tu pytania kontrolne!

Transkrypt

tu pytania kontrolne!
PYTANIA I ZADANIA v.1.3 26.01.12
ZADANIA
ZADANIA za 2pkt.
Podać wartości zredukowanych wymiarów fundamentu dla następujących danych:
B = 2,00 m, L = 2,40 m, eL = -0,31 m, eB = +0,11 m . Obliczyć wartość powierzchni netto A’
fundamentu.
Czy wypadkowa obciążeń działa w rdzeniu podstawy stopy fundamentowej dla
następujących wymiarów i mimośrodów: B = 2,00 m, L = 2,40 m, eL = -0,31 m, eB = +0,11 m
Czy maksymalne naprężenie pod stopą fundamentową o następujących danych:
B = 2,00 m, L = 2,40 m, eL = -0,31 m, eB = +0,11 m wynosi qmax = 439,58 kPa?
Siła pionowa Vd = 1000 kN. Skomentować odpowiedź.
Czy maksymalne naprężenia pod stopą fundamentową o następujących danych:
B = 2,20 m, L = 2,60 m, eL = +0,31 m, eB = -0,11 m wynosi qmax = 348,318 kPa.?
Siła pionowa Vd = 1000 kN. Skomentować odpowiedź.
Obliczyć wartość obliczeniową obciążenia Vd dla następujących danych:
obciążenia charakterystyczne: stałe VG = 1000 kN, obciążenie zmienne VQ = 250 kN
Przypadek obliczeniowy DA2, obciążenie stałe jest korzystne.
Obliczyć wartość obliczeniową obciążenia Vd dla następujących danych
obciążenia charakterystyczne: stałe VG = 1000 kN, obciążenie zmienne VQ = 250 kN
Przypadek obliczeniowy DA2, obciążenie stałe jest niekorzystne.
Obliczyć nośność pala wciskanego na podstawie próbnych obciążeń:
Dane: Próbnemu obciążeniu poddano pale: wiercone, D =400 mmm, L =12 m.
Numer badania
1
2
3
4
5
6
Opór graniczny Rm
1100
1150
1130
1090
1085
-
Obliczyć nośność pala wciskanego na podstawie próbnych obciążeń:
Dane: Próbnemu obciążeniu poddano pale: wiercone, D =400 mmm, L =12 m.
Numer badania
1
2
3
4
5
6
Opór graniczny Rm
1100
1100
1110
1090
-
-
Uwaga: wartości współczynników ξ1 , ξ2 będą podane.
1
Podejście obliczeniowe DA2.
Obliczyć charakterystyczną i obliczeniową nośność pala na pobocznicy w jednej
warstwie dla danych: t = 45 kPa, γs = 1,1.
średnica pala D = 0,40 m, miąższość warstwy 3,0 m, współczynnik technologiczny
Ss = 1,1. Warstwa zalega na głębokości poniżej 5,0 m od poziomu interpolacji „0,0".
Rsk = ?, Rsd = ?
Obliczyć nośność charakterystyczną i obliczeniową pala VIBRO w piasku grubym
przez podstawę dla następujących danych: q= 4100 kPa, średnica pala D = 0,38 m,
współczynnik technologiczny Sp = 1,4, γb = 1,1 .
Podstawa pala na głębokości 11,0 m poniżej poziomu interpolacji „0,0".
ZADANIA za 3pkt.
Obliczyć nośność charakterystyczną i obliczeniową pala VIBRO w piasku grubym
przez podstawę dla następujących danych: q= 4100 kPa, średnica pala D = 0,38 m,
współczynnik technologiczny Sp = 1,4, γb = 1,1.
Podstawa pala na głębokości 8,0 m poniżej poziomu interpolacji „0,0".
Obliczyć nośność charakterystyczną i obliczeniową pala VIBRO w piasku grubym
przez podstawę dla następujących danych: q = 4100 kPa, średnica pala D = 0,40 m,
współczynnik technologiczny Sp = 1,4, γb = 1,1
Podstawa pala znajduje się na głębokości 8,0 m poniżej poziomu interpolacji „0,0".
Rbk = ?, Rbd = ?
Obliczyć charakterystyczną i obliczeniową nośność pala na pobocznicy w jednej
warstwie dla danych: t = 45 kPa, γs = 1,1.
średnica pala D = 0,50 m, miąższość warstwy 3,0 m, współczynnik technologiczny
Ss = 1,1. Warstwa zalega na głębokości od -3,0 do -6,0 m poniżej od poziomu
interpolacji „0,0". Rsk = ?, Rsd = ?
Obliczyć maksymalną głębokość niezabezpieczonego wykopu w gruncie spoistym.
Obciążenie naziomu q = 5 kPa. Parametry gruntu: ciężar gruntu γk = 18 kN/m3 , ck = 20 kPa,
Φk = 17o , Ka = tg2( π/4 – Φk/2) , Kp = tg2( π/4 + Φk/2)
Czy nośność pala w grupie jest równa nośności pojedynczego pala dla następujących danych?
Średnica pala D =0,40 m, długość całkowita pala 11,0 m, zagłębienie w warstwach nośnych:
Warstwa Ps : h1 = 4,0 m α1 = 60
Warstwa G : h2 = 3,0 m α2 = 40
Odległość osiowa pali r = 2,50 m. Odpowiedź uzasadnić.
Czy nośność pala w grupie dla następujących warunków i danych jest równa nośności
pojedynczego pala?
Średnica pala D = 0,60 m, długość całkowita pala 11,0 m, zagłębienie w warstwach nośnych:
Warstwa Ps : h1 = 4,0 m, α1 = 60
Warstwa G : h2 = 4,0 m, α2 = 40
Odległość osiowa pali r = 1,80 m. Odpowiedź uzasadnić.
2
ZADANIA za 4 pkt.
Obliczyć parcie wypadkowe (czynne oraz hydrostatyczne) na ściankę szczelną w warstwie
- A oraz B
- B oraz C
Dane na rysunku:
q = 7 kPa
Warstwa A, h = 3,0 m
1,0 m
Warstwa B, h = 3,5 m
2,5 m
Warstwa C, h =4,0 m
Warstwa A
Obciążenie naziomu q = 7 kPa
Parametry gruntu:
warstwa A: ciężar gruntu γk = 18 kN/m3 , γk’ = 9 kN/m3 , ck = 20 kPa, Φk = 17o
warstwa B: ciężar gruntu γk = 17 kN/m3 γk’ = 8,5 kN/m3 , ck = 0 kPa, Φk = 29o
warstwa C: ciężar gruntu γk = 19 kN/m3
γk’ = 9,5 kN/m3 , ck = 0 kPa, Φk = 31o
2
2
Ka = tg ( π/4 – Φk/2) , Kp = tg ( π/4 + Φk/2)
3
Obliczyć największa siłę pionową, jaką można obciążyć stopę fundamentową o wymiarach:
B = 2,00 m , L = 2,40 m, wartości mimośrodów: eB,k = 0,00 m, eL,k = -0,30 m.
Siły pozioma: Hx = Hy = 0.
Warunki geotechniczne oraz schemat posadowienia jak na rysunku. Występuje jedna warstwa
geotechniczna. Zwierciadło wody gruntowej 1,0 m poniżej podstawy fundamentu.
Postępowanie obliczeniowe DA2. Warunki z odpływem.
Dane:
Parametry podłoża: ciężar gruntu γk = 19 kN/m3 , γk’ = 9,5 kN/m3 , c’k = 0 kPa, Φ’k = 29o
Wartości współczynników nośności: obliczyć samodzielnie
Wartości współczynników kształtu: obliczyć samodzielnie
Uwaga: wzory na: opór graniczny podłoża, współczynniki nośności oraz współczynniki
kształtu będą podane.
Schemat posadowienia fundamentu na rysunku.
0,90 m
B =2,0
1,0 m
4
Sprawdzić warunek stanu granicznego GEO dla fundamentu o podanych warunkach i
obciążeniach. Postępowanie obliczeniowe DA2. Warunki z odpływem.
Vk
MBk
HBk
0,40 m
1,00 m
zwg.
