Hexabromocyclododecane in industrial and food samples

Transkrypt

Hexabromocyclododecane in industrial and food samples
science • technique
Hexabromocyclododecane in industrial and
food samples
Joanna KUC*, Adam GROCHOWALSKI – Department of Analytical Chemistry, Faculty of Chemical
Engineering and Technology, Cracow University of Technology, Cracow, Poland
Please cite as: CHEMIK 2014, 68, 6, 524–527
Introduction
Hexabromocyclododecane (HBCD) is brominated flame
retardant used primarily in expanded (EPS) and extruded (XPS)
polystyrene foams that are used for thermal isolations in the building
industry [1]. Typical HBCD levels for EPS foams are 0.67% and
1 – 3% in XPS foams [2].
HBCD as additive flame retardant is not covalently bound
to the material, therefore it is released into the environment during
the production, processing and storage of waste containing this
compound [3].
Due to the typical properties of persistent organic pollutants
(POPs) such as persistence, bioaccumulation and toxicity, HBCD
has been recently proposed for inclusion in the Protocol on POPs
of the Stockholm Convention [4]. In accordance with the European
Chemicals Agency and the Directive 67/548/EEC, HBCD is determined
to be hazardous and classified as cause of possible risk of harm to the
unborn child and breastfed babies [5]. Moreover, in the European
Union HBCD was identified as a substance of very high concern
(SVHC) under registration, evaluation, authorization and restriction of
chemicals (REACH) [6].
Wide use of HBCD has led to widespread contamination of this
compound in various environmental compartments [7], therefore
monitoring of this contaminant in food, environmental and industrial
samples is highly advisable.
Commercially available technical product of HBCD is a mixture of
three predominant isomers of α-, β- and γ- HBCD [8]. Structure of the
isomers is shown in Figure 1.
Expanded polystyrene insulation panels (EPS) provided by Termo
Organika (Poland) were used as industry samples. The samples were
dissolved in dichloromethane (Merck Germany) and cleaned up by using
silica gel (70–230 mesh ASTM, Merck, Germany).
Salmon samples (Salmo salar) purchased from market in Cracow
were used as food samples. Fish tissues were homogenized, freezedried, extracted in Soxhlet apparatus by dichlorometane and the extract
was cleaned up by using semipermeable membranes (ExposMeter,
Sweden) and silica gel. Description of the procedure for the preparation
of fish samples was presented previously [10].
A sensitive isotope dilution technique in LC-MS (TSQ Quantum,
Thermo, USA) was applied for the determination of three isomers
of α-, β- and γ-HBCD in the sample analyzed. Chromatographic
separation was achieved using Phenomenex Kinetex 2.6 u C18 100
A 50 x 2.1 mm analytical column (Phenomenex, USA) and isocratic
elution at laboratory temperature was used with water-methanol
(30:70, v/v) mobile phase.
Results and discussion
The detection of the three of α-, β- and γ-HBCD isomers was
carried out by two selected reaction monitoring (SRM) transitions:
first of chlorine adduct (676.6 m/z) to the deprotonated molecular
ion (640.6 m/z) and second of molecular ion to the bromine
ion (81.1 m/z).
Mean content of α-, β- and γ-HBCD in EPS was as follow: 0.93 mg/g;
0.18 mg/g; 6.9 mg/g, respectively. The results confirm literature reports
[2] that the technical mixture of HBCD added to the EPS contains
more than 70% of γ-HBCD. Exemplary chromatogram obtained from
LC-MS analysis of EPS sample is shown in Figure 2.
Fig. 1. Structure of α-, β- and γ-HBCD
Methods for the determination of HBCD are similar to those
of POPs and have been well developed over the past several years.
Gas chromatography – mass spectrometry (GC-MS) and liquid
chromatography – mass spectrometry (LC-MS) methods are most
often used for the determination of HBCD, however, separation of
isomers is only possible by using LC-MS [9].
The goal of the present study was to determine HBCD isomers
in polystyrene foam (EPS) and food samples (fish tissue) using isotope
dilution technique in LC-MS.
