Jeszcze czystsza energia jądrowa

Transkrypt

Jeszcze czystsza energia jądrowa
Ekoportal.eu - ochrona środowiska ekologia ochrona przyrody recykling biopaliwa GMO odpady
Jeszcze czystsza energia jądrowa
Niemieccy naukowcy twierdzą, że znaleźli sposób na likwidację promieniotwórczych odpadów, które pozostają po
wypaleniu paliwa w elektrowniach jądrowych. Wyniki sondażu przeprowadzonego na zlecenie Państwowej Agencji
Atomistyki mówią, że 35% badanych uważa transport i składowanie tych pozostałości to największą wadę energetyki
jądrowej. Odpadów tych nie powstaje dużo, ale są one niebezpieczne i czas ich rozkładu jest bardzo długi.
Średniej wielkości elektrownia jądrowa o mocy 1 GW zużywa w ciągu roku 24 tony tlenku uranu. Z tego pozostaje 750
kg odpadów, które trzeba gdzieś składować.
Czy technologie, które dzisiaj stosuje się do zabezpieczania wypalonego paliwa, wytrzymają konfrontację z czasem?
Skąd wiadomo, czy ze specjalnie skonstruowanych pojemników za tysiąc czy pięć tysięcy lat nie wycieknie
radioaktywny materiał? Odpady radioaktywne są groźne przez dziesiątki tysięcy lat. Eksperci uspokajają, że materiały
ochronne są pewne, a odpady magazynowane w odizolowanych od świata zewnętrznego głębokich składowiskach
podziemnych. Pojemność takich "wysypisk śmieci" jest duża, bo i odpadów, które trzeba magazynować, jest bardzo
mało.
Nikt - ani zwolennicy, ani przeciwnicy energetyki jądrowej - nie przeczy jednak, że technologia pozwalająca ominąć
składowanie odpadów byłaby bardzo pożądana. Jednym z pomysłów jest tzw. transