Autoreferat - Wydział Biologii UW

Transkrypt

Autoreferat - Wydział Biologii UW
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
AUTOREFERAT
1. Imię i nazwisko.
Monika Radlińska
2. Posiadane dyplomy, stopnie naukowe.
 Stopień doktora nauk biologicznych w zakresie biologii nadany uchwałą Rady Naukowej
Wydziału Biologii Uniwersytetu Warszawskiego dnia 08.06.1998. Tytuł rozprawy doktorskiej:
„Nowe metylotransferazy DNA Neisseria gonorrhoeae. Izolacja genów i wstępna
charakterystyka białek”. Promotorem w przewodzie doktorskim był prof. dr hab. Andrzej
Piekarowicz (Zakład Wirusologii Instytut Mikrobiologii, Wydział Biologii, Uniwersytet
Warszawski), a recenzentami: prof. dr hab. Anna Podhajska (Katedra Mikrobiologii Wydziału
Biologii, Uniwersytet Gdański) oraz prof. dr hab. Ewa Bartnik (Zakład Genetyki, Wydział
Biologii, Uniwersytet Warszawski).
 Tytuł magistra biologii o specjalności mikrobiologii uzyskany na Wydziale Biologii
Uniwersytetu Warszawskiego 24.01.1989. Tytuł pracy magisterskiej: „Zastosowanie szczepów
Escherichia coli K-12 z termowrażliwą mutacją w systemie McrB do selekcji klonów
zawierających metylotransferazy DNA”. Opiekunem pracy był prof. dr hab. Andrzej
Piekarowicz.
3. Informacje o dotychczasowym zatrudnieniu w jednostkach naukowych.
 01.10.2012 do chwili obecnej: Starszy wykładowca w Zakładzie Wirusologii Instytutu
Mikrobiologii na Wydziale Biologii Uniwersytetu Warszawskiego
 01.07.2000 - 30.09.2012: Adiunkt w Zakładzie Wirusologii Instytutu Mikrobiologii na
Wydziale Biologii Uniwersytetu Warszawskiego
 07.10.1998 - 25.04.2000: Stanowisko research coordinator w Molecular Biology Research
Program, Henry Ford Health System, Detroit, USA
 01.12.1991 - 30.06.2000: Asystent w Zakładzie Wirusologii Instytutu Mikrobiologii na
Wydziale Biologii Uniwersytetu Warszawskiego
 15.03.1989 - 30.11.1991: Pracownik inżynieryjno-techniczny w Zakładzie Wirusologii
Instytutu Mikrobiologii na Wydziale Biologii Uniwersytetu Warszawskiego
4. Wskazanie osiągnięcia wynikającego z art. 16 ust. 2 ustawy z dnia 14 marca 2003 r. o stopniach
naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz. U. nr 65, poz. 595 ze
zm.).
1
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
a) Tytuł osiągnięcia naukowego.
Analiza genomiczna bakteriofagów i sekwencji profagowych oraz jej wykorzystanie do
identyfikacji nowych metylotransferaz DNA
b) Publikacje wchodzące w skład osiągnięcia naukowego, ze szczegółowym omówieniem
indywidualnego wkładu wnioskodawcy.
1. Drozdz M, Piekarowicz A, Bujnicki JM, Radlinska M. (2012) Novel non-specific DNA
adenine methyltransferases. Nucleic Acids Research. 40(5):2119-30.
IF2012 – 8,278; IF5-letni – 8,647, punktacja MNiSW – 40; liczba cytowań (wg bazy Web of
Science, WoS) – 10.
Praca wyróżniona Nagrodą I stopnia Polskiego Towarzystwa Genetycznego w konkursie na
najlepszą pracę z dziedziny genetyki mikroorganizmów, wykonaną w polskich laboratoriach i
opublikowaną w roku 2012.
Wkład habilitanta: 65%. Autor korespondencyjny. Współautorstwo koncepcji badań;
zaplanowanie i wykonanie większości doświadczeń (in vivo i in vitro) oraz kierowanie
wykonaniem pozostałych [opieka nad studentem (M. Drożdż) podczas wykonywania przez
niego badań, które weszły w skład publikacji]; przeprowadzenie części analiz in silico; analiza i
interpretacja wyników; napisanie pierwszej wersji manuskryptu oraz redagowanie wersji
ostatecznej, przygotowanie odpowiedzi na uwagi recenzentów; pozyskanie finansowania badań
(2P041100827).
2. Dziewit L, Oscik K, Bartosik D, Radlinska M. (2014) Molecular characterization of a novel
temperate Sinorhizobium bacteriophage, ФLM21, encoding DNA methyltransferase with
CcrM-like specificity. Journal of Virology. 88(22):13111-24.
IF2014 – 4,439; IF5-letni – 4,428; punktacja MNiSW – 35; liczba cytowań (wg bazy WoS) – 4
Wkład habilitanta: 65%. Autor korespondencyjny. Autorstwo koncepcji badań; zaplanowanie i
wykonanie większości doświadczeń (in vivo i in vitro) oraz kierowanie wykonaniem
pozostałych [opieka nad studentką (K. Ościk) podczas wykonywania przez nią badań, które
weszły w skład publikacji]; przeprowadzenie części analiz in silico; analiza i interpretacja
wyników; udział w napisaniu pierwszej wersji manuskryptu oraz redagowanie wersji
ostatecznej, przygotowanie odpowiedzi na uwagi recenzentów.
3. Dziewit L, Radlinska M. (2016) Two novel temperate bacteriophages co-existing in
Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA
methyltransferases. Journal of General Virology. 97(8): 2008-2022.
IF2015 – 3,192; IF5-letni – 3,131; punktacja MNiSW – 30; liczba cytowań (wg bazy WoS) – 0.
Wkład habilitanta: 70%. Autor korespondencyjny. Autorstwo koncepcji badań; zaplanowanie i
wykonanie wszystkich doświadczeń in vivo i większości in vitro; przeprowadzenie części analiz
2
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
in silico; analiza i interpretacja wyników; napisanie pierwszej wersji manuskryptu oraz
redagowanie wersji ostatecznej, przygotowanie odpowiedzi na uwagi recenzentów.
4. Dziewit L, Radlinska M. (2016) Two bacteriophages of an Antarctic Pseudomonas sp.
ANT_H14 use the same capsid for packaging their genomes – characterization of a novel phage
helper-satellite system. PLoS One. 11(7):e0158889.
IF2015 – 3,057; IF5-letni – 3,535 punktacja MNiSW – 40; liczba cytowań (wg bazy WoS) – 0.
Wkład habilitanta: 75%. Autor korespondencyjny. Autorstwo koncepcji badań; zaplanowanie i
wykonanie wszystkich doświadczeń in vivo i in vitro; przeprowadzenie części analiz in silico;
analiza i interpretacja wyników; napisanie pierwszej wersji manuskryptu oraz redagowanie
wersji ostatecznej, przygotowanie odpowiedzi na uwagi recenzentów.
Sumaryczny współczynnik oddziaływania czasopism, w których ukazały się publikacje
wchodzące w skład osiągnięcia naukowego, zgodnie z rokiem opublikowania (w przypadku
prac z roku 2016 podano współczynnik z roku poprzedzającego tj. 2015) – 18,966.
Liczba punktów MNiSW za publikacje wchodzące w skład osiągnięcia naukowego – 145.
Liczba cytowań publikacji wchodzących w skład osiągnięcia naukowego do dnia złożenia
wniosku (wg bazy Web of Science) – 14.
c) Omówienie celu naukowego ww. prac i osiągniętych wyników wraz z omówieniem ich
ewentualnego wykorzystania.
Wstęp
Wirusy bakteryjne to najliczniejsze jednostki biologiczne w biosferze, ich liczbę szacuje się na 10 31
[1]. 95% wszystkich dotąd poznanych bakteriofagów zostało sklasyfikowanych w rzędzie
Caudovirales. Bakteriofagi mają ogromny wpływ na ewolucję bakterii i ich ekologię. Uznawane są
za główny czynnik promujący horyzontalny transfer genów między bakteriami [2].
Fagi są określane jako „zjadliwe” (wirulentne) lub „łagodne”, a podstawą ich rozróżnienia
jest przebieg cyklu infekcyjnego. Fagi zjadliwe, w krótkim czasie po infekcji, wytwarzają cząstki
potomne, których uwolnienie indukuje lizę komórki gospodarza (cykl lityczny). Fagi łagodne są
dodatkowo zdolne zintegrować swój genom z chromosomem bakteryjnym albo pozostać w
cytoplazmie jako niezależny episom (koliście zamknięty lub liniowy plazmid-profag) i trwając w
stanie uśpienia (latencji) replikować się z genomem gospodarza przez wiele generacji (cykl
lizogenny). Przełączenie do cyklu litycznego jest częściej inicjowane w warunkach stresowych (np.
jako efekt uszkodzenia DNA), co skutkuje indukcją ekspresja genów litycznych, nieaktywnych w
stanie lizogenii [3].
Analiza genomów bakteryjnych wykazała, że większość z nich zawiera sekwencje
profagowe, często bardzo liczne. Na przykład u Escherichia coli O157:H7 Sakai zidentyfikowano
18 sekwencji profagowych, które stanowią 16% genomu tej bakterii [4].
3
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Znacząca większość sekwencji profagowych zgromadziła w toku ewolucji wiele mutacji,
które uniemożliwiają im wejście w ścieżkę lityczną, utworzenie wirionów, przeprowadzenie lizy
komórki gospodarza albo spowodowały utratę infekcyjność [5]. Co ciekawe okazało się, że niektóre
profagi uznane, na podstawie analizy sekwencji, za defektywne, są zdolne do utworzenia cząstek
potomnych, albo spontanicznie albo po zastosowaniu indukujących czynników fizycznych (np. UV,
zmiany temperatury) lub chemicznych (np. mitomycyny C). Prowadzi to do wniosku, że
przynajmniej niektóre z nich wciąż mogą funkcjonować jako mobilne elementy genetyczne i brać
udział w horyzontalnym transferze genów [6].
Aktywne i defektywne profagi, często wyposażają gospodarzy w korzystne właściwości np.
czynniki wirulencji, oporność na antybiotyki czy oporności na superinfekcję (zakażenie lizogena
tym samym lub pokrewnym fagiem). Usunięcie wszystkich dziewięciu kryptycznych profagów
(166 kbp) z E. coli BW25113 spowodowało spadek oporności na 11 antybiotyków β-laktamowych,
zmianę wrażliwości na różne warunki stresowe (stres osmotyczny, oksydacyjny, niskiego pH) oraz
w zdolności do tworzenia biofilmu [7]. Postuluje się, że wiele bakteryjnych systemów
adaptacyjnych pochodzi od defektywnych profagów np. GTA (ang. gene transfer agents), które
przenoszą losowe fragmenty chromosomowego DNA do innych komórek [8].
Większość białek kodowanych przez bakteriofagi jest zaangażowana w morfogenezę
wirionów oraz zapewnienie efektywnego namnożenia własnego materiału genetycznego [9].
Enzymy metabolizm kwasów nukleinowych są wykorzystywane przez wirusy do ochrony
genomów przed systemami antywirusowymi gospodarza, do przejęcia kontroli nad maszynerię
komórkową i zagwarantowania wybiórczej ekspresji własnej informacji genetycznej. Enzymy
zaangażowane w te procesy mają wyjątkowe właściwości biochemiczne i katalityczne, w wielu
przypadkach występujące tylko u białek wirusowych. Dlatego, właśnie fagowe enzymy znalazły
zastosowanie w technikach biologii molekularnej do manipulacji kwasami nukleinowymi (np.
polimerazy DNA fagów T4, T7, Φ29 i RNA T7, Φ6; ligazy DNA T4, T3, T7 i RNA T4; integrazy
λ, Cre P1; kinazy, egzo- i endonukleazy).
Dużą grupę fagowych enzymów metabolizmu kwasów nukleinowych stanowią enzymy
modyfikujące DNA. Modyfikacja DNA to zjawisko powszechne u wszystkich jednostek
biologicznych, a do nukleotydów mogą być dołączane różnorodne grupy chemiczne. O ile u
organizmów komórkowych i ich wirusów modyfikacje zasadniczo ograniczają się do metylacji
(dodanie grupy metylowej lub hydroksymetylowej), u bakteriofagów do nukleotydu mogą być
dodawane także aminokwasy, poliaminy, mono- i disacharydy. Na przykład u colifagów Tparzystych wszystkie cytozyny są przekształcone do glukozo-5-hydroksymetylocytozyny, natomiast
15% adenin w genomie colifaga Mu, replikującego się poprzez transpozycję, jest zmodyfikowanych
do N6-karbamylo-metyloadeniny co jest efektem działania fagowego białka Mom [10].
4
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Obecność zmodyfikowanych nukleotydów moduluje powinowactwo białek do DNA.
Zapewne dlatego wiele mechanizmów komórkowych i wirusowych wykorzystuje modyfikację
DNA jako podstawę funkcjonowania, na przykład strategie odróżnienia „swój-obcy”, ochrony DNA
przed degradacją i/lub kontroli regulacji ekspresji genów [11,12].
Najbardziej powszechną formą modyfikacji DNA, zidentyfikowaną we wszystkich
domenach życia oraz u wirusów, jest metylacja. U bakterii metylacja cytozyny do 5metylocytozyny (m5C) lub N4-metylocytozyny (m4C) oraz adeniny do N6-metyloadeniny (m6A),
jest wykorzystywana jako znacznik pozwalający na odróżnienie własnego materiału genetycznego
od obcego, np. fagowego. W oparciu o tę zasadę działają systemy restrykcji-modyfikacji (RM).
Bakteriofagi bardzo często unikają rozpoznania używając podobnych strategii, tj. kodowanych
przez siebie metylotransferaz DNA (MTaz DNA) o tych samych specyficznościach, co bakteryjne
systemy RM, albo nietypowo modyfikując nukleotydy jak wspomniane wyżej colifagi T-parzyste i
Mu [10,13,14].
Natomiast modyfikacje wprowadzane przez niektóre samotne (nie związane z systemami
RM) bakteryjne MTazy DNA stanowią znaczniki epigenetyczne odgrywające rolę w regulacji
ekspresji genów, patogenezie, kontroli replikacji DNA oraz pozwalające na odróżnienie nici w
procesach naprawy błędów poreplikacyjnych i uszkodzeń oksydacyjnych [10]. Ta druga grupa
bakteryjnych MTaz DNA, pełniąca funkcje regulacyjne jest zwykle konserwowana w obrębie
jednostki taksonomicznej - klasy (łac. classis) np. M.Dam (produkt metylacji Gm6ATC) przez
gammaproteobakterie czy CcrM (Gm6ANTC) przez alfaproteobakterie [14].
Od wielu lat zjawisko metylacji u organizmów prokariotycznych oraz enzymy
odpowiedzialne za ten proces są systematycznie badane. Tymczasem nasza wiedza o fagowych
MTazach DNA jest ograniczona. Fakt dość powszechnej obecności genów kodujących MTazy
DNA w genomach fagowych oraz sekwencjach profagowych, pozwala przypuszczać, że niektóre z
nich pełną inną, niż wspomniana wyżej, funkcja ochronna przed degradacją. Na przykład wykazano
związek między efektywną inicjacją pakowania genomu łagodnego faga P1 do kapsydu, a
kodowaną przez niego MTazą Dmt, o specyficzności identycznej jak M.Dam gospodarza E.coli
[15]. Wiele innych fagów infekujących gammaproteobakterie np. colifagów (T1, T2, T4, VT-2) czy
HP1 Haemophilus influenzae także koduje MTazy DNA naśladujące specyficzność ich
bakteryjnego gospodarza - M.Dam, ale ich funkcja pozostaje nieznana [16].
W prezentowanym przeze mnie cyklu prac przedstawionych jako osiągnięcie habilitacyjne,
postawiłam sobie za cel scharakteryzowanie nowych fagowych MTaz DNA, aby w ten sposób
rzucić światło na rolę metylacji DNA u wirusów bakteryjnych. W pierwszym etapie, do
poszukiwania modeli badawczych, zostały wykorzystane dostępne bazy danych sekwencji oraz
5
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
analiza bioinformatycza. Z użyciem tej strategii zidentyfikowaliśmy grupę niespecyficznych MTaz
DNA modyfikujących adeninę do m6A (MTazy m6A).
W drugim etapie połączyłam poszukiwanie genów MTaz DNA z izolacją nowych
bakteriofagów łagodnych. Dzięki temu, oprócz samych fagowych MTaz, mogłam zidentyfikować i
scharakteryzować unikatowe wirusy bakteryjne, a także poznać relacje pasożyt-gospodarz oraz
ustalić związki filogenetyczne pomiędzy bakteriofagami.
Wszystkie nowoodkryte łagodne bakteriofagi zostały zidentyfikowane dzięki tej samej
procedurze - indukcji z użyciem mitomycyny C i frakcjonowaniu w równowagowym gradiencie
chlorku cezu. Gospodarzami tych profagów były bakterie, reprezentujące różne klasy proteobakterii
i wyizolowane z różnych środowisk: klasa alfaproteobakterii: Sinorhizobium sp. LM21 - szczep
pochodzący z kopalni miedzi, klasa gammaproteobakterii: Aeromonas sp. ARM81 z oczyszczalni
ścieków oraz Pseudomonas sp. ANT_H14 z Antarktydy. Wszystkie te trzy szczepy okazały się być
polilizogeniczne tzn. ich genomy zawierały więcej niż jednego profaga, ściślej każdy z nich
zawierał po dwa profagi, przy czym w przypadku Sinorhizobium sp. LM21 udało się zaindukować
tylko jednego z nich.
Genom każdego z nowoodkrytych bakteriofagów był sekwencjonowany, adnotowany i
poddawany kompleksowej charakterystyce, w celu identyfikacji funkcjonalnych modułów
(zespołów genów biorących udział w tym samym procesie biologicznym pozostających pod
wspólną kontrolą regulacyjną), a także analizom porównawczym i filogenetycznym. Na podstawie
obserwacji wirionów w transmisyjnym mikroskopie elektronowym (TEM) klasyfikowaliśmy faga
do jednej z trzech rodzin rzędu Caudovirales (Sipho-, Myo- lub Podoviridae). Wybrane geny i
elementy regulatorowe były poddawane eksperymentalnej weryfikacji funkcji. Wszystkie
zidentyfikowane geny MTaz DNA zostały sklonowane, a ich białkowe produkty charakteryzowane
biochemicznie. Na podstawie ustalonych właściwości enzymatycznych, w tym specyficzności,
aktywności w natywnym gospodarzu oraz lokalizacji genu MTazy w genomie wnioskowaliśmy na
temat potencjalnej funkcji.
Drożdż M, Piekarowicz A, Bujnicki JM, Radlińska M. (2012) Novel non-specific DNA adenine
methyltransferases. Nucleic Acids Res.
W wyniku przeprowadzonych analiz bioinformatycznych z użyciem dostępnych baz danych
zidentyfikowaliśmy grupę sekwencji profagowych, podobnych do faga Mu. Były to profagi FluMu
Haemophilus influenzae Rd i Pnm1 Neisseria meningitidis typu A szczep Z2491 [17] oraz
patogenna wyspa H. influenzae biogrupa aegyptius (czynnik infekcyjny gorączki plamicowej
brazylijskiej) [18]. Ich wspólną cechą była obecność, w locus zajmowanym przez gen mom w fagu
Mu, otwartej ramki odczytu kodującej inny enzym modyfikujący, przypuszczalnie MTazę DNA.
6
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Geny te tj. hin1523 z H. influenzae Rd30, nma1821 z N. meningitidis Z2491 oraz hia5 z H.
influenzae biogrupa aegyptius ATCC11116 zostały sklonowane, a produkty białkowe wyizolowane
i oczyszczone. Z użyciem szeregu testów biochemicznych potwierdziliśmy, iż rzeczywiście są to
MTazy DNA. Zastosowanie chromatografii cienkowarstwowej pozwoliło nam zidentyfikować
produkt reakcji katalizowanej przez te enzymy, N6-metyloadeniny. Wykorzystany przez nas test
wrażliwość endonukleaz restrykcyjnych (REaz) na obecność m6A w sekwencjach przez nie
rozpoznawanych, z użyciem jako substratu DNA zmodyfikowanego in vivo oraz in vitro przez
MTazy Hia5, Nma1821 oraz Hin1523, nie pozwolił jednoznacznie określić specyficzności tych
enzymów. Okazało się, że badane MTazy modyfikowały DNA w bardzo różnych kontekstach
sekwencyjnych, co było mocną przesłanką do przypuszczenia, iż ich specyficzność jest rozluźniona.
Dlatego zdecydowaliśmy się na użycie wysokosprawnej chromatografii cieczowej (HPLC), dzięki
której wykazaliśmy, że MTaza Hia5 w warunkach in vitro w genomowym DNA faga lambda
(49,8% G+C) przekształca aż 61% reszt adeninowych do m6A. Uzyskany wynik silnie sugerował,
że miejsce rozpoznawane przez ten enzym może być co najwyżej dwunukleotydowe. W celu
potwierdzenia tej hipotezy zaprojektowaliśmy specjalny zestaw dwuniciowych oligonukleotydów
zawierających na jednej z nici powtórzenia danego dwunukleotydu: CA, GA, TA lub AA (tj. poliA). Okazało się, że MTazy Hia5 oraz jej homologi nie metylują tylko ostatniego z nich, co
oznaczało, że każda sekwencja zawierająca adeninę, oprócz traktów poli-A, może być substratem
dla badanych MTaz DNA, a więc ich „specyficzność” można podsumować jako BA (B=G, T, C).
Trzeba podkreślić, że wspomniany wyżej nowatorski i niekonwencjonalny zestaw dupleksów
oligonukleotydów okazał się być doskonałym narzędziem nie tylko do wykazania ekstremalnie
rozluźnionej specyficzności (de facto braku specyficzności) Hia5 i pozostałych badanych MTazy,
ale też uniwersalną procedurą do testowania sekwencji rozpoznawanych przez inne nietypowe
fagowe MTazy DNA (patrz niżej).
Wyniki analizy restrykcyjnej genomowego DNA H. influenzae Rd30 i ATCC11116, oraz
HPLC DNA H. influenzae ATCC11116 pozwoliły na wniosek, że MTazy Hia5 i Hin1523 są
nieaktywne w komórkach tych bakterii. Ich geny nie ulegają ekspresji prawdopodobnie z powodu
braku białka regulatorowego Com, który jest produktem tzw. fagowych genów późnych. Aktywator
Com (jego gen poprzedza mom) jest niezbędny do włączenia ekspresji mom u faga Mu, a geny
badanych MTaz zajmują ten sam locus co mom. Ekspresji genu mom ma miejsce bardzo późno w
cyklu infekcyjnym, tuż przed lizą komórki, zapewne ze względu na cytotoksyczność Mom [19].