Materials and methods
Native isomers of α-, β- and γ-HBCD and isotopically labeled
isomers of d18- γ–HBCD were provided by Wellington Laboratories
Inc. (Canada).
Corresponding author:
Joanna KUC – M.Sc., e-mail: [email protected]
526 •
Fig. 2. Chromatogram of LC-MS analysis of EPS sample
Mean content of α-, β- and γ-HBCD in fish samples was 86 pg/g,
14 pg/g and 48 pg/g fresh weight, respectively. Isomer of α-HBCD
was the most abundant which confirms the conclusions presented
by Covaci et al. [7] that in the majority of fish, the concentration
of α-HBCD is higher than that of the other isomers. Exemplary
chromatogram obtained from LC-MS analysis of fish tissue sample
is shown in Figure 3.
nr 6/2014 • tom 68
Fig. 3. Chromatogram of LC-MS analysis of salmon tissue sample
Conclusions
An isotope dilution technique in LC–MS was applied for the
determination of three isomers of α-, β-, and γ-HBCD in industrial
polystyrene foams EPS and fish samples. In this study, γ-HBCD was
the most abundant among others isomers in EPS samples while
in fish samples α-HBCD dominated, which corresponds to the
literature reports. The method could be used to determine HBCD
isomers in industrial polystyrene foams and in food samples as
a routine method.
The research was carried out under the project for Young Scientists organized
by Technology Transfer Center (CTT) of Cracow University of Technology.
Literature
1. ACCBFRIP American Chemistry Council Brominated Flame Retardant Industry Panel. 2005. HPV data summary and test plan for hexabromocyclododecane (HBCD). CAS No. 3194556
2. EU RAR European Union Risk Assessment 2008. Report. Risk assessment
Hexabromocyclododecane. CAS No. 25637–99–4. Office for Official Publications of the European Communities. http://esis.jrc.ec.europa.eu/doc/
risk_assessment/REPORT/hbcddreport044.pdf (January 2014)
3. de Wit C.: An overview of brominated flame retardants in the environment.
Chemosphere 2002, 46, 583–624.
4. Priority Existing Chemical Assessment Report No. 34. Hexabromocyclododecane. June 2012. Australia. ISBN 978–1-74241–715–8. Online ISBN:
978–1-74241–716–5. Publications approval number: D0755
5. Proposal for Harmonised Classification and Labelling Based on the CLP Regulation (EC) No 1272/2008, Annex VI, Part 2. Hexabromocyclododecane.
Swedish Chemicals Agency 2009. ISBN 978–92–893–1665–1
6. Persistent Organic Pollutants Review Committee (POPRC). 2011. Hexabromocyclododecane. Draft Risk Management Evaluation. Accessed at
http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-POPRC6WG-EVAL-HBCD-draftRME-110412.En.doc (January 2014)
7. Covaci A., Gerecke A.C., Law R.J., Voorspoels S., Kohler M., Heeb N.V., Leslie
H., Allchin C.R., De Boer J.: Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol. 2006, 40, 3679 – 3688.
8. Heeb, N. V., Schweizer, W. B., Mattrel, P., Haag, R., Gerecke, A. C., Kohler,
M., Schmid, P., Zennegg, M., Wolfensberger M.: Solidstate conformations
and absolute configurations of (+) and (-)alpha-, beta-, and gamma-hexabromocyclododecanes (HBCDs). Chemosphere 2007, 68, 940–950.
9. Xua W., Wanga X., Cai Z.: Analytical chemistry of the persistent organic
pollutants identified in the Stockholm Convention: A review. Analytica Chimica
Acta 2013, 790, 1–13.
10. Kuc J., Grochowalski A., Mach S., Placha D.: Level of hexabromocyclododecane isomers in the tissue of selected commonly consumed fish in Central European countries.
Acta Chromatographica DOI:10.1556/AChrom.26.2014.4.1 online preview
*Joanna KUC – M.Sc., graduated from the Faculty of Chemical
Engineering and Technology at Cracow University of Technology. Since
2011, she has been working as an assistant in the Department of Analytical
Chemistry at the Cracow University of Technology. Research interests:
chromatographic determination of organic pollutants in environmental,
industrial and food samples.
e-mail: [email protected]; phone: +48 12 6282707
Aktualności z firm
News from the Companies
Dokończenie ze strony 525
Wyniki Grupy Azoty za I kwartał 2014 r.
