jeśli jest wzbudzony poprzez
zderzenie z elektronem pochodzącym z wiatru słonecznego, emituje światło czerwone (Rycina 8).
Za pomocą wszystkich dostępnych informacji i w sposób schematyczny możemy
oszacować wysokość formowania zórz na podstawie ich koloru.
1.- Powyżej 200 km, widać czerwonawy odcień tlenu atomowego. (Rycina 9a).
2.- Pomiędzy wysokościami 100-200 km pokazują się odcienie zieleni, co jest
charakterystyczne (występuje w większości zórz , Rycina 9a, b, c) dla emisji tlenu atomowego.
3.- Około120 km widać niebiesko-fioletowe kolory cząsteczkowego azotu (Rycina 9c).
4.- Przy wysokiej aktywności słońca (słoneczna burza) a różowa wstęga pojawia się na
wysokości 90-100 km wytworzona przez cząsteczkowy azot i znajduje się na niższej
krawędzi zorzy (Rycina 9b).
4.2.- Obliczanie wysokości formowania się zorzy przez paralaksę.
Wysokość na której formuje się zorza polarna może być obliczona za pomocą fotografii
wykonanych przez dwie
różne osoby które są
oddalone od siebie o
kilkanaście kilometrów.
Każdy z nich zobaczy tę
samą zorzę na tle gwiazd
w trochę innym miejscu i
pod trochę innym kątem
(kąty β1 i β2. na rysunku
obok). Znając bazę
odległość pomiędzy tymi
dwoma osobami (poprzez
ich położenie na mapie
lub GPS) można obliczyć
wysokość zorzy. Stosując
tę metodę norweski fizyk
Carl Størmer za pomocą
40,000 zdjęć z lat 1909 –
1944 oszacował granice
wysokości zórz
polarnych: 70km do
1100km, ze średnią
wysokością około 100km.
Nazwijmy O1 oraz O2 pozycjami każdej z tych osób, które to są rozmieszczone na podobnej
wysokości powyżej poziomu morza. Oddzielone one są od siebie znaną odległością d. Przyjmuje
się że ta odległość d jest linią prostą ( zakrzywienie Ziemi na odcinku kilku kilometrów można
pominąć). Patrząc na tą samą zorzę A, świeci ona na tle trochę innego fragmentu nieba, tak że
obserwatorzy w punktach O1 i O2 widzą zorzę pod trochę różnymi kątami. Sposób pomiaru
kątów na zdjęćiu zorzy zostanie opisany oddzielnie. Teraz natomiast zajmijmy się wyznaczeniem
z tych danych wysokości zorzy.
Metoda I, graficzna:
Narysuj na papierze milimetrowym powierzchnię Ziemi (na skali odległości kilku – kilkunastu
kilometrów możemy przyjąć, że Ziemia jest płaska), i oznacz na niej dwa punkty obserwacji O1 i
O2, odległe o d, w pewnej skali. Następnie narysuj półprostą O1A z punktu O1, nachyloną pod
kątem β1 do poziomu, oraz półprostą O2A z punktu O2, nachyloną pod kątem β2 do poziomu.
Wyznacz punkt A, w którym proste się przecinają i zmierz wysokość h w skali rysunku, a
następnie przelicz ją na kilometry, korzystając z miary odległości d na rysunku.
Metoda II, analityczna:
Z definicji tangens, tan(β1) = h/(d+x), gdzie x jest długością odcinka O2 P. Podobnie tan(β2) = h/x.
Ponieważ kąty obserwacji zorzy β1 i β2 oraz odległość punktów O1 i O2 są znane, otrzymaliśmy
układ dwóch równań z dwiema niewiadomymi, h i x, który łatwo rozwiązać.
Porównaj wynik wyznaczenia wysokości zorzy polarnej h pierwszą i drugą metodą. Jak
myślisz, która z nich jest dokładniejsza?
Dla wyżej wymienionych obliczeń użyjemy niektórych gwiazd, dobrze widocznychna
zdjęciach cyfrowych, które będzie widać na tle zorzy. Aby wykonać pomiary, będziemy
musieli znać położenie obserwujących, ich wysokość nad poziom morza oraz dokładny
czas obserwacji. Potrzebne będzie również oprogramowanie do obliczania kątów β1 β2
(np. oprogramowanie Stellarium dostępne na stellarium.org).
5 – Adresy internetowe
•
http://www.shelios.com Naukowe ekspedycje grupy Shelios w celu obserwacji
zorzy polarnej północnej - aurora borealis (Shelios 2000 oraz Shelios 2011), razem z
transmisją na żywo w internecie (sky-live.tv).
•
http://spaceweather.com Aktywność słoneczna i przestrzeń kosmiczna wokół
Ziemi wraz z zorzami.
•
Obrazy Słońca i ostrzeżenia o burzach słonecznych (SOHO, ESA):
sohowww.estec.esa.nl/data/realtime-images.html
sohowww.estec.esa.nl/whatsnew/
•
Aktywność słoneczna i prognozy
Europa: http://sidc.oma.be/index.php3
Stany Zjednoczone: http://www.swpc.noaa.gov/

Podobne dokumenty