REWERSYJNY PRZENOŚNIK WIBRACYJNY

Transkrypt

REWERSYJNY PRZENOŚNIK WIBRACYJNY
MODELOWANIE INŻYNIERSKIE
40, s. 49-54, Gliwice 2010
ISSN 1896-771X
REWERSYJNY PRZENOŚNIK WIBRACYJNY
PIOTR CZUBAK
Katedra Mechaniki i Wibroakustyki, AGH
e-mail:[email protected]
Streszczenie. W ciągu produkcyjnym często stosowane są przenośniki
wibracyjne umożliwiające transport nadawy w dwóch kierunkach. W pracy
analizowano możliwości transportowe nowego autorskiego rozwiązania
rewersyjnego przenośnika wibracyjnego (zgłoszenie patentowe [4]) służącego do
dwukierunkowego transportu materiałów sypkich lub przedmiotów o niewielkich
wymiarach gabarytowych. Przedstawiono analizę dynamiczną przenośnika,
wykazując możliwości transportowania nadawy w obydwu kierunkach jedynie
poprzez zmianę częstości obrotowej wibratora.
1. WSTĘP
W pracy analizowano możliwości transportowe rewersyjnego przenośnika wibracyjnego
służącego do dwukierunkowego transportu materiałów sypkich lub przedmiotów
o niewielkich wymiarach gabarytowych. W pracy opisano zasadę działania jak również za
pomocą symulacji komputerowej wykazano poprawność pracy nowego urządzenia.
2. OPIS DOTYCHCZASOWYCH ROZWIĄZAŃ PRZENOŚNIKÓW REWERSYJNYCH
Do najczęściej stosowanych rozwiązań przenośnika rewersyjnego zalicza się układ
z dwoma osobnymi układami wibratorów. Przykładowym przenośnikiem tego typu jest
urządzenie niemieckiej firmy Jost (rys 1).
1
2
4
2
3
Rys. 1. Rewersyjny przenośnik firmy Jost
Silniki elektryczne napędzają wały z zamocowaną na nich niewyważoną masą,
wymuszającą drgania ukierunkowane prostopadle do linii przechodzącej przez osie układów
wibratorów (3,4), a pod kątem do rynny przenośnika (1) zawieszonej na układzie sprężyn
resorujących (2). W zależności od żądanego kierunku transportowania materiału
50
P.CZUBAK
alternatywnie włączany jest jeden albo drugi układ wibratorów. Przenośniki z dwoma
układami wibratorów charakteryzują się dużą wydajnością podobną do przenośników,
w których transport odbywa się tylko w jednym kierunku, ale są kosztowne w produkcji
i eksploatacji. Drgania pracy jednego układu wibratorów powodują w łożyskach drugiego,
nieruchomego, wyciskanie smaru i występowanie fałszywych odcisków Brinella, powodując
bardzo szybkie ich zużycie. Wadą tego typu rozwiązania jest długi czas potrzebny na zmianę
kierunku transportowania związany z czasem wybiegu jednego i rozruchu drugiego układu
wibratorów.
Znane są również, przykładowo z opisu US5713457, rewersyjne przenośniki posiadające
jeden wibrator (2) podwieszony centralnie w pobliżu środka ciężkości przenośnika do rynny
(1) zawieszonej na układzie sprężyn (3) (rys.2).
1
3
4
5
2
5
3
4
Rys. 2. Rewersyjny przenośnik wibracyjny według patentu US5713457
Wibrator wyposażony jest w silnik o zmiennym kierunku obrotów. Na obu końcach rynny
zamocowane są identyczne eliminatory drgań (4) powodujące spłaszczenie elipsy drgań masy
głównej przenośnika przy częstości wymuszeń drgań wibratora zbliżonej do częstość drgań
własnych eliminatorów. Każdy eliminator złożony jest z masy pomocniczej podwieszonej
pionowo do rynny na sprężynie (5). Wadą tego typu rozwiązania jest również długi czas
potrzebny do zmiany kierunku transportowania dokonywanej poprzez zmianę kierunku
obrotów silnika, co wymaga przejścia kolejno przez wybieg maszyny, a następnie przez
rezonans przejściowy. Ponadto eliptyczne trajektorie ruchu drgającego rynny znacznie
ograniczają wydajność przenośnika.
Inną grupę rozwiązań stanowią przenośniki z mechaniczną zmianą kierunku
transportowania poprzez ręczną lub zautomatyzowaną zmianę kąta zawieszenia układu
wibratorów napędowych (4), powodując zmianę kierunku drgań rynny (1) zawieszonej na
układzie sprężyn (2). Przykładem tego typu rozwiązania jest patent US 5,064,053 firmy
Carrier Vibrating Equipment (rys.3).