Grupa Azoty zakończyła pierwszy kwartał 2014 r. z wynikiem zysku netto na poziomie 149,5 mln PLN (w analogicznym kwartale roku
ubiegłego nominalnie ponad 410 mln PLN, a po uwzględnieniu zdarzeń
jednorazowych 236 mln PLN) i blisko 182 mln PLN na działalności
operacyjnej EBIT (419 mln PLN w 1Q roku ubiegłego) przy przychodach ze sprzedaży na poziomie 2,7 mld PLN (wobec 2,68 mld w 1Q
roku ubiegłego). Zrealizowane wyniki finansowe na wszystkich jego
poziomach są wyższe od zakładanego przez analityków konsensusu.
W stosunku do analogicznego okresu roku ubiegłego wyniki są niższe
ze względu na ubiegłorocznie jednorazowe ujęcie w wyniku rozliczenia transakcji nabycia puławskiej Spółki.
Segment Nawozy – analiza segmentowa wskazuje na nieznacznie
wyższy poziom przychodów ze sprzedaży w biznesie nawozowym
pomimo spadku cen (średnio o ok 6% w nawozach azotowych, 14%
NPK i 21% w siarczanie amonu). Negatywny wpływ cen na marże
biznesu został częściowo skompensowany zwiększoną sprzedażą wolumenową oraz niższymi cenami surowców (głównie dzięki dywersyfikacji zaopatrzeniowej w gaz ziemny) co pozwoliło zrealizować solidną
marżę EBITDA na poziomie 14%.
Segment Chemia zrealizował wyższe przychody o ponad 11%
r/r i marże EBITDA o 3% głównie wskutek akwizycji Siarkopolu oraz
spadkowych tendencji cen surowców (wspomniany gaz z wpływem
na produkcje mocznika i melaminy oraz ilmenitu do produkcji pigmentów). W Segmencie Tworzyw panuje wciąż trudna sytuacja na rynku
kaprolaktamu i poliamidów. Głównie rynek kaprolaktamu doświadcza
tendencji ostrej walki cenowej w Europie oraz zwiększonej podaży
produktu na rynkach azjatyckich, co negatywnie wpływa na marże
całego segmentu. Pozytywnymi sygnałami z rynku głównych surowców są spadki cen benzenu i fenolu o odpowiednio 14 i 5%, które
to przyczyniły się jednak do polepszenia wyniku EBITDA w ujęciu r/r
z poziomu -10 mln w roku 2013 do -1 mln w roku 2014)
Efekty realizowanych synergii
W samym pierwszym kwartale 2014 r. efekt synergii konsolidacyjnych osiągnął poziom 46,4 mln PLN i osiągnięte zostały głównie w obszarze handlowym i dystrybucyjnym oraz surowcowym i dystrybucyjnym. Narastająco efekty synergii wynoszą już 136,5 mln PLN (em)
(informacja prasowa Grupy Azoty; 15 maja 2014 r.)
Dokończenie na stronie 531
nr 6/2014 • tom 68
• 527
science • technique
Adam GROCHOWALSKI – Ph.D., D.Sc., Eng., Ass. Prof., graduated from
the Faculty of Chemistry, Cracow University of Technology (1978). He received
his Ph.D. degree in 1991 at the Faculty of Chemistry, Jagiellonian University and
his D.Sc. in 2001 at the Faculty of Chemistry, Gdańsk Uviversity of Technology.
He is currently Head of the Department of Analytical Chemistry in Faculty of
Chemical Engineering and Technology at Cracow University of Technology. He
is also a director of an accredited Laboratory for Trace Organic Analyses at
Cracow University of Technology. Since 2006 he is the United Nations expert
in the field of emissions reduction of dioxins into the environment. Research
interests: analysis of trace organic compounds, studies on dioxin emissions from
thermal processes. He is the author of 67 publications in scientific journals and
the author of 10 books chapters.

Podobne dokumenty