Gen kodujący homologa Com faga Mu wykryliśmy zarówno przed genem hia5 jak i hin1523 oraz
nma1821. Niewykluczone, że ich działanie regulacyjne jest podobne do Com Mu i gdyby doszło
ekspresji genów późnych (w tym com), uruchomiona byłaby też ekspresja genów MTaz. Czy
7
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
faktycznie byłoby to możliwe, nie udało nam się ustalić, gdyż nie powiodły się próby indukcji
profaga H. influenzae Rd30 z użyciem mitomycyny.
Potencjał do modyfikacji niemal każdej adeniny w DNA, który odkryliśmy u MTaz Hia5,
Hin1523 oraz Nma1821, może być bez wątpienia wykorzystany w różnych aplikacjach biologii
molekularnej. My użyliśmy go do sprawdzenia czy enzymy restrykcyjne, których sekwencja
rozpoznawana zawiera zarówno cytozyny jak i adeniny, przetną ją, jeśli adeninę zastąpi się m6A.
Dane, które uzyskaliśmy dla kilkunastu komercyjnych REaz, są powszechnie dostępne w bazie
REBASE gromadzącej informacje na temat enzymów związanych z restrykcją i modyfikacją DNA
(http://rebase.neb.com). Właściwości niespecyficznej MTazy Hia5 umożliwiły także wykrycie
zdolności endonukleazy R.DpnI do cięcia miejsc niekanonicznych tj. innych niż Gm 6ATC [20,21].
Przypuszczamy, że Hia5 i jej homologi mogą być także wykorzystane jako narzędzie do badania
skutków metylacji adeniny w eukariotycznym DNA lub jako rozszerzenie metodologii mapowania
in vivo interakcji białko-genom, zastępując MTazę Dam, która do tej pory była tam stosowana
(technika DamID) [22].
Najważniejszym osiągnięciem opisywanej pracy było odkrycie pierwszej niespecyficznej
MTazy m6A (ściślej grupy enzymów o takich właściwościach). M.Hia5 (oraz jej homologi) stała się
w ten sposób prototypem enzymu modyfikującego sekwencje BA. Zidentyfikowane przez nas
enzymy są unikatowe i nietypowe w porównaniu do białek komórkowych. Trudne do wyobrażenia
jest posiadanie przez bakteryjnego gospodarza funkcjonalnego enzymu o ekstremalnie rozluźnionej
specyficzności. Jak już wspomniałam, zmodyfikowane nukleotydy modulują powinowactwo białek
do DNA. W takiej sytuacji masowa metylacja zmieniłaby diametralnie oddziaływanie wielu białek
z materiałem genetycznym, co w konsekwencji miałoby dla komórki katastrofalne skutki.
Dziewit L, Ościk K, Bartosik D, Radlińska M. Molecular characterization of a novel
temperate Sinorhizobium bacteriophage, ФLM21, encoding DNA methyltransferase with
CcrM-like specificity. (2014) J Virol.
Praca prezentuje analizę genomiczną, porównawczą oraz funkcjonalną wybranych elementów
regulatorowych i genów (w tym MTazy DNA) wyizolowanego przez nas łagodnego bakteriofaga
Sinorhizobium sp. LM21, bakterii pochodzącej z osadów kopalni miedzi Lubin.
W genomie ФLM21, tuż przez grupą genów przypuszczalnie związanych z replikacją,
zidentyfikowaliśmy gen kodujący MTazę m6A (orf27), którego produkt specyficznie modyfikował
sekwencję GANTC do Gm6ANTC. Enzym ten nie metylował miejsc niekanonicznych. Wszystkie
dotąd poznane alfaproteobakterie kodują MTazy m6A o specyficzności GANTC (modyfikowany
nukleotyd jest podkreślony), których prototypem jest CcrM z Caulobacter crescentus [23].
Wykazaliśmy, że homolog CcrM (CcrMLM21) jest kodowany także przez szczep LM21 i ma taką
8
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
samą specyficzność. Wcześniejsze doniesienia wskazywały, że MTazy podobne do CcrM są
kluczowe dla żywotności Sinorhizobium meliloti, Agrobacterium tumefaciens, Brucella abortus i C.
crescentus oraz, że biorą udział w regulacji cyklu komórkowego [23-26]. Jest prawdopodobne, że
CcrMLM21, której sekwencja aminokwasowa jest w 94% identyczna z CcrM Sinorhizobium meliloti
1021, pełni podobną funkcję w szczepie LM21.
Wyniki moich prac, jako pierwsze pokazują, że bateriofagi alfaproteobakterii kodują MTazy
DNA o specyficzności GANTC naśladując tym samym specyficzność metylacyjną globalnego
enzymu regulatorowego swojego bakteryjnego gospodarza. Wcześniej fenomen ten został przeze
mnie wykryty w trzech sekwencjach profagowych znajdujących się genomie Paracoccus
aminophilus JCM 7686, w tym dla jego aktywnego profaga ΦPam-6 ([27], praca nie włączona do
cyklu przedstawianego jako osiągnięcie habilitacyjne). Co ciekawe, geny wspomnianych MTaz
DNA u profagów P. aminophilus JCM 7686, tak samo jak orf27 ФLM21, znajdują się tuż przed
modułem replikacyjnym, co sugeruje związek aktywności metylacyjnej z tym etapem fagowego
cyklu infekcyjnego. Natomiast na poziomie sekwencji aminokwasowej Orf27 ФLM21 oraz MTazy
profagów P. aminophilus nie są podobne do MTaz typu CcrM ich bakteryjnych gospodarzy.
Pozwala to przypuszczać, że w procesach, w których te enzymy są zaangażowane istotniejsza jest
specyficzność a nie ich struktura pierwszorzędowa.
Sinorhizobium to niezwykle ważny rodzaj mikroorganizmów z klasy alfaproteobakterii ze
względu na ich zdolność do wiązania azotu atmosferycznego i możliwość życia w symbiozie z
roślinami motylkowymi. Nasza wiedza na temat fagów infekujących tę istotną z punktu widzenia
gospodarczego i ekologicznego grupę bakterii, jest znikoma, do tej pory poznano trzy takie wirusy,
a tylko dwa zostały scharakteryzowane [28,29]. Dlatego przeprowadzone przez nas badania
stanowią istotny wkład w to zagadnienie tym bardziej, że ФLM21 okazał się być unikatowym nie
tylko w porównaniu do fagów infekujących Sinorhizobium, ale także wszystkich dotąd poznanych
wirusów bakteryjnych.
Dziewit L, Radlińska M. Two novel temperate bacteriophages co-existing in Aeromonas sp.
ARM81 - characterization of their genomes, proteomes and DNA methyltransferases. (2016) J
Gen Virol.
Praca prezentuje analizę genomiczną i porównawczą dwóch łagodnych bakteriofagów,
ФARM81mr i ФARM81ld, koegzystujących w jednym gospodarzu, Aeromonas sp. ARM81,
bakterii wyizolowanej ze ścieków komunalnych oczyszczalni Czajka w Warszawie oraz
charakterystykę kodowanych przez nie MTaz DNA. Mitomycyna C spowodowała symultaniczną
indukcję obu wirusów. Co ciekawe, plony obu fagów były dość wysokie, choć w szczepach
polilizogennych zazwyczaj tylko jeden z profagów ulega indukcji lub znacząco dominuje w
9
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
stosunku do pozostałych pod względem liczby wytworzonych cząstek potomnych [30]. Podczas
wirowania równowagowego w gradiencie chlorku cezu, wiriony ФARM81mr i ФARM81ld
utworzyły dwa osobne prążki, co umożliwiło ich rozdzielenie.
Dzięki sekwencjonowaniu, analizie restrykcyjnej oraz hybrydyzacji metodą Southerna DNA
wyizolowanego z komórek gospodarza oraz kapsydów ustaliliśmy, że ФARM81mr jako profag
pozostaje zintegrowany z chromosomem gospodarza, a ФARM81ld jest pozachromosomowym
niezależnym replikonem, liniowym plazmidem-profagiem. Forma liniowa cząsteczki DNA profaga
ФARM81ld oraz obecność na jej końcach 42-nukleotydowych sekwencji palindromicznych (tzw.
telomerów), a także obecność w genomie genu kodującego homologa protelomeraz, enzymów
charakterystycznych dla liniowych telomerowych bakteriofagów pozwoliły nam na przypisanie
ФARM81ld do tej grupy rzadkich wirusów, których prototypem jest N15 [31]. Liniowe telomerowe
profagi-plazmidy stanowią bardzo unikatową formę lizogenii, jak dotąd scharakteryzowano ich
zaledwie osiem. ФARM81ld jest pierwszym takim profagiem odkrytym u bakterii z rodzaju
Aeromonas.
W sekwencjach badanych fagów zidentyfikowaliśmy cztery MTazy DNA. Produkty genów
ARM81mr_p29 i ARM81ld_p31, kodowane przez odpowiednio fagi ФARM81mr i ФARM81ld,
wykazały 58% identyczności, a także podobieństwo do M.Gel16401IV z Geopsychrobacter
electrodiphilus DSM 16401 (o specyficzności CCAG) i innych MTaz modyfikujących cytozynę do
m5C. Gen ARM81mr_p29 znajduje się tuż przed modułem replikacyjnym, a ARM81ld_p31 w
sąsiedztwie systemu partycyjnego.
Wykazaliśmy, że MTazy ARM81mr_p29 i ARM81ld_p31 modyfikują co najmniej jedną
cytozynę w sekwencji CC, jednakże ich aktywność enzymatyczną zademonstrowaliśmy wyłącznie
po nadprodukcji w E.coli. Natomiast nie potwierdziliśmy obecności modyfikacji m5C w motywach
CC w genomowym DNA ФARM81mr i ФARM81ld wyizolowanym z wirionów. Nie można
wykluczyć, że MTazy ARM81mr_p29 i ARM81ld_p31 są aktywne w komórkach Aeromonas, ale
na przykład na bardzo wczesnych etapach cyklu infekcyjnego obu fagów, albo, że metylacja w
warunkach naturalnych dotyczy tylko nieznacznej frakcji miejsc.
W genomie ФARM81mr zidentyfikowaliśmy także gen, ulokowany w module
rekombinacyjnym, kodujący MTazę m6A (ARM81mr_p11) podobną do MTaz typu Dam łagodnych
fagów gammaproteobakterii m.in. VT-2 [32] i HP1 [33,34]. Potwierdziliśmy eksperymentalnie jej
specyficzność GATC. Szczep ARM81 koduje własną MTazę Dam (DamARM81), w 94% identyczną
z M.AhySSUDam, która warunkuje żywotność i patogenność szczepu A. hydrophila SSU [35], co
pozwala przypuszczać, że pełni ona podobną funkcję w szczepie ARM81. Jednakże, mimo
identycznej sekwencji rozpoznawanej białka ARM81mr_p11 i DamARM81 nie wykazują znaczącego
podobieństwa. Taki fenomen molekularnej mimikry specyficzności MTaz typu Dam, kodowanych
10
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
przez fagi oraz przez ich gospodarzy - gammaproteobakterie był już uprzednio opisany [36,37],
także jako wynik moich wcześniejszych prac [32,34]. Natomiast tutaj po raz pierwszy został przez
nas odkryty w rodzaju Aeromonas.
Trzeba podkreślić, że podobne zjawisko zidentyfikowałam u faga ФLM21 i jego gospodarza
alfaproteobakterii Sinorizobium sp. LM21, a wcześniej w P. aminophilus JCM 7686 (patrz wyżej).
