Zapisz jako PDF

Transkrypt

Zapisz jako PDF
Roztwór to nierozdzielająca się w długich okresach czasu mieszanina dwóch lub więcej związków
chemicznych. Skład roztworów określa się przez podanie stężenia składników. W roztworach zwykle
jeden ze związków chemicznych jest nazywany rozpuszczalnikiem, a drugi substancją
rozpuszczaną.
Osmoza to zjawisko polegające na samorzutnym przechodzeniu cząsteczek rozpuszczalnika przez
błonę półprzepuszczalną (np. błonę komórkową), oddzielającą rozpuszczalnik od roztworu. Osmoza
zachodzi od roztworu o niższym stężeniu substancji rozpuszczonej do roztworu o wyższym, czyli
prowadzi do wyrównania stężeń obu roztworów.
Roztwór, z którego ubywa rozpuszczalnika nazywa się hipotonicznym, tego w którym przybywa
nazywa się hipertonicznym. Gdy roztwory pozostają w równowadze osmotycznej, mówi się że są
wzajemnie izotoniczne względem siebie.
Spis treści
1 Ciśnienie osmotyczne
1.1 Mechanizm powstawania ciśnienia osmotycznego
1.2 Ciśnienie osmotyczne elektrolitów
1.3 Pojęcie osmola
2 Osmometria w zastosowaniach biofizycznych
2.1 Cząsteczki małocząsteczkowe, biopolimery, polimery naturalne
2.2 Polimery syntetyczne
2.2.1 Co to za średnia?
2.2.1.1 Ilościowo (liczbowo) średnia masa cząsteczkowa
2.2.1.2 Wagowo (masowo) średnia masa cząsteczkowa
2.2.1.3 Jeszcze o średnich
2.3 Osmometria
2.4 Potencjał chemiczny
2.5 Prężność par
2.6 Metoda ebuliometryczna
2.7 Prawo van’t Hoffa (dla roztworów idealnych, bardzo rozcieńczonych)
3 Obliczanie mas cząsteczkowych substancji rozpuszczonych
4 Zastosowanie osmometrii w medycynie
4.1 Surowica krwi
4.2 Funkcjonowanie nerek
4.3 Przykład
Ciśnienie osmotyczne
Mechanizm powstawania ciśnienia osmotycznego
Naczynie składa się z dwóch części A i B rozdzielonych błoną. W części naczynia A znajduje się
woda, w części naczynia B — woda + związek nieprzechodzący przez błonę. W takiej sytuacji, w
części A jest więcej cząsteczek wody i więcej ich zderzeń z błoną niż w części B, a w związku z tym
istnieje większe prawdopodobieństwo przejścia cząsteczek wody z części A do B niż odwrotnie. Po
pewnym czasie stężenia wody w obydwu komorach zrównoważą się kosztem pojawienia się różnicy
objętości cieczy.
Ciśnienie osmotyczne — ciśnienie
jakie należy wywrzeć na naczynie B, aby uniemożliwić
zwiększenie jego objętości (ustala się przy nim równowaga dynamiczna, w której jednakowe liczby
cząsteczek rozpuszczalnika dyfundują w obydwu kierunkach. Wzrost ciśnienia hydrodynamicznego w
roztworze o większym stężeniu jest miarą ciśnienia osmotycznego.
Roztwór hipotoniczny — o niższym ciśnieniu osmotycznym
Roztwór hipertoniczny — o wyższym ciśnieniu osmotycznym
Ciśnienie osmotyczne opisuje zależność:
gdzie: — ciśnienie osmotyczne [kPa], — objętość [l], — stała gazowa (
liczba moli substancji rozpuszczonej równa
( — masa substancji w gramach,
molowa).
), —
— masa
1. W stałej temperaturze, w roztworach nieelektrolitów, ciśnienie osmotyczne jest wprost
proporcjonalne do stężenia roztworu, nie zależy od rodzaju substancji rozpuszczonej i
rozpuszczalnika.
2. Ciśnienie osmotyczne przy stałej objętości roztworu jest wprost proporcjonalne do
temperatury, w tych samych temperaturach, roztwory o jednakowych ciśnieniach
osmotycznych zawierają jednakowe ilości cząsteczek osmotycznie czynnych (roztwory
izoosmotyczne).
Ciśnienie osmotyczne elektrolitów
Dysocjacja elektrolitów na jony powoduje że wykazują one większe ciśnienie osmotyczne niż
nieelektrolity o tym samym stężeniu molalnym.
— liczba jonów powstałych po dysocjacji cząsteczki elektrolitu, — współczynnik aktywności
jonów (tablica lub obliczenia), dla roztworów rozcieńczonych bliski jedności, — stężenie molalne
Pojęcie osmola
Roztwory elektrolitów zachowują się tak, jakby zawierały mniej jonów niż to wynika z dysocjacji (stąd
możemy obliczyć współczynnik dysocjacji, tu:
). NaCl o stężeniu
ciśnienie osmotyczne
odpowiada
(zamiast 0,02).
Osmol — ilość substancji, która rozpuszczona w 1 litrze (kg) wody wywiera ciśnienie
Roztwór NaCl o stężeniu
.
jest 0,018-osmolalny.