B=3,20
FSa
FSa
Właściwości gruntu: FSa,
Dane: B= 3,20 m , L =3,40 m
Parametry podłoża: ciężar gruntu γk = 17,5 kN/m3 , γk’ = 10 kN/m3 , ck = 0 kPa, Φ’k = 30o
ciężar betonu: γk = 24 kN/m3
Obciążenia: stałe; VGk = 600 kN, MBGk = 0 kN , HBGk = 0 kN
Obciążenia zmienne: VQk = 0 kN, MBQk = 600 kN , HBQk = 200 kN
Wartości współczynników nośności: obliczyć samodzielnie
Wartości współczynników kształtu: obliczyć samodzielnie
Wartości współczynników nachylenia obciążenia : obliczyć samodzielnie
Zadania jak wyżej: inny układ obciążenia ( siła pozioma HL oraz moment ML działają
względem boku L fundamentu)
Obciążenia: stałe:
VGk = 600 kN,
MLGk = 0 kN ,
HLGk = 0 kN
Obciążenia zmienne: VQk = 100 kN,
MLQk = 600 kN , HLQk = 200 kN
Uwaga: wzory na: opór graniczny podłoża, współczynniki nośności oraz współczynniki
kształtu, nachylenia obciążenia będą podane.
PYTANIA za 2 pkt.
Objaśnić postępowanie obliczeniowe DA2 przy projektowaniu fundamentu bezpośredniego
Objaśnić postępowanie obliczeniowe DA2 przy projektowaniu fundamentu pośredniego
Metody rozpoznania podłoża gruntowego.
Schemat stanu granicznego nośności fundamentu bezpośredniego:
- dla obciążenia pionowego osiowego
- dla obciążenia pionowego mimośrodowego
Jakie czynniki wpływają na nośność fundamentu bezpośredniego.
5
Jakie grunty ( grunty nienośne) wywołują tarcie negatywne na pobocznicy pala.
Przedstawić na rysunku schemat zastosowania poziomu zastępczego hz przy obliczaniu
nośności fundamentów pośrednich: przekrój geotechniczny z zaznaczeniem warstw gruntów
nienośnych, zaznaczone warstwy nośne, poziom krytyczny h=5,0 m dla interpolacji nośności
pala t oraz poziom hc = 10 m dla interpolacji nośności pala q w gruntach nośnych, wykresy
nośności przez pobocznicę t oraz przez podstawę q.
Metody badania nośności pali.
Jakie założenia upraszczające zadanie przyjmuje się w obliczeniach ścianki szczelnej.
Metody obniżania zwierciadła wody gruntowej w wykopie.
Kiedy stosuje się obliczenie nośności fundamentu bezpośredniego wg EC7 wg wzoru dla
przypadku z odpływem oraz kiedy wzór dla warunków bez odpływu.
Objaśnić termin „kategoria geotechniczna posadowienia”, od jakich czynników zależy
określenie kategorii geotechnicznej posadowienia.
Pytania za 1 pkt.
Jak się nazywają opracowania dotyczące rozpoznania warunków geotechnicznych w podłożu.
Schemat stanu granicznego nośności fundamentu bezpośredniego:
- dla obciążenia pionowego osiowego
Schemat stanu granicznego nośności fundamentu bezpośredniego:
- dla obciążenia pionowego mimośrodowego
Kiedy stosowane jest posadowienie na płycie fundamentowej?
Kiedy stosowane jest posadowienia na ruszcie fundamentowym?
Rodzaje SGU (stan graniczny użytkowalności) dla fundamentów bezpośrednich.
Objaśnić na rysunku warunki SGU: obrót θ , obrót względny fundamentów β .
Objaśnić na rysunku warunki SGU: strzałka wygięcia ∆ oraz wskaźnik wygięcia ∆ / L .
Jakie są dopuszczalne wartości obrotu względnego fundamentów.
Dla których technologii palowych wartości współczynników technologicznych są zazwyczaj
większe: pale wbijane – pale wiercone, uzasadnić odpowiedź.
Podział pali ze względu na technologię wykonania i oddziaływanie na otaczający grunt.
Technologia wykonania pali jet-grounting
Technologia wykonania pali VIBRO
6
Technologia wykonania pali VIBREX
Technologia wykonania pali CFA
Wymienić technologie palowe, dla których pole podstawy przyjmowane w obliczeniach
nośności jest większe od średnicy nominalnej pala.
Jaka metoda projektowania pali jest przede wszystkim zalecana przez EC 7.
Narysować schematy statyczne przyjmowane w obliczeniach ścianki szczelnej.
Wykres zależności parcia od przemieszczenia konstrukcji oporowej.
Omówić igłofiltry i ich zastosowanie.
Metody odwadniania wykopów.
Do jakiej głębokości pod fundamentem należy sumować osiadania.
Obliczyć moment zginający w stopie fundamentowej.
Objaśnić na czym polega stan graniczny: EQU, STR, GEO, UPL, HYD.
7

Podobne dokumenty