Występowanie takiego fenomenu w obu klasach proteobakterii pozwala przypuszczać, iż fagowe
MTazy Dam u gammaproteobakterii oraz fagowe MTazy typu CcrM u alfaproteobakterii pełnią
istotne funkcje w ich cyklach infekcyjnych. Można też spekulować, że w tym szczególnym
wypadku, tak jak bezwzględnie zachowywana jest specyficzność MTaz fagowych i bakteryjnych,
równie istotny i konserwowany jest brak podobieństwa tych białek, co może mieć odzwierciedlenie
w różnym sposobie ich działania. Sprawdzenie słuszności tej hipotezy będzie wymagało dalszych
badań i jest też jednym z celów moich najbliższych planów naukowych.
Najbardziej niezwykłą MTazą DNA, okazał się produkt genu ARM81ld_p56, który kodował
enzym w 53% identyczny z niespecyficzną MTazą m6A M.EcoGI enterokrwotocznej E. coli
O104:H4 C227-11 [38]. Z użyciem zestawu dwuniciowych oligonuklotydów zawierających w
jednej z nici powtórzenia danego dwunukleotydu: CA, GA, TA lub AA (użytego wcześniej w
analizie MTazy Hia5, patrz wyżej) wykazaliśmy, że badany enzym metyluje wszystkie te substraty,
co pozwala wnioskować, że MTaza ARM81ld_p56 może modyfikować każdą adeninę bez względu
na kontekst sekwencyjny. Enzym ten jest więc potencjalnie zdolny do masowej metylacji, tak samo
jak zostało to wykazane dla MTazy Hia5.
W genomach funkcjonalnych bakteriofagów zidentyfikowaliśmy wiele homologów
ARM81ld_p56. Co ciekawe, wśród nich są MTazy kodowane przez sześć z ośmiu znanych
telomerowych fagów liniowych (ФKO2, PY54, vB_VpaM_MAR, VHML, N15 i VP58.5), a także
przez łagodnego faga Aeromonas ФO18P. Niewykluczone, że te MTazy są również niespecyficzne.
Tuż przed genem ARM81ld_p56 w genomie ФARM81ld znajduje się gen kodujący
homologa białka Com (ARM81ld_p55), który jak, wspomniano wyżej, jest pozytywnym
regulatorem translacji enzymu modyfikacyjnego Mom u faga Mu i zabezpiecza przed
przedwczesną,
cytotoksyczną
dla
gospodarza,
modyfikacją
DNA,
„momifikacją”
[19].
Niewykluczone, że ARM81ld_p55 pełni podobną funkcję związaną z kontrolą ekspresji MTazy
ARM81ld_p56. Ta para genów jest zlokalizowana na końcu prawego ramienia genomu faga
ФARM81ld, tuż przed genem kodującym białko umożliwiające dezintegrację ściany komórkowej
gospodarza, tak samo jak geny com-mom w fagu Mu i tak samo jak com-hia5. O ile „momifikacja”
wydaje się być wykorzystywana przez faga Mu jako strategia anty-restrykcyjna, w każdym razie
efektywnie zabezpiecza fagowy DNA przez strawieniem różnymi REazami [39], enzym
ARM81ld_p56 nie wydaje się pełnić takiej funkcji, gdyż nie wykryliśmy masowej metylacji
11
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
genomowego DNA faga ФARM81ld tą MTazą. Wynik ten niezwykle nas zaskoczył, gdyż brak
aktywności Hia5 i jej homologów w natywnych gospodarzach (a także innych niespecyficznych
MTaz jak wspomnianej M.EcoGI) można było wytłumaczyć represją promotorów profagowych w
związku ze stanem lizogenii. Natomiast testowane genomowe DNA ФARM81ld zostało
wyizolowane z kapsydów, a więc już po efektywnym zakończeniu ścieżki litycznej tego faga. Być
może, potencjał ARM81ld_p56 do masowej metylacji jest wykorzystywany nie do obrony przed
restrykcją, ale jako strategia obronna przed superinfekcją. Byłby to więc system wykluczający
zakażenie lizogena takim samym lub pokrewnym bakteriofagiem. Masowa metylacja mogłaby
skutecznie zablokować zarówno replikację faga-intruza, jak i replikację chromosomu lizogena, co
w rezultacie doprowadziłoby do jego śmierci. Wielokrotnie opisywano strategie anty-fagowe
bazujące na „samobójstwie” zaatakowanej komórki, które efektywnie ograniczają możliwość
rozprzestrzenienia się pasożyta w populacji [40,41]. Bardzo często takie systemy „oporności” są
kodowane na ruchomych elementach jak plazmidy czy profagi [42]. Oczywiście moja dość śmiała
hipoteza, o wykorzystaniu niespecyficznej MTazy DNA jako strategii ochrony przed superinfekcją,
wymaga przeprowadzenia odpowiednich badań, które planuję podjąć w najbliższym czasie.
Aeromonas występują powszechnie w różnych środowiskach, szczególnie masowo w
wodzie, gdzie są prekursorami tworzenia biofilmów. Uważane są za najistotniejszy czynnik
etiologiczny zakażeń ryb, a trzy gatunki tj. Aeromonas hydrophila, A. caviae i A. veronii mają
znaczenie kliniczne dla człowieka, wywołują˛ zatrucia pokarmowe lub nieżyty żołądkowo-jelitowe.
Jak dotąd opisano tylko jednego łagodnego faga Aeromonas [43]. Nasze badania dostarczyły więc
bardzo istotnych danych ilustrujących różnorodność łagodnych fagów infekujących ten rodzaj
bakterii oraz typów lizogenii przez nie przyjmowanych.
Dziewit L, Radlińska M. Two bacteriophages of an Antarctic Pseudomonas sp. ANT_H14 use
the same capsid for packaging their genomes – characterization of a novel phage helpersatellite system. (2016) PLoS One.
Praca prezentuje analizę genomiczną i porównawczą dwóch łagodnych bakteriofagów,
ФAH14a i ФAH14b, koegzystujących w jednym gospodarzu, termotolerancyjnym Pseudomomonas
sp. ANT_H14 wyizolowanym z gleby na Antarktydzie. W przeciwieństwie do opisanych wcześniej
wirusów Aeromonas sp. ARM81, jednoczesna izolacja dwóch różnych fagów z ANT_H14 była dla
nas ogromnym zaskoczeniem, gdyż po wirowaniu zawiesiny fagowej (wyizolowanej po indukcji
bakterii mitomycyną C) w gradiencie CsCl widoczny był tylko jeden prążek, a na zdjęciu z TEM
wszystkie cząstki fagowe były tej samej wielkości. Tymczasem sekwencjonowanie materiału
genetycznego pochodzącego z kapsydów wykazało obecność dwóch zupełnie różnych genomów
wirusowych. Ponadto analizując skład białkowy wirionów zidentyfikowaliśmy produkty kodowane
12
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
tylko przez jednego z tych fagów ФAH14a. Genom drugiego faga ФAH14b nie zawierał żadnych
genów strukturalnych i morfogenetycznych (a także związanych z lizą gospodarza). Uzyskane
rezultaty pozwoliły nam na konkluzję, że genomy obu fagów zostały zapakowane do kapsydów
zbudowanych z białek strukturalnych faga ФAH14a, a to z kolei na przypuszczenie, że odkryliśmy
nowy wirusowy system „pomocnik (helper)-satelita”, w którym satelita ФAH14b pasożytuje na
„pomocniku” ФAH14a.
Bakteriofagi satelitarne to czynniki zdolne do autonomicznej replikacji swojego materiału
genetycznego, ale nie kodujące białek strukturalnych i morfogenetycznych oraz litycznych, które do
zapakowania genomu wykorzystują elementy strukturalne kodowane przez innego faga tzw.
pomocniczego. W ten sposób zapewniają sobie możliwość rozprzestrzenienia się [44]. Wzorcowym
przykładem systemu „helper-satelita” Caudovirales i jak dotąd jedynym scharakteryzowanym u
bakterii Gram-ujemnych, jest para bakteriofagów P2-P4 infekujących Enterobakterie. Chociaż
wiriony fagów P2 i P4 są zbudowane z tych samych białek, kodowanych przez P2, wielkości obu
kapsydów są różne. Genom P2 o długości 33,5 kb jest pakowany do dużych główek, a genom P4 o
długości 11,6 kb do małych główek, zmniejszonych dzięki działaniu białka Sid faga P4 [45,46].
Jak wspomniano wyżej cząstki fagowe obserwowane w TEM były jednakowej wielkości, co
było zaskakujące gdyż genomy ФAH14a i ФAH14b różnią się znacząco długością (odpowiednio
55060 i 16812 bp). W oparciu o ilościową analizę restrykcyjną DNA wyizolowanego z cząstek
fagowych wywnioskowaliśmy, że genom ФAH14a jest pakowany mniej więcej jako monomer, a
ФAH14b jako trimer, a pakowanie odbywa się z użyciem strategii „do wypełnienia główki” (ang.
headful). Podobne zjawisko, braku możliwości zmiany morfologii główki, zaobserwowano u faga
P4 z mutacją typu knock-out genu sid. Fagi P4 sid- pakowały trimery genomowego DNA do dużych
główek [47,48]. Trzeba podkreślić, że w genomie ФAH14b nie zidentyfikowaliśmy genu, którego
produkt byłby homologiczny do Sid P4, mimo, że trzy inne białka (integraza, regulator transkrypcji
i prymaza) obu fagów są podobne.
Przeprowadzone przez nas analizy porównawcze doprowadziły do identyfikacji w
zsekwencjonowanych genomach bakterii z rodzaju Pseudomonas hipotetycznych profagów
wykazujących podobieństwo do ФAH14a i ФAH14b, a nawet podobnych par w genomach
Pseudomonas sp. TKP, P. cichorii JBC1 i P. mosselii SJ10. Pozwala to przypuszczać, że systemy
„helper-satelita”, spokrewnione z odkrytym przez nas prototypowym duetem ФAH14a-ФAH14b,
występują u Pseudomonas powszechnie.
W genomie faga pomocniczego ФAH14a zidentyfikowaliśmy gen kodujący MTazę DNA
(AH14a_p05), którego białkowy produkt wykazywał podobieństwo do scharakteryzowanych i
hipotetycznych MTaz modyfikujących cytozynę do m4C. Z użyciem enzymów restrykcyjnych
wrażliwych na obecność m4C w sekwencji rozpoznawanej wykazaliśmy, że AH14a_p05
13
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
modyfikuje pierwszą cytozynę w motywie CCCGGG. Żadne z 16 miejsc CCCGGG w DNA
ФAH14a ani siedmiu w DNA ФAH14b wyizolowanym z wirionów nie było wrażliwe na cięcie
REazą SmaI o takiej specyficzności, co pozwoliło przypuszczać, że miejsca te są zmetylowane
przez MTazę AH14a_p05. Jednocześnie fakt, że genomowy DNA Pseudomonas sp. ANT_H14 był
wrażliwy na SmaI wykluczało możliwość, że szczep ten koduje aktywny system RM o
specyficzności CCCGGG, co sugeruje, że MTaza AH14a_p05 nie jest częścią strategii obronnej
faga ФAH14a przed restrykcją w tym gospodarzu. Nie wykluczone jednak, że ta strategia
sprawdziłaby się w innym gospodarzu, który dysponowałby REazą o specyficzności CCCGGG.
Wiele szczepów Pseudomonas koduje REazy, będące częścią systemów RM, o takiej sekwencji
rozpoznawanej np. Pseudomonas alcaligenes (Pac25I) [49], Pseudomonas aeruginosa-18 (PaeBI)
czy Pseudomonas sp. AL1637 (PspAL).
Bierzemy również pod uwagę inną możliwość, że funkcja AH14a_p05 w szczepie
ANT_H14 nie jest związana z ochroną przed restrykcją. Lokalizacja genu AH14a_p05 w
sąsiedztwie modułu rekombinacyjnego może wskazywać na udział MTazy AH14a_p05 w tym
procesie.
