Układ utrzymujący stałą temperaturę

Komentarze

Transkrypt

Układ utrzymujący stałą temperaturę
Sprawozdanie
Układ utrzymujący stałą temperaturę – sterowanie wentylatora na
podstawie informacji z czujnika temperatury
Damian Chmielewski
Jacek Skiba
17.01.2010
1. Założenia projektowe
Przed rozpoczęciem realizacji układu wprowadziliśmy następujące założenia, które powinien
on spełniać:
- zakres temperatury w której układ pracuje: <20, 50> [℃]
- duży zakres zmian napięcia wyjściowego
w stosunku do zmian temperatury
- możliwość kalibracji układu, tzn. zmiany zakresu temperatury w której układ pracuje
- wprowadzenie diody LED sygnalizującej włączenie/wyłączeniu układu
- mały rozmiar oraz prostota wykonania
- możliwość wykorzystania układu w praktycznym zadaniu
2a. Schemat realizowanego układu
Zalety:
- prostota działania: układ złożony z dwóch części; część komparatora załącza układ,
obwód układu LM317 reguluje napięcie wyjściowe
- możliwość regulowania zakresu pracy poprzez potencjometr R1
- możliwość zasilania układu napięciem stałym
z przedziału <6, 12> [V]
- element wykonawczy (wentylator), pobiera energię tylko wtedy gdy powinien
chłodzić otoczenie
Wady:
- wykorzystanie dwóch identycznych termistorów; układowi do jednoznacznej pracy
powinien wystarczać sygnał od pojedynczego NTC
Rys 1. Realizowany układ wraz z elementami pomiarowymi
2b. Układy alternatywne
- Wykorzystując tylko układ LM317 otrzymujemy bardzo prosty sterownik temperatury,
możliwy do wykonania nawet w formie „pająka”. Wentylator cały czas pobiera napięcie, co
ogranicza wykorzystanie układu do miejsc, gdzie chłodzenie realizowane jest cały czas: np. w
wewnątrz obudowy komputera.
Rys 2. Najprostsza forma układu utrzymującego stałą temperaturę
- Zamieniając tranzystor NPN na przekaźnik prądu stałego, układ nie zmienia sposobu
działania. Wadą tego rozwiązania jest duży prąd który musi przepłynąć przez cewkę
przekaźnika, aby zewrzeć styki obwodu LM317.
Rys 3. Przekaźnik jako element przełączający
- Wykorzystując MOSFET N załączamy obwód układu LM317 napięciowo - posiadając
odpowiednio dużą różnicę potencjałów na złączu BS otwieramy obwód DS. W realizowanym
układzie nie ma różnicy czy wykorzystujemy tranzystor bipolarny czy też unipolarny.
Rys 4. MOSFET N jako element przełączający
3. Schemat blokowy układu
Działanie układu oparte jest na dwóch częściach:
1. Układ załączający wentylator:
- komparator porównuje napięcie odniesienia z napięciem dzielnika zawierającego
termistor;
- w temperaturze pokojowej napięcie referencyjne jest wyższe, co oznacza niski stan na
wyjściu elementu porównującego – wentylator wyłączony;
- wraz ze wzrostem temperatury napięcie dzielnika z NTC rośnie;
- gdy
>
komparator przyjmuje stan wysoki – załączamy wentylator.
2. Układ regulacji napięcia wyjściowego:
- regulowany stabilizator napięcia wyznacza
;
- im mniejsza rezystancja termistora, tym większe napięcie
wentylator.
- tym szybciej działa
Rys 5. Schemat blokowy układu utrzymującego stałą temperaturę
4. Zasady doboru elementów
- Sygnały wejściowe do komparatora wyznaczono z klasycznego dzielnika napięcia:
=
Przyjmując
=
=
, komparator przyjmie stan wysoki na wyjściu dla:
>
- Wprowadzono:
-
=
= 5k1
= 2k2
= 3k2 , przy temperaturze 25℃
⇔
<
- Wartości rezystancji
i
tranzystora Q1. Wprowadzono:
-
przyjęto tak, aby większy prąd płynął przez złącze B-E
= 10k
=5
- Korzystając z noty katalogowej układu LM317, dla układu postaci:
napięcie wyjściowe wyrażamy wzorem:
= 1,25(1 +
)
- Wykorzystując tą zależność wprowadzono w układzie:
-
= 4k6
=3 2
- Wprowadzając
= 12V, maksymalne napięcie wyjściowe jest równe
=
- 1,5 = 10,5V (wynika to z budowy układu LM317)
- Zakres wyjściowy napięcia dla przyjętych wartości elementów:
∈ <3, 10,5> V
5. Koncepcja montażowa układu oraz wykaz elementów
- Układ wykonano na płytce uniwersalnej „paskowej”, wykorzystując tradycyjny montaż
przewlekany. Elementy rozmieszczono zgodnie z zaleceniami artykułu z „Elektroniki dla
Wszystkich 3/96”, „Jak montować układ na płytce uniwersalnej”. Główne cechy prostego
układu są następujące:
- górna szyna reprezentuje napięcie zasilania, a dolna masę układu;
- rozpoczynamy montaż od elementu najprostszego i skrajnego, a następnie
przesuwamy się od strony lewej do prawej;
- przed rozmieszczeniem elementów biernych szacujemy pozycje układów scalonych;
- tworzymy przerwy w paskach płytki w miejscach, gdzie wprowadzamy piny układu
scalonego.
- Wykaz elementów:
Nazwa / Oznaczenie
Symbol
Rezystor / R
Termistor NTC / RT
Tranzystor NPN / Q
Dioda LED / D
Zasilacz
stabilizowany / U
Ilość
Wykorzystuje oporniki z szeregu E24
o 5% tolerancji
Opornik półprzewodnikowy którego
rezystancja maleje wraz ze wzrotem
temperatury
BC547, wykorzystywany jako element
przełączający
Sygnalizuje stan wysoki komparatora
8
Model: EA1015C-2E; DC 12V – 1,25A
1
LM339 – obudowa DIP 14. Porównuje
napięcia przyłożone do wejść, a na
wyjściu podaje sygnał zależny od tego,
który z sygnałów wejściowych jest większy
Komparator / C
Regulowany
stabilizator napięcia
Wentylator / V
Opis
---
2
1
1
1
LM317 – obudowa TO220(T)
1
Model: AFB0712HB; DC 12V – 0,33A
1
6. Wnioski i sugestie dotyczące układu
Projekt ten uświadomił nam wieloetapowość w tworzeniu układu elektronicznego –
pomiędzy zdefiniowaniem problemu, a stworzeniem działającego układu jest długa droga.
Główny problem w tym przypadku stanowiły dwie rzeczy:
- wykorzystanie w układzie pojedynczego termistora oraz
- czytelne rozmieszczenie elementów na płytce.
Pierwszy z nich nie został rozwiązany z powodu wykorzystania tych, a nie innym układów
scalonych. Z drugim poradziliśmy sobie dobrze.
Oczywiście istnieje możliwość rozbudowy układu np. pod względem mechanicznym
można stworzyć specjalną obudowę, łączącą w jedną całość płytkę oraz wentylator. Dzięki
temu układ mógłby być wykorzystywany w praktycznych zadaniach, problemach.