Rys. 3. Rewersyjny przenośnik wibracyjny według patentu US 5064053
REWERSYJNY PRZENOŚNIK WIBRACYJNY
51
3. OPIS WYNALAZKU
Przenośnik według wynalazku (zgłoszenie nr P-388654), podobnie jak w powyżej
opisanych rozwiązaniach, posiada otwartą na obu końcach rynnę, sprężyście podpartą na
sztywnej podstawie oraz obrotowy napęd wibracyjny, podwieszony centralnie do rynny
(rys.4). Głównym celem wynalazku jest dostarczenie nowego udoskonalonego
dwukierunkowego podajnika lub przenośnika, w którym kierunek transportowania można
zmieniać bardzo szybko jedynie poprzez zmianę częstości obrotów wibratora.
Rys. 4. Rewersyjny przenośnik wibracyjny według wynalazku.
Zasada działania przenośnika polega na tym, że jeśli częstość wymuszenia wibratora w stanie
warunek w = k s1 m , to masa m1 drga z amplitudą wywołującą
1
w elemencie k1 siły przeciwne do siły wymuszającej wibratora na kierunku s1 , powodując przy małym tłumieniu w sprężynie ks1 - wygaśnięcie drgań rynny na tym kierunku, jednak nie
zmieniając wartości drgań na kierunku prostopadłym s2. Umożliwia to transport nadawy
w prawo. Jeśli częstość wymuszenia wibratora w stanie ustalonym spełnia warunek
ustalonym spełnia
w = ks2
m2
, to masa m2 drga z amplitudą wywołującą w elemencie ks2 siły przeciwne do siły
wymuszającej wibratora na kierunku s2 powodując wygaśnięcie drgań rynny na tym kierunku,
nie zmieniając jednak wartości drgań na kierunku prostopadłym s1. Umożliwia to transport
nadawy w lewo.
Przenośnik może być wyposażony w dwa lub więcej masowe eliminatory drgań
zamocowane do rynny z każdej strony wału. Rozwiązanie pozwala na wykonanie szybkiej
zmiany kierunku transportowania materiału jedynie przez zmianę prędkości obrotowej silnika
wibratora, a uzyskane drgania rynny mają charakter prawie prostoliniowy – co stanowi, że
wydajność osiąga takie wartości jak w przenośniku jednokierunkowym. Przy zastosowaniu
w wibratorze silnika z płynną regulacją prędkości obrotowej istnieje możliwość sterowania
prędkością transportowania materiału w obu kierunkach.
Cechą przenośnika jest różna prędkość transportowania w przeciwnych kierunkach, gdy
przenośnik jest symetryczny, a kierunki drgań mas pomocniczych eliminatorów odchylone są
od poziomu odpowiednio pod kątami b1 = 45° i b 2 = 135° .
4. ANALIZA DYNAMICZNA PRZENOŚNIKA
Model matematyczny analizowanego przenośnika (rys 4) przedstawiony jest poniżej.
52
P.CZUBAK
M × q&& = Q
(1)
gdzie:
éM
ê
ê
M =ê
ê
ê
ëê
+ mw + m1 + m2
0
0
mw e1 sin(j1 )
m1 cos( b1 )
m2 cos( b 2 )
0
M + mw + m1 + m2
0
mwe1 cos(j1 )
m1 sin(b1 )
m2 sin(b 2 )
0 mw e1 sin(j1 ) m1 cos( b1 ) m2 cos( b 2 )ù
0 mwe1 cos(j1 ) m1 sin(b1 ) m2 sin(b 2 ) ú
ú
J
0
0
0
ú
2
0 mwe1 + J w
0
0
ú
0
0
m1
0
ú
0
0
0
m2
ûú
q&& = [ &x& &y& a&& j&& 1 &s&1 &s&2 ]T
(2)
(3)
ù
é
- mw e1j&12 cos(j1 ) - 2k x ( x + ha ) - 2bx ( x& + ha& )
ú
ê
2
ú
ê
mw e1j&1 sin(j1 ) - k y ( y + l1a ) - k y ( y - l 2a ) - by ( y& + l1a& ) - by ( y& - l 2a& )
ú
ê
ê- 2k h 2a - 2k hx - 2b hx& - 2b h 2a& - k ( y + l a )l + k ( y - l a )l - b ( y& + l a& )l + b ( y& - l a& )l ú
1
1
2
2
1
1
2
2
x
x
x
x
y
y
y
y
ú
ê
Q=ê
ú
M el
ú
ê
ú
ê
ú
ê
- k s1 s1 - bs1 s&1
ú
ê
ú
ê
- k s 2 s2 - bs 2 s&2
ûú
ëê
(4)
gdzie:
Mei
- moment elektromagnetyczny rozwijany przez silnik, przyjęty
w postaci odpowiadającej charakterystyce statycznej silnika:
M el =
2 M ut (wss - j&i1 ) × (wss - wut )
(wss - wut ) 2 + (wss - j&i ) 2
i=1,2
gdzie:
Mut
- moment utyku silników napędowych
wss
- częstość synchroniczna silników napędowych
wut
- częstość utyku silników napędowych
Symulację przeprowadzono dla następujących wartości parametrów:
l1=l2= 0.5[m]
h = 0.5[m]
bx = by=
yk
[Ns/m]
2pw
kx = ky= 75000[N/m]
mw = 5[kg]
m = 120[kg]
Jw = 0[kgm2]
J = 25[kgm2]
e = 0.02[m]
Mut = 50[Nm]
wss = 157[rad/s] lub wss = 133,5[rad/s]
wut = 100[rad/s] lub wut = 85[rad/s]
REWERSYJNY PRZENOŚNIK WIBRACYJNY
53
y[m]
x[m]
Rys. 5. Zależność drgań poziomych od pionowych dla częstości wymuszenia 157[rad/s]
y[m]
x[m]
Rys. 6. Zależność drgań poziomych od pionowych dla częstości wymuszenia 133,5[rad/s]
Jak widać, przy częstości wymuszającej wibratora wynoszącej 157[rad/s] drgania rynny są
prawie prostoliniowe, a ich nachylenie powoduje transport nadawy w prawo (rys.5),
natomiast przy zmianie częstości wymuszającej wibratora na 133,5[rad/s] drgania rynny są
również prawie prostoliniowe, a ich nachylenie powoduje transport nadawy w lewo (rys.6).
Amplituda drgań na kierunkach ruchu jest różna w zależności od częstotliwości wymuszenia,
powodując niejednakową prędkość transportowania nadawy w przeciwnych kierunkach.
Prędkość transportowania związana jest również z częstością wymuszenia, co dodatkowo
zwiększa różnicę prędkości w obydwu kierunkach. Jeśli w zastosowaniu przenośnika będzie
postrzegane to jedynie jako wada, można prędkości transportowania wyrównać w jeden
z następujących sposobów:
·
·
poprzez zmianę kąta g zaczepienia eliminatorów,
poprzez zastosowanie wibratora o zmniejszającym się mimośrodzie masy niewyważonej
wraz ze wzrostem częstości wymuszającej,
· poprzez sterowanie częstością wymuszenia tak, aby nie była ona dokładnie nastawiona na
częstości poszczególnych eliminatorów, co będzie powodować zmianę prędkości
transportu na poszczególnych kierunkach.
54
P.CZUBAK
5. WNIOSKI
1. Dwukierunkowy przenośnik wibracyjny przedstawiony w pracy ma prostą i niezawodną
konstrukcję.
2. Istnieje możliwość szybkiej zmiany kierunku transportowania materiału poprzez zmianę
częstości wymuszenia wibratora.
3. W pewnych zastosowaniach różna prędkość transportowania w poszczególnych
kierunkach jest wadą, którą jednak można zniwelować na kilka sposobów
przedstawionych w pracy.
LITERATURA
1. Katalog firmy Jost.
2. Musschoot A.: Two-way vibratory feeder or conveyor. US Patent No.5713457, 1998.
3. Baker S.: Vibratory drive system for a vibratory conveyor apparatus. US Patent
No.5064053, 1991.
4. Czubak P.: Rewersyjny przenośnik wibracyjny. Zgłoszenie projektu wynalazczego nr P388654, 28.07.2009.
5. Frahm H.: Device for damping vibrations of bodies. US Patent No.989958, 1909.
6. Michalczyk J., Czubak A.: Teoria transportu wibracyjnego. Monografia. Kielce: Wyd.
Pol. Świętokrzyskiej, 2000.
7. Michalczyk J., Cieplok G.: Model cyfrowy przesiewacza wibracyjnego. „Modelowanie
Inżynierskie” 2006, nr 32, t. 1, s. 381 – 388.
8. Goździecki M. , Świątkiewicz H.: Przenośniki. Warszawa : WNT, 1975.
9. Czubak. P.: Mass optimisation of the vibroinsulating frame of a short vibratory conveyer.
“Mechanics” 2006, Vol.25 No.1, p. 33 – 40.
TWO-WAY VIBRATORY CONVEYER
Summary. Vibratory conveyers that enable a feed transportation in two opposite
directions are often applied in a production sequence. Transport qualities of the
new, author’s innovatory solution, two-way vibratory conveyer (Patent
Application [4]) for transporting loose materials or objects of small dimensions,
were analysed in this study. The dynamic analysis of the conveyer was presented
and the possibility of a feed transportation in both directions only by changing the
vibrator rotational frequency - was indicated.
Praca została wykonana w ramach badań statutowych za rok 2010.

Podobne dokumenty