Zdjęcia z TEM cząstek fagowych ФAH14a i ФAH14b, a także wyniki analizy składu
białkowego wirionów, nie pozostawiały wątpliwości, że kapsydy tych fagów składają się tylko z
główek pozbawionych ogonków, mimo że w genomie ФAH14a zidentyfikowaliśmy, cały zestaw
informacji genetycznej potrzebnej do zbudowania ogonka i przyłączenia go do główki.
Przypuszczalnie mutacje nagromadzone w genomie ФAH14a uniemożliwiają mu dokończenie
procesu morfogenezy wirionów. Zapewne gromadzące się zmiany degeneracyjne doprowadzą w
końcu do przekształcenia tego profaga w wersję w pełni defektywną. Jednakże ФAH14a wciąż
zachował zdolność do indukcji cyklu litycznego, replikacji oraz zapakowania genomu do główki.
Co ciekawe, wydaje się, że jego satelita ФAH14b utrzymał bez zmian wszystkie swoje natywne
funkcje – jednoczesnej indukcji wraz z helperem, replikacji i pakowania. Ten ewolucyjny paradoks
można wytłumaczyć na dwa sposoby: (i) defektywność ФAH14a jest rezultatem dość niedawnego
zdarzenia ewolucyjnego, (ii) mutacje w genomie ФAH14b podlegają bardzo mocnej presji
selekcyjnej. Działanie takiej kierunkowej presji selekcyjnej na sekwencję profagową ФAH14b (a
nie na ФAH14a) mogłoby wynikać z posiadania, tylko przez genom ФAH14b, jakiejś cechy, która
zwiększałaby zdolności przystosowawcze gospodarza. Wskazaliśmy dwa białka kodowane przez
ФAH14b, których aktywność mogłaby być potencjalnie korzystna dla bakterii – kinaza
histydynowa (podobne enzymy wchodzą w skład dwuskładnikowych systemów regulacyjnych,
których zadaniem jest odbiór sygnałów płynących ze środowiska zewnętrznego do komórki) [50]
oraz regulator AlpA, którego homologi są zaangażowane w tworzenie biofilmu u E.coli [51].
14
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Przestawione powyżej hipotezy to naturalnie spekulacje, które wymagają eksperymentalnej
weryfikacji. Jednocześnie pozwalają unaocznić jak ciekawym modelem badawczym jest odkryta
przez nas para helper-satelita zarówno w kontekście ewolucji wirusów, jak i relacji pasożytgospodarz.
Z użyciem zawiesiny fagów ФAH14a i ФAH14b testowaliśmy ich zdolności lityczne wobec
kilku szczepów Pseudomonas spp., ale próba ta nie zakończyła się powodzeniem. Chociaż nie
można wykluczyć, że użyte przez nas szczepy nie były wrażliwe na te fagi to bardziej
prawdopodobna wydaje się utrata zdolności infekcyjnych przez ФAH14a i ФAH14b w związku z
brakiem ogonka. Nie jest też dla nas jasne czy w ogóle dochodzi do lizy komórek Pseudomonas sp.
ANT_H14, w następstwie prowadzonego przez zaindukowane fagi cyklu replikacyjnego, gdyż nie
udało nam się jej zaobserwować. Namnożone cząstki fagowe były uwalniane z komórek z użyciem
chloroformu.
Zdolność
do
lizy ФAH14a_p93
domniemanej
hydrolazy peptydoglikanu,
wykazaliśmy eksperymentalnie w heterologicznym gospodarzu, natomiast przypuszczamy, że gen
ФAH14a_p93, z nieznanych przyczyn, nie ulega ekspresji w trakcie cyklu litycznego faga
ФAH14a, podobnie jak pozostałe geny późne (w tym geny kodujące białka struktury i morfogenezy
ogonka). Podczas analizy składu białkowego wirionów zidentyfikowaliśmy tylko cztery:
ФAH14a_p62, _p63, _p66 i _p68 (odpowiednio portalowe, morfogenezy, główne białko główki i
łącznikowe). Niewykluczone, że nie dochodzi do ekspresji genów znajdujących poniżej
ФAH14a_p68, a więc tych kodujących brakujące elementy kapsydów oraz odpowiedzialnych za
lizę.
W świetle powyżej opisanych wyników sądzę, że faga ФAH14a można uznać za
defektywnego. Określenie „defektywny bakteriofag” odnosi się do takiego, który nie jest w stanie
dokończyć cyklu infekcyjnego, co najczęściej jest utożsamiane z brakiem zdolności do
wytworzenia łysinek (jego wiriony są nieinfekcyjne). Jest dość prawdopodobne, że pozostałe
badane przez nas bakteriofagi ФLM21 Sinorhizobium sp. LM21 oraz ФARM81mr i ФARM81ld
Aeromonas sp. ARM81 mogą także być defektywne. Chociaż ich wiriony wydają nam się
kompletne, nie wiemy czy są infekcyjne. Nie wykazaliśmy bowiem ich zdolności do lizy
spokrewnionych szczepów bakteryjnych, aczkolwiek ten fakt można wytłumaczyć bardzo wąskim
zakresem gospodarza tych fagów, co jest powszechną cechą wielu wirusów bakteryjnych.
Badania bakteriofagów, które w sposób naturalny są dysfunkcjonalne na różnych etapach
cyklu infekcyjnego może dostarczyć wielu interesujących wniosków na temat zmian ewolucyjnych
inaktywujących profagi. Na przykład pozwolić na zrozumienie przebiegu ich regresywnej ewolucji,
czy pozwolić zidentyfikować cechy korzystne dla gospodarza, które warunkują konserwację danej
sekwencji profagowej w genomie bakteryjnym.
15
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Podsumowanie
Prace badawcze opisane w artykułach przedstawionych jako moje osiągnięcie habilitacyjne
zaowocowały wyizolowaniem pięciu nowych łagodnych bakteriofagów z trzech polilizogennych
szczepów. Jako profagi wykazują one różne style lizogenii, a także różne wzajemne relacje
polilizogenicznej koegzystencji. Cztery profagi są zintegrowane z chromosomem bakteryjnego
gospodarza, a jeden jest liniowym plazmidem-profagiem.
Profag ФLM21 współegzystuje w komórkach Sinorhizobium sp. LM21 z kolistym
plazmidem-profagien pLM21S1, który nie indukował się po użyciu mitomycyny C [52].
Niewykluczone, że ФLM21 szybciej się replikuje i dlatego wygrywa wyścig z pLM21S1 o zasoby
gospodarza. Natomiast fagi ФARM81mr i ФARM81ld Aeromonas sp. ARM81 namnażają się
symultanicznie, podobnie jak ФAH14a i ФAH14b Pseudomomonas sp. ANT_H14 tyle, że
ФAH14b dokonuje tego pasożytując na białkach ФAH14a. Każdy z tych układów jest więc inny i
może stanowić model do badań współzawodnictwa pomiędzy profagami koegzystującymi w
jednym gospodarzu, zjawiska do tej pory dość słabo poznanego.
Genomy
wszystkich
badanych
fagów
zostały
poddane
gruntownej
analizie,
zidentyfikowaliśmy wiele ciekawych genów, w tym takie, które przypuszczalnie mogą być
korzystne, nie bezpośrednio dla wirusa, tylko dla jego gospodarza. Niektóre z kodowanych
enzymów (np. modyfikujące DNA, przeprowadzające integrację, hydrolizujące ścianę komórkową)
mogą mieć zastosowanie praktyczne w określonych technikach biologii molekularnej. Szczególnie
interesujące są niespecyficzne MTazy m6A, które odbiegają swoimi właściwościami od dotychczas
poznanych MTaz DNA, szczególnie tych kodowanych przez organizmy komórkowe.
Uzyskane wyniki umożliwiły analizy porównawcze i filogenetyczne. Odkryte fagi są
unikatowe tj. niepodobne na poziomie sekwencji nukleotydowej do wcześniej scharakteryzowanych
wirusów, co oczywiście nie jest zaskakujące w świetle bardzo szybkiej ewolucji tych jednostek
biologicznych. Ciekawym odkryciem było natomiast zidentyfikowanie podobnych do nich
sekwencji profagowych w genomach zsekwencjonowanych bakterii. Wyniki te mogą więc stanowić
inspirację do badań mających na celu sprawdzenie ich funkcjonalności.
Każdy z badanych fagów (oprócz satelitarnego ФAH14b) koduje co najmniej jedną MTazę
DNA. MTaza faga ФLM21 ma taką samą specyficzność (GANTC) jak regulacyjna MTaza jego
gospodarza CcrMLM21. Identyczne są też sekwencje rozpoznawane MTazy ARM81mr_p11 faga
ФARM81mr (GATC) i DamARM81 gospodarza tego faga. Do wyjaśnienia pozostaje kwestia czy
funkcje tych fagowych MTaz są także regulacyjne, podobnie jak ustalenie na jakim etapie cyklu
infekcyjnego aktywność tych białek jest najbardziej istotna. Możliwe, że w przypadku faga ФLM21
ma to miejsce na etapie replikacji (np. dlatego, że CcrMLM21 nie jest w stanie zapewnić pełnej
metylacji miejsc koniecznych do inicjacji kolejnej rundy replikacji genomu fagowego), a w
16
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
przypadku ФARM81mr na etapie integracji/wycięcia, ze względu na lokalizację genów tych MTaz
odpowiednio w modułach replikacyjnym i rekombinacyjnym.
Warto zauważyć, że odkryte przeze mnie niespecyficzne MTazy m6A kodowane są przez
bardziej mobilne elementy (niż klasyczne lambdoidalne profagi) tj. fagi zdolne do transpozycji
(podobne do Mu) oraz profagi-plazmidy. Masowa metylacja ich DNA mogłaby być doskonałą
cechą
przystosowawczą
do
inwazji
szerokiego
zakresu
gospodarzy
-
uniwersalnym
zabezpieczeniem przed systemami RM o różnych specyficznościach. Równie możliwa jest
alternatywna funkcja (w stosunku do ochronnej) tych MTaz, jako mechanizmu zabezpieczającego
faga-rezydenta przed konkurencyjną superinfekcją. Dalsze badania będą mogły zweryfikować
słuszność każdej z tych hipotez.
Wyniki analiz prezentowanych przeze mnie w cyklu prac przedstawionych jako osiągnięcie
habilitacyjne bezsprzecznie pokazują jak wszechstronnym modelem badania ewolucji mogą być
profagi.
Za najważniejsze osiągnięcia przedstawionych prac uważam:
 Zidentyfikowanie pierwszej niespecyficznej metylotransferazy DNA modyfikującej adeninę do
N6-metyloadeniny.
 Odkrycie zjawiska naśladowania przez MTazy m6A kodowane przez łagodne fagi
specyficzności metylacyjnej kluczowego enzymu regulatorowego swojego bakteryjnego
gospodarza z klasy alfaproteobakterii.
 Zidentyfikowanie zjawiska mimikry specyficzności metylacyjnej typu Dam bakteryjnego
gospodarza z rodzaju Aeromonas przez jego fagowe MTazy.
 Izolację i scharakteryzowanie dziewięciu nowych fagowych MTaz DNA.
 Zidentyfikowanie i kompleksową analizę genomiczna pięciu nowych unikatowych łagodnych
bakteriofagów.
 Zidentyfikowanie nowego systemu helper-satelita (pierwszego w rodzaju Pseudomonas a
drugiego u bakterii Gram-ujemnych).
Plany naukowe
Uzyska wyniki, opisane w prezentowanym cyklu prac, pozwoliły na sformułowanie pytań
związanych z przypuszczalną rolą metylacji DNA u bakteriofagów, na które będę w najbliższym
czasie starała się odpowiedzieć. Moje najbliższe plany naukowe związane są też z już
rozpoczętymi projektami badawczymi, które dotyczą identyfikacji i charakterystyki łagodnych
bakteriofagów infekujących klasę alfaproteobacterii oraz psychrofilnych bakterii z obszarów
17
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Antarktydy, a ich celem jest poznanie mobilomów tych mikroorganizmów oraz ustalenia relacji
gospodarz-pasożyt.
Bibliografia
1
Whitman WB, Coleman DC, Wiebe WJ: Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A
1998;95:6578-6583.
2
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH: Genomics of bacterial and archaeal viruses:
dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-635.
3
Weinbauer MG: Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004;28:127-181.
4
Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K,
Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T,
Hattori M, Shinagawa H: Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic
comparison with a laboratory strain K-12. DNA Res 2001;8:11-22.
5
Casjens S: Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 2003;49:277-300.
6
Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T: The defective
prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence
determinants. PLoS Pathog 2009;5:e1000408.
7
Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK: Cryptic prophages help bacteria cope
with adverse environments. Nat Commun 2010;1:147.
8
Bobay LM, Touchon M, Rocha EP: Pervasive domestication of defective prophages by bacteria. Proc Natl
Acad Sci U S A 2014;111:12127-12132.
9
Casjens SR: Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol
2008;159:340-348.
10
Weigele P, Raleigh EA: Biosynthesis and function of modified bases in bacteria and their viruses. Chem Rev
2016
11
Marinus MG, Casadesus J: Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair,
transcriptional regulation, and more. FEMS Microbiol Rev 2009;33:488-503.
12
Wion D, Casadesús J: N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev
Microbiol 2006;4:183-192.
13
Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom
RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ:
The Epigenomic Landscape of Prokaryotes. PLoS Genet 2016;12:e1005854.
14
Marinus MG, Løbner-Olesen A: DNA Methylation. EcoSal Plus 2014;6
15
Sternberg N, Coulby J: Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine
methylation. Proc Natl Acad Sci U S A 1990;87:8070-8074.
16
Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D: Bacteriophage orphan DNA methyltransferases:
insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013;79:7547-7555.
17
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW: Bacteriophage Mu genome sequence: analysis and
comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002;317:337-359.
18
McGillivary G, Tomaras AP, Rhodes ER, Actis LA: Cloning and sequencing of a genomic island found in the
Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius. Infect Immun 2005;73:1927-1938.
19
Hattman S: Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon.
Pharmacol Ther 1999;84:367-388.
20
Siwek W, Czapinska H, Bochtler M, Bujnicki JM, Skowronek K: Crystal structure and mechanism of action of
the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI. Nucleic Acids Res 2012;40:7563-7572.
21
Mierzejewska K, Siwek W, Czapinska H, Kaus-Drobek M, Radlinska M, Skowronek K, Bujnicki JM, Dadlez
M, Bochtler M: Structural basis of the methylation specificity of R.DpnI. Nucleic Acids Res 2014;42:8745-8754.
22
Aughey GN, Southall TD: Dam it's good! DamID profiling of protein-DNA interactions. Wiley Interdiscip Rev
Dev Biol 2016;5:25-37.
23
Brilli M, Fondi M, Fani R, Mengoni A, Ferri L, Bazzicalupo M, Biondi EG: The diversity and evolution of cell
cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst Biol 2010;4:52.
24
Wright R, Stephens C, Shapiro L: The CcrM DNA methyltransferase is widespread in the alpha subdivision of
proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J Bacteriol
1997;179:5869-5877.
25
Kahng LS, Shapiro L: The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its
activity is cell cycle regulated. J Bacteriol 2001;183:3065-3075.
26
Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J: The functions of DNA methylation by CcrM in
Caulobacter crescentus: a global approach. Nucleic Acids Res 2014
18
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
27
Dziewit L, Czarnecki J, Wibberg D, Radlinska M, Mrozek P, Szymczak M, Schlüter A, Pühler A, Bartosik D:
Architecture and functions of a multipartite genome of the methylotrophic bacterium Paracoccus aminophilus JCM
7686, containing primary and secondary chromids. BMC Genomics 2014;15:124.
28
Brewer TE, Elizabeth Stroupe M, Jones KM: The genome, proteome and phylogenetic analysis of
Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 2014;450451:84-97.
29
Deák V, Lukács R, Buzás Z, Pálvölgyi A, Papp PP, Orosz L, Putnoky P: Identification of tail genes in the
temperate phage 16-3 of Sinorhizobium meliloti 41. J Bacteriol 2010;192:1617-1623.
30
Refardt D: Within-host competition determines reproductive success of temperate bacteriophages. ISME J
2011;5:1451-1460.
31
Ravin NV: Replication and Maintenance of Linear Phage-Plasmid N15. Microbiol Spectr 2015;3:PLAS-00322014.
32
Radlinska M, Bujnicki JM: Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam
methyltransferase. Acta Microbiol Pol 2001;50:161-167.
33
Piekarowicz A, Bujnicki J: Cloning of the Dam methyltransferase gene from Haemophilus influenzae
bacteriophage HP1. Acta Microbiol Pol 1999;48:123-129.
34
Bujnicki JM, Radlinska M, Zaleski P, Piekarowicz A: Cloning of the Haemophilus influenzae Dam
methyltransferase and analysis of its relationship to the Dam methyltransferase encoded by the HP1 phage. Acta
Biochim Pol 2001;48:969-983.
35
Erova TE, Pillai L, Fadl AA, Sha J, Wang S, Galindo CL, Chopra AK: DNA adenine methyltransferase
influences the virulence of Aeromonas hydrophila. Infect Immun 2006;74:410-424.
36
Hattman S, Malygin EG: Bacteriophage T2Dam and T4Dam DNA-[N6-adenine]-methyltransferases. Prog
Nucleic Acid Res Mol Biol 2004;77:67-126.
37
Scherzer E, Auer B, Schweiger M: Identification, purification, and characterization of Escherichia coli virus
T1 DNA methyltransferase. J Biol Chem 1987;262:15225-15231.
38
Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado
OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW,
Kumar V, Waldor MK, Schadt EE: Genome-wide mapping of methylated adenine residues in pathogenic Escherichia
coli using single-molecule real-time sequencing. Nat Biotechnol 2012;30:1232-1239.
39
Kahmann R, Seiler A, Wulczyn FG, Pfaff E: The mom gene of bacteriophage mu: a unique regulatory scheme
to control a lethal function. Gene 1985;39:61-70.
40
Refardt D, Bergmiller T, Kümmerli R: Altruism can evolve when relatedness is low: evidence from bacteria
committing suicide upon phage infection. Proc Biol Sci 2013;280:20123035.
41
Snyder L: Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol Microbiol
1995;15:415-420.
42
Seed KD: Battling Phages: How bacteria defend against viral attack. PLoS Pathog 2015;11:e1004847.
43
Beilstein F, Dreiseikelmann B: Temperate bacteriophage PhiO18P from an Aeromonas media isolate:
characterization and complete genome sequence. Virology 2008;373:25-29.
44
Frígols B, Quiles-Puchalt N, Mir-Sanchis I, Donderis J, Elena SF, Buckling A, Novick RP, Marina A, Penadés
JR: Virus satellites drive viral evolution and ecology. PLoS Genet 2015;11:e1005609.
45
Lindqvist BH, Dehò G, Calendar R: Mechanisms of genome propagation and helper exploitation by satellite
phage P4. Microbiol Rev 1993;57:683-702.
46
Marvik OJ, Jacobsen E, Dokland T, Lindqvist BH: Bacteriophage P2 and P4 morphogenesis: assembly
precedes proteolytic processing of the capsid proteins. Virology 1994;205:51-65.
47
Nilssen O, Six EW, Sunshine MG, Lindqvist BH: Mutational analysis of the bacteriophage P4 capsid-sizedetermining gene. Virology 1996;219:432-442.
48
Shore D, Dehò G, Tsipis J, Goldstein R: Determination of capsid size by satellite bacteriophage P4. Proc Natl
Acad Sci U S A 1978;75:400-404.
49
Yeo CC, Tham JM, Kwong SM, Poh CL: Characterization of the Pac25I restriction-modification genes
isolated from the endogenous pRA2 plasmid of Pseudomonas alcaligenes NCIB 9867. Plasmid 1998;40:203-213.
50
Jung K, Fried L, Behr S, Heermann R: Histidine kinases and response regulators in networks. Curr Opin
Microbiol 2012;15:118-124.
51
Wang X, Kim Y, Wood TK: Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms.
ISME J 2009;3:1164-1179.
52
Dziewit L, Pyzik A, Szuplewska M, Matlakowska R, Mielnicki S, Wibberg D, Schlüter A, Pühler A, Bartosik
D: Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment
rich in heavy metals. Front Microbiol 2015;6:152.
19
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
5. Omówienie pozostałych osiągnięć naukowo-badawczych.
Główny nurt prowadzonych przeze mnie badań, zarówno przed jak i po osiągnięciu stopnia doktora,
był
związany
z
różnymi
grupami
enzymów
modyfikujących
kwasy
nukleinowe:
metylotransferazami (MTazami) DNA i RNA oraz endonukleazami restrykcyjnymi (REazami).
Enzymy te są doskonałymi modelami do badania specyficznych oddziaływań białko-DNA,
związków pomiędzy sekwencją, strukturą a funkcją oraz zrozumienia mechanizmów kierujących
ewolucją ich funkcji. Ponadto mają one ogromną wartość aplikacyjną i są szeroko stosowane w
technikach biologii molekularnej i biotechnologii.
Celem moich badań było poznanie molekularnych mechanizmów umożliwiających tym
białkom specyficzne rozpoznanie sekwencji nukleotydowej w kontekście ewolucji ich sekwencji i
struktury. Moje prace badawcze objęły między innymi identyfikację nowych enzymów, ustalenie
ich właściwości biochemicznych, analizy porównawcze oraz rekonstrukcję drzew filogenetycznych
opisujących historię ewolucji poszczególnych rodzin enzymów modyfikujących kwasy nukleinowe.
Oprócz tego byłam zaangażowana także w inne projekty, które miały charakter zarówno
badań podstawowych, jak i aplikacyjnych, a ich zasadniczym celem było:
(i) ustalenie wzorców genotypów wirusa HCV (ang. Hepatitis C Virus), czynnika etiologicznego
zapalenia wątroby typu C, w Polsce,
(ii) poznanie strukturalnych zasad zginania DNA w krótkich odcinkach adeninowo-tyminowych
tzw. A-traktach i ich roli w rozpoznaniu DNA przez różne białka,
(iii) wykorzystanie mikroorganizmów w procesach bioremediacji, a w szczególności opracowanie
metod oczyszczania terenów skażonych związkami arsenu.
OSIĄGNIĘCIA NAUKOWO-BADAWCZE PRZED UZYSKANIEM STOPNIA DOKTORA
Charakterystyka genów kodujących metylotransferazy DNA z Neisseria gonorrhoeae
Piekarowicz A., Radlinska M., Stein DC. (1994) Cloning of Neisseria gonorrhoeae DNA methyltransferases.
Pathobiology and Immunobiology of Neisseriaceae. Edytorzy: C.J. Conde-Glez., S.Morse., P.Rice., F.Sparling,
E.Calderon. INSP. pp 561-567.
Piekarowicz A, Radlinska M, Wiernicka-Gnas M. (1996) DNA methyltransferases of Neisseria gonorrhoeae. 1996.
Bull.Pol.Acad.Sci. Series Biological Sciences. 44: 205-210.
Stein DC, Gunn JS, Radlinska M, Piekarowicz A. (1995). Restriction and modification systems of Neisseria
gonorrhoeae. Gene. 157(1-2):19-22.
Pierwszym etapem badań mających na celu określenie roli metylacji DNA w biologii patogennej
bakterii Neisseria gonorrhoeae było sklonowanie kodowanych przez nią MTaz DNA. Z użyciem
nowatorskiej procedury pozwalającej na kierunkową selekcję MTaz DNA niezależnie od ich
specyficzności [Piekarowicz et al., Nucleic Acids Res.(1991)19:1831-1835], wyizolowaliśmy 14
20
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
klonów zawierających geny MTaz DNA. W większości przypadków, były one sprzężone z genami
kodującymi REazy o tej samej specyficzności, co enzym modyfikujący. Białka te zostały poddane
analizom funkcjonalnym, dla siedmiu ustaliliśmy sekwencje rozpoznawane.
Ustalenie wzorców genotypów wirusa HCV w Polsce
Stańczak JJ., Brojer E., Radlinska M., Sankowska M., Kacperska E., Głoskowska-Moraczewska, Z., Seyfried H.
(1994) Wykrywanie materiału genetycznego wirusa zapalenia wątroby typu C (HCV) metodą RT-PCR. Zeszyty
Hepatologiczne. 7:18-26
Stanczak JJ., Radlinska M., Brojer E., Medynska J., Seyfried H. (1995) Partial nucleotide sequences and genotypes of
hepatitis C virus (HCV) isolated in Polish blood donors and patients with hepatitis. Hepatol. Pol. 2:87-92.
Prace opisują sekwencjonowanie fragmentów genomu wirusa zapalenia wątroby typu C (HCV).
Uzyskane dane były porównywane z dostępnymi prototypowymi sekwencjami, co w efekcie
doprowadziło do ustalenia wzorców genotypów tego wirusa w naszym kraju. Były to pierwsze
badania genomowego RNA wirusa HCV w Polsce.
OSIĄGNIECIA NAUKOWO-BADAWCZE PO UZYSKANIU STOPNIA DOKTORA
Badanie związków pomiędzy sekwencją, strukturą a funkcją na modelu metylotransferaz
DNA
Radlinska M, Skowronek K. (1998). Novel procedure for the detection of 5-methylcytosine. Acta Microbiol Pol.
47(4):327-34.
Jednym z etapów charakteryzowania MTazy DNA jest ustalenie jej specyficzności. Dla tych MTaz,
których produktem jest 5-metylocytozyna (m5C) stworzyliśmy procedurę opartą o analizę
pierwotnego produktu reakcji zmetylowanego DNA z kwaśnym siarczynem sodowym (NaHSO3,
ang. sodium bisulfite), która pomija koniczność wykonania rekcji PCR. Reakcja sekwencjonowania
zawiera tylko trzy deoksynukleotydy (dATP, dCTP i dTTP), dGTP jest nieobecny. Dlatego
polimeraza DNA przeprowadzając elongację zatrzymymuje się w miejscach, gdzie była
metylocytozyna.
Radlinska M, Piekarowicz A. (1998) Cloning and characterization of the gene encoding a new DNA methyltransferase
from Neisseria gonorrhoeae. Biol Chem. 379(11):1391-5.
Radlinska, M., Bujnicki JM, Piekarowicz, (1999) A. Structural characterization of two tandemly arranged DNA
methyltransferases genes from Neisseria gonorrhoeae MS11: N-cytosine specific M.NgoMXV and nonfunctional 5cytosine-type M.NgoMorf2P. Proteins. 37(4):717-28.
Radlinska M, Bujnicki JM. (2001) Site-directed mutagenesis defines the catalytic aspartate in the active site of the
atypical DNA: m4C methyltransferase M.NgoMXV. Acta Microbiol Pol. 50(2):97-105.
Bujnicki JM, Radlinska M. (2001) Cloning and characterization of M.LmoA118I, a novel DNA:m4C
methyltransferase from the Listeria monocytogenes phage A118, a close homolog of M.NgoMXV. Acta Microbiol Pol.
50(2):155-60.
21
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Prace opisują izolację i charakterystykę biochemiczną MTazy DNA M.NgoMXV (pierwotnie
nazywanej M.NgoMV), jej model strukturalny (ze wskazaniem reszt aminokwasowych istotnych
dla funkcji) oraz zidentyfikowanie homologicznej MTazy. Najważniejsze osiągnięcia tych prac to:
(i) ustalenie sekwencji nukleotydowej genu ngomxv; (ii) ustalenie modyfikowanej zasady (m4C)
oraz sekwencji rozpoznawanej. M.NgoMXV to jeden z pierwszych poznanych enzymów o
zrelaksowanej specyficzności i pierwsza MTaza m4C o takiej właściwości; (iii) wykazanie
istotności kwasu asparaginowego w motywie katalitycznym DPPH, nietypowym dla MTazy m4C.
Eksperymentalna analiza podstawień seryną lub alaniną D68 skutkowała utratą aktywności tego
enzymu, co potwierdziło udział tej reszty aminokwasowej w katalizie; (iv) zidentyfikowanie
ścisłego homologa M.NgoMXV tj. M.LmoA118 kodowanej przez faga A118 Listeria
monocytogenes i ustalenie jej sekwencji rozpoznawanej, która podobnie jak M.NgoMXV również
wykazywała rozluźnioną specyficzność.
Bujnicki JM, Radlinska M, Zaleski P, Piekarowicz A. (2001) Cloning of the Haemophilus influenzae Dam
methyltransferase and analysis of its relationship to the Dam methyltransferase encoded by the HP1 phage. Acta
Biochim Pol. 48(4):969-83.
Radlinska M, Bujnicki JM. (2001) Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase.
Acta Microbiol Pol. 50(2):161-7.
Radlinska M, Piekarowicz A, Galimand M, Bujnicki JM. (2005) Cloning and preliminary characterization of a GATCspecific β2-class DNA:m6A methyltransferase encoded by transposon Tn1549 from the Enterococcus spp. Pol J
Microbiol. 54(3):249-252.
Te trzy prace opisują analizy bioinformatyczne oraz funkcjonalne MTaz DNA modyfikujących
adeninę do m6A. Ustaliliśmy, że bakteryjna M.HinDam, kodowana przez Haemophilus influenzae
Rd30 modyfikuje sekwencję GATC do Gm6ATC tak samo jak M.HP1Dam, kodowana przez
łagodnego bakteriofaga HP1 infekującego tę bakterię. Porównanie zbudowanych modeli
strukturalnych obu białek pozwoliło na wniosek, że mają inny mechanizm wiązania/rozpoznania
substratowego DNA, a ich pokrewieństwo jest bardzo odległe. Natomiast identyczna specyficzności
MTazy fagowej i bakteryjnej to zapewne efekt funkcjonalnej konwergencji.
Bardzo podobna, na poziomie sekwencji aminokwasowej do fagowej M.HP1Dam była
zidentyfikowana przez nas MTaza kodowana przez profaga enterokrwotocznej i produkującej
toksynę Shiga Escherichia coli O157. Ustaliliśmy, że specyficzność M.VT-2Sa jest identyczna jak
M.HP1 (GATC). Na podstawie analiz in silico zaproponowaliśmy zakwalifikowanie fagowych
MTazy Dam HP1 i VT-2Sa do podrodziny γ, a bakteryjnych do podrodziny α. Udało się nam także
zidentyfikować enzym typu Dam w jeszcze innym ruchomym elemencie - transpozonie Tn1549
Enterococcus sp., który miał inne ułożenie domen niż dotąd poznane MTazy. M.EfaBMDam
przypisaliśmy do nietypowej grupy podrodziny β - β2, w której znalazły się także M.MunI z
Mycoplasma sp., M.AvaV z Anabaena PCC 7120 oraz MTazy modyfikujące RNA (homologi
22
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
białek MT-A70). Unikatowość strukturalna grupy β2 polega na braku długiego zmiennego regionu
pomiędzy motywami VIII i X, obecnego u klasycznych przedstawicieli podrodziny β.
Radlinska M, Kondrzycka-Dada A, Piekarowicz A, Bujnicki JM. (2005). Identification of amino acids important for
target recognition by the DNA:m5C methyltransferase M.NgoPII by alanine-scanning mutagenesis of residues at the
protein-DNA interface. Proteins. 58(2):263-70.
Kondrzycka-Dąda A, Radlinska M, Piekarowicz A, Bujnicki J.M, Inżynieria specyficzności enzymów w oparciu o
symulacje in silico, na przykładzie m5C metylotransferaz DNA: M.NgoPII i M.Phi3TII, Post. Mikrobiol., 2004; 43,
Supl. 1, 54
Z użyciem modelowania homologicznego zbudowaliśmy model strukturalny M.NgoPII Neisseria
gonorrhoeae modyfikującej cytozynę do 5-metylocytozyny w sekwencji GGCC. Na tej podstawie
przeprowadziliśmy systematyczną analizę podstawień alaniną wszystkich reszt aminokwasowych w
domenie odpowiedzialnej za rozpoznanie substratowej sekwencji GGCC i wiązanie z DNA. W ten
sposób wyznaczyliśmy pozycje w białku, które mogły potencjalnie służyć do zmiany
specyficzności tego enzymu.
Dziewit L, Kuczkowska K, Adamczuk M, Radlinska M, Bartosik D. (2011) Functional characterization of the type II
PamI restriction-modification system derived from plasmid pAMI7 of Paracoccus aminophilus JCM 7686. FEMS
Microbiol Lett. 324(1):56-63.
Dziewit L, Czarnecki J, Wibberg D, Radlinska M, Mrozek P, Szymczak M, Schlüter A, Pühler A, Bartosik D. (2014)
Architecture and functions of a multipartite genome of the methylotrophic bacterium Paracoccus aminophilus JCM
7686, containing primary and secondary chromids. BMC Genomics. 15:124.
Modelem badawczym tych dwóch prac była bakteria metylotroficzna Paracoccus aminophilus JCM
7686, zdolna do wykorzystywania związków typu C1 jako źródła węgla, azotu i energii. Sekwencja
nukleotydowa jej genomu została odczytana, a następnie gruntownie przeanalizowana in silico.
Dodatkowo zostały przeprowadzone testy funkcjonalne. W genomie P. aminophilus JCM 7686
zidentyfikowaliśmy 10 sekwencji profagowych, z których jedna okazała się aktywna. ϕPam-6 to
pierwszy wyizolowany łagodny bakteriofag infekujący rodzaj Paracoccus. Wszystkie MTazy DNA
kodowane przez P. aminophilus JCM 7686 zostały przeze mnie sklonowane i wstępnie
scharakteryzowane (dla każdej ustaliłam sekwencję rozpoznawaną). Były to bakteryjne: M.PamI
(CCATGG), kodowana na plazmidzie pAMI7, będąca częścią systemu RM i regulacyjna MTaza
typu CcrM o specyficzności GANTC oraz profagowe: trzy MTazy m6A o specyficzności GANTC
(też w funkcjonalnym fagu ϕPam-6), dwie MTazy m5C wykazujące rozluźnioną specyficzność i
MTaza m4C o specyficzności YGGCCR (Y=C lub T; R=G lub A), homolog wcześniej przeze mnie
odkrytych MTaz m4C M.NgoMXV i M.LmoA118I (patrz wyżej).
Moim najważniejszym odkryciem, obok izolacji pierwszego faga Paracoccus, było
wykazanie konwergencji specyficzności MTaz typu CcrM gospodarza i jego bakteriofagów.
23
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Analizy filogenetyczne metylotransferaz DNA
Bujnicki JM, Radlinska, M. Molecular phylogenetics of DNA 5mC-methyltransferases. Acta Microbiol Pol,1999
48(1):19-30.