Dla roztworów rozcieńczonych stężenie jonów odpowiada stężeniu w osmolach (
pomijamy gdy stężenie jest wyrażone w osmolach).
we wzorze
Osmometria w zastosowaniach biofizycznych
Cząsteczki małocząsteczkowe, biopolimery, polimery naturalne
Ściśle określona budowa chemiczna.
Każda metoda mierząca ciężar cząsteczkowy daje ten sam wynik.
Pojęcie ciężaru cząsteczkowego jest jednoznaczne.
Polimery syntetyczne
Mieszaniny makrocząsteczek o różnych wymiarach .
Każda metoda pomiarowa daje inny wynik zależny od metody, wynik jest wartością średnią.
Co to za średnia?
Masy cząsteczkowe mieszanin cząsteczek o różnych masach molowych, otrzymuje się jako wartości
średnie, których natura zależy od metody oznaczania.
Ilościowo (liczbowo) średnia masa cząsteczkowa
— liczba cząsteczek,
— masa cząstki i
— całkowita liczba wszystkich cząsteczek w próbce.
Wagowo (masowo) średnia masa cząsteczkowa
— liczba cząsteczek,
— masa cząstki ,
,
— masa całej próbki.
— łączna masa cząsteczek o masie cząsteczkowej
Jeszcze o średnich
Ilościowo średnia masa cząsteczkowa "preferuje" cząsteczki o mniejszej masie, ale częściej
występujące w mieszaninie, zaś wagowo średnia masa cząsteczkowa "preferuje" cząsteczki o
większej masie.
Pierwsza jest zawsze mniejsza od drugiej.
Pomiary wagowo średniej masy cząsteczkowej odbywają się metodami opartymi na rozpraszaniu
światła, szybkości sedymentacji, równowadze sedymentacyjnej. Są to techniki, w których na wynik
ma wpływ rozmiar cząsteczek.
Pomiary ilościowo średniej masy cząsteczkowej to pomiary metodami ebuliometryczną
(masy<5·104), kriometryczną (masy < 2·104), osmometryczną (masy 5·103 - 106). Są to techniki, w
których na wynik ma wpływ liczba cząstek (techniki oparte na właściwościach fizycznych roztworów
wykazujących zależność od stężenia molowego związku rozpuszczonego).
Osmometria
Osmometria jest najczęściej stosowaną techniką, ale na wyniki może mieć wpływ dobór
rozpuszczalnika, temperatury i stężenia roztworów oraz niedokładne usunięcie roztworów
stosowanych w procesach rozdziałów (np. niewielka ilość niskocząsteczkowej substancji, np. soli,
zwiększa udział w roztworze cząsteczek czynnych osmotycznie.
Potencjał chemiczny
Potencjał chemiczny — pochodna cząstkowa energii wewnętrznej po liczbie cząstek, przy stałej
objętości i entropii układu:
.
Rozpuszczenie substancji powoduje obniżenie potencjału chemicznego rozpuszczalnika. Efekty:
podwyższenie temperatury wrzenia,
obniżenie temperatury krzepnięcia,
wzrost ciśnienia osmotycznego mieszaniny.
Dla roztworów rozcieńczonych efekty te zależą od ilości molekuł substancji rozpuszczonej.
Prężność par
W zamkniętym naczyniu, napełnionym częściowo cieczą ustala się równowaga pomiędzy
cząsteczkami substancji w stanie ciekłym i gazowym. Równowaga ma charakter dynamiczny. Ilość
cząsteczek biorących udział w tym procesie rośnie wraz z temperaturą i determinuje ciśnienie par
gazu nad cieczą.
Ciśnienie gazu nad cieczą w danej temperaturze nosi nazwę prężności pary. Równowagowe
ciśnienie par gazu nad cieczą warunkach gdy szybkość parowania jest równoważna szybkości
skraplania nazywamy prężnością pary nasyconej.
Stosunek prężności par opisuje prawo Raoulta:
Stosunek prężności pary każdego składnika mieszaniny do jego prężności pary w czystej
cieczy jest w przybliżeniu równy ułamkowi molowemu tego składnika w roztworze.
Gdzie: — prężność par dla składnika mieszaniny (np. rozpuszczalnika),
— prężność par dla
składnika mieszaniny w postaci czystej cieczy, — ułamek molowy składnika mieszaniny w
roztworze.
Roztwory idealne spełniają to prawo Raoulta w całym zakresie stężeń.
Im większe stężenie składnika tym lepiej spełnione jest prawo Raoulta — dobre przybliżenie dla
rozpuszczalników substancji rozcieńczonych.
Prężność pary nad roztworem jest liniową funkcją składu. Względne obniżenie prężności pary
rozpuszczalnika nad roztworem jest równe ułamkowi molowemu substancji rozpuszczonej.
Skutek: podwyższenie temperatury wrzenia i obniżenie temperatury krzepnięcia roztworu w
stosunku do czystego rozpuszczalnika jest zależne od ułamka molowego substancji rozpuszczonej i
właściwości rozpuszczalnika.
Ebuliometria — opiera się na zjawisku podwyższenia temperatury wrzenia roztworu w porównaniu
z temperaturą wrzenia czystego rozpuszczalnika.
Kriometria &mdash: obniżenie temperatury topnienia roztworu w porównaniu z temperaturą
topnienia czystego rozpuszczalnika.
Dla roztworów rozcieńczonych
(stężenie molalne) mamy następujące zależności:
gdzie
— molalne obniżenie prężności pary,
— molalne podwyższenie temperatury wrzenia
(stała ebulioskopowa),
— molalne obniżenie temperatury krzepnięcia (stała krioskopowa),
(wartości liczbowe współczynników — stałych molalnych rozpuszczalnika — odpowiadają zmianom
spowodowanym rozpuszczeniem jednego mola substancji w 1000 g rozpuszczalnika, są wyznaczone
eksperymentalnie i zebrane w tablicach).
Wyznaczenie
lub
umożliwia obliczenie masy cząsteczkowej.
Metoda kriometryczna — precyzyjny pomiar temperatury krzepnięcia czystego rozpuszczalnika i
roztworu badanej substancji.
Metoda ebuliometryczna
Umożliwia precyzyjny pomiar temperatury wrzenia czystego rozpuszczalnika i roztworu badanej
substancji.
gdzie — stała gazowa,
— temperatura wrzenia lub krzepnięcia czystego rozpuszczalnika,
masa cząsteczkowa rozpuszczalnika,
— molowe ciepło parowania lub topnienia
rozpuszczalnika.
—
Prawo van’t Hoffa (dla roztworów idealnych, bardzo rozcieńczonych)
gdzie:
— ciśnienie osmotyczne,
— stężenie molowe substancji rozpuszczonej.
Pomiar ciśnienia osmotycznego — można badać cząsteczki o dużych masach, metoda bardzo czuła.
Dla roztworów nieidealnych, wielkocząsteczkowych przyjmuje się, że równanie van’t Hoffa jest
pierwszym członem rozwinięcia:
gdzie — osmotyczny współczynnik wirialny (człony dodatkowe są związane z odstępstwem od
roztworu idealnego).
Obliczanie mas cząsteczkowych substancji rozpuszczonych
Do pomiarów mas cząsteczkowych substancji rozpuszczonych wykorzystuje się osmometry.
W przypadku osmometrów bezmembranowych obniżenie prężności par rozpuszczalnika nastepuje po
wprowadzeniu na końcówkę jednego z termistorów (półprzewodnikowe sondy temperaturowe) w
atmosferze pary rozpuszczalnika roztworu substancji badanej. Na końcówce drugiego termistora
znajduje się kropla z rozpuszczalnikiem.
Szybkość kondensacji par na kropli roztworu jest większa niż na kropli rozpuszczalnika (niższa
prężność pary), wydziela się więcej ciepła i szybciej rośnie temperatura — między termistorami
powstaje różnica temperatur proporcjonalna do stężenia substancji rozpuszczonej.
Dla roztworów idealnych:
Dla mieszanin rzeczywistych:
gdzie:
— stała dla rozpuszczalnika,
— średnia masa cząsteczkowa substancji rozpuszczonej,
— współczynniki zależne od rodzaju substancji rozpuszczonej i właściwości roztworu (jeśli
to
zależność jest linią prostą o odciętej
).
Należy wykonać pomiary różnicy temperatur
dla kilku stężeń roztworów
bardzo niskie stężenia. Ekstrapolacja do stężenia zerowego pozwala policzyć
obejmujących również
.
Pomiary wymagają kalibracji aparatu przy użyciu substancji o znanej masie cząsteczkowej, co
pozwala wyznaczyć
odczytujemy wartość
że
, z zależności:
i dalej
. Dla substancji badanej z wykresu
i obliczamy liczbowo średnią masę cząsteczkową
, wiedząc,
Często roztwory muszą być dobrze rozcieńczone, aby móc wykonać prawidłową ekstrapolację do
rozcieńczenia nieskończonego.
Opisane metody osmometryczne są obecnie stosowane częściej w pracowniach przemysłowych niż w
laboratoriach biofizycznych.
Zastosowanie osmometrii w medycynie
Osmometr umożliwia szybkie i dokładne oznaczenie osmolalności mikropróbek o objętości 100 µl.
Surowica krwi
Ocena zawartości wody w osoczu.
Możliwość szybkiego stwierdzenia występowania substancji o niskim ciężarze cząsteczkowym:
etanol, metanol, paraldehyd, aceton, glikol etylenowy oraz leków
Funkcjonowanie nerek
Wskaźnik
umożliwia ocenę funkcji wydzielniczej nerek — ich zdolności
koncentracji moczu.
Jest to podstawowy pomiar w ocenie funkcji nerek u osób w stanie krytycznym, po zatruciach
lub urazach wielonarządowych.
Przykład
Schorzenie
0.2 – 0.7
Moczówka prosta
< 3.0
Niewydolność śródmiąższowa
3.0 – 4.7
Zdrowy osobnik na diecie z ograniczeniem płynów
1.0 – 3.0
Zdrowy osobnik na normalnej diecie

Podobne dokumenty