Bujnicki JM, Radlinska M. (1999) Is the HemK family of putative S-adenosylmethionine-dependent
methyltransferases a "missing" zeta subfamily of adenine methyltransferases? A hypothesis. IUBMB Life. 48(3):247-9.
Bujnicki JM., Radlinska, M. (1999) Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their
polyphyletic origin. Nucleic Acids Res. 27(22):4501-4509.
W ramach badań przeprowadzono gruntowną analizę filogenetyczną sekwencji metylotransferaz
DNA zgromadzonych w dostępnych bazach danych. Zaowocowało to zbudowaniem drzew
filogenetycznych rodzin MTaz m5C oraz m4C, a także wysunięciem hipotez na temat ich
ewolucyjnej historii. Były to pierwsze tak zaawansowane analizy przeprowadzone dla nadrodziny
MTaz DNA. Analizy bioinformatycze pozwoliły nam także wykazać podobieństwo pomiędzy
podrodziną γ MTaz m6A a powszechnie występującą (od bakterii po człowieka), rodziną białek
HemK.
Badanie specyficznych oddziaływań białko-DNA na modelu endonukleaz restrykcyjnych
Bujnicki JM, Radlinska M, Rychlewski L. (2000) Atomic model of the 5-methylcytosine-specific restriction enzyme
McrA reveals an atypical zinc finger and structural similarity to ββααMe endonucleases. Mol Microbiol. 37(5):1280-1.
Bujnicki JM, Radlinska M, Rychlewski L. (2001) Polyphyletic evolution of type II restriction enzymes revisited: two
independent sources of second-hand folds revealed. Trends Biochem Sci. 26(1):9-11.
Pawlak S, Radlinska, M, Chmiel A, Bujnicki JM, Skowronek K. (2005) Inference of relationships in the twilight zone
of homology using a combination of bioinformatics and site-directed mutagenesis: a case study of restriction
endonucleases Bsp6I and PvuII. Nucleic Acids Res. 33(2):661-71.
Chmiel AA, Radlinska M, Pawlak SD, Krowarsch D, Bujnicki JM, Skowronek KJ. (2005) A theoretical model of
restriction endonuclease NlaIV in complex with DNA, predicted by fold recognition and validated by site-directed
mutagenesis and circular dichroism spectroscopy.Protein Eng Des Sel. 18(4):181-189.
Mierzejewska K, Siwek W, Czapinska H, Kaus-Drobek M, Radlinska M, Skowronek K, Bujnicki JM, Dadlez M,
Bochtler M. (2014) Structural basis of the methylation specificity of R.DpnI. Nucleic Acids Res.42(13):8745-54.
Celem badań było poznanie struktury i mechanizmu oddziaływania z DNA wybranych endonukleaz
restrykcyjnych typu II (McrA, Bsp6I, NlaIV i DpnI) przy użyciu modelowania molekularnego,
mutagenezy sterowanej i biochemicznej charakteryzacji mutantów oraz krystalografii. W rezultacie
przedstawiono cztery modele strukturalne, z których trzy teoretyczne zostały zweryfikowane
eksperymentalnie. Dzięki uzyskanym wynikom możliwe było zaproponowanie potencjalnych
ścieżek ewolucyjnych w tej grupie białek oraz molekularnych mechanizmów ewolucji
specyficzności sekwencyjnej. Ciekawym wynikiem było zademonstrowanie, że niektóre enzymy
restrykcyjne wykazują inną architekturę i nie są spokrewnione z klasyczną rodziną REaz tj. PD(D/E)XK lecz z rodzinami tzw. „homing endonucleases” – HNH i GIY-YIG.
24
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
Badanie związków pomiędzy sekwencją, strukturą a funkcją na modelu metylotransferaz
RNA
Bujnicki JM, Feder M, Radlinska M, Rychlewski L. (2001) mRNA:guanine-N7 cap methyltransferases: identification
of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function
relationships. BMC Bioinformatics. 2(1):2.
Bujnicki JM, Feder M, Radlinska M, Blumenthal RM. (2002) Structure prediction and phylogenetic analysis of a
functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A
methyltransferase. J Mol Evol. 55(4):431-44.
Obiektami badawczymi powyższych prac były metylotransferazy modyfikujące pre-mRNA, które
wykorzystują jako kofaktor S-adenozylometioninę:
(i) metylotransferazy guaninowe, które przenoszą resztę metylową na atom azotu w pozycji 7
guaniny tworząc tzw. kap1 (ang. cap 1). Zidentyfikowaliśmy podobieństwo domen katalitycznych
MTaz kap i MTaz modyfikujących glicynę (GNMT), których produktem jest sarkozyna (Nmetyloglicyna), co sugeruje pokrewieństwo obu grup enzymów. Dla eukariotycznej MTazy kap z
pomocą modelowania homologicznego został zbudowany model strukturalny. Zaproponowaliśmy
lokalizację
miejsca
wiązania
guaniny
oraz
zidentyfikowaliśmy
konserwowane
reszty
aminokwasowe o przewidywanych funkcjach katalitycznych lub strukturalnych.
(ii) metylotransferazy modyfikujące wewnętrzne adeniny (inne niż te znajdujące się na końcu
odcinków poli-A) w RNA do N6-metyloadeniny. Sekwencja podjednostki MT-A70 ludzkiej MTazy
mRNA:m6A była przedmiotem intensywnych analiz in silico dzięki którym została określona jej
struktura i mechanizm działania oraz zidentyfikowana grupa jej ortologów i paralogów. Dzięki
przeprowadzonej analizie w rodzinie MT-A70 wyróżniliśmy cztery podrodziny, z których jedna
obejmuje małą grupę bakteryjnych MTaz DNA, którą reprezentuje między innymi M.MunI z
Mycoplasma sp. oraz M.AvaV z Anabaena PCC 7120 (patrz wyżej). Pozostałe podrodziny tworzą
białka eukariotyczne, przy czym dwie z nich to prawdopodobnie białka regulujące poziom mRNA
za pomocą mechanizmu nie związanego z metylacją.
Ugięcie DNA w sekwencjach A-traktów i jego rola w oddziaływaniach z białkami
Radlinska M, Drabik CE, Tong WS, Lutter LC. (2001) Generating tandem repeats by cloning with double initiator
fragments. Biotechniques. 31(2):340-5, 347.
Lutter LC, Tchernaenko V, Radlinska M, Drabik CE, Bujnicki JM, Halvorson HR (2002) Measurement of DNA bend
angles using DNA topology. New Approaches to Structural Mechanics, Shells and Biological Structures (Drew HR &
Pellegrino S, eds), pp. 475-484, Springer Netherlands.
Tchernaenko V, Radlinska M, Drabik C, Bujnicki J, Halvorson HR, Lutter LC. (2003) Topological measurement of an
A-tract bend angle: comparison of the bent and straightened states. J Mol Biol. 326(3):737-49.
Tchernaenko V, Radlinska M, Lubkowska L, Halvorson HR, Kashlev M, Lutter LC. (2008) DNA bending in
transcription initiation. Biochemistry. 47(7):1885-95.
Celem prac było poznanie zjawiska ugięcia DNA w zależności od jego sekwencji nukleotydowej,
które prawdopodobnie leży u podstawy wielu komórkowych procesów np. inicjacji transkrypcji.
Modelem były krótkie odcinki adeninowo-tyminowe tzw. A-trakty. Molekularna struktura A25
Monika Radlińska
Załącznik 2 [Autoreferat (w języku polskim)]
traktów jest nietypowa i odbiega od kanonicznej struktury B-DNA. Z użyciem zmodyfikowanej
metody analizy wariantów rotacyjnych określiliśmy kąt ugięcia DNA zawierającego 6 reszt
adeninowych (trakt A6) a także kąt ugięcia DNA w czasie tworzenia otwartego kompleksu
transkrypcyjnego przez promotor bakteriofaga λ, a także wielkości tej bańki transkrypcyjnej.
Dodatkowo stworzyliśmy metodę konstruowania tandemowych powtórzenia sekwencji DNA. Takie
konstrukty są powszechnie używane do analiz struktury i funkcji DNA. Nowatorskim pomysłem
było rozłożenie procesu na dwa etapy (by uniemożliwić niepożądaną cyrkularyzację), której
finałem było połączenie dwóch produktów liniowej oligomeryzacji, które łącząc się tworzyły
ostateczny kolisty produkt. Metoda ta może być używana zarówno do uzyskania wielokrotnych
powtórzeń jak i konstruktów z określoną liczbą powtórzeń.
Wykorzystanie mikroorganizmów w bioremediacji terenów zanieczyszczonych arsenem
Drewniak L, Ciezkowska M, Radlinska M, Sklodowska A. (2015) Construction of the recombinant broad-host-range
plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability. J Biotechnol. 2015;196-197:4251.
Drewniak L, Cieżkowska M., Radlińska M, Sklodowska A. 2014. Mikrobiologiczna szczepionka do oczyszczania wód
zanieczyszczonych arsenem. W monografii pt. Innowacyjne podejście do oczyszczania terenów. Rozdział 2. 2014
Drewniak L, Sklodowska A, Radlinska M, Stasiuk R. Removal of arsenic using a dissimilatory arsenate reductase.
Patent USA: US-2016-9328397 (Przyznany 03.05.2016)
Drewniak L, Sklodowska A., Radlinska M, Ciezkowska M. 2015. Bacterial strains, plasmids, method of producing
bacterial strains capable of chemolithotrophic arsenites oxidation and uses thereof. Patent USA: US-9243255 B2
(Przyznany 26.01.2016)
Drewniak L, Sklodowska A, Radlinska M, Stasiuk R. 2013. The removal of arsenic using a dissimilatory arsenic
reductase. Patent Europejski EP 2 882 851 B1 (przyznany 06.04.2016)
Drewniak L, Sklodowska A, Radlinska M. Ciezkowska M. 2013. New bacterial strains, plasmids, method of producing
bacterial strains capable of chemolithotrophic arsenites oxidation and uses thereof. Patent Europejski EP 2 800 808
(przyznany 26.11.2015)
Drewniak L, Sklodowska A, Radlinska M, Stasiuk R. 2013. Plazmidy, szczepy je obejmujące, kompozycja, ich
zastosowanie oraz sposób usuwania arsenu z surowców mineralnych, odpadów przemysłu surowcowego i skażonych
gleb. Patent krajowy: PAT.220839 (przyznany 19.02.2015)
Celem prowadzonych prac było opracowanie mikrobiologicznej szczepionki do remediacji terenów
skażonych arsenem, jednego z najbardziej toksycznych pierwiastków, występujących naturalnie.
Obecność związków arsenu w źródłach wody pitnej jest głównym zagrożeniem zdrowia w wielu
częściach świata. Zaproponowana metoda biologiczna, opierająca się na bioutlenianiu arseninów do
arsenianów ma znaczącą przewagę nad tradycyjnymi, chemicznymi metodami, gdyż nie pociąga za
sobą skutków ubocznych dla środowiska. Naturalny plazmid Sinorhizobium sp. M14 pSinA został
użyty jako źródło funkcjonalnych kaset genowych, kodujących białka związane z utlenianiem
arsenu oraz oporności na arsen. Skonstruowałam serię plazmidów o szerokim zakresie gospodarzy
(α- β- i γ-proteobakterie), które wyposażały bakteryjnego biorcę w zdolność do selektywnego
utleniania arseninów oraz oporność na arseniany [As(V)] i arseniny [As(III)]. Uzyskane konstrukty
plazmidowe będą mogły zostać wykorzystane w procesach bioremediacji terenów skażonych
26

Podobne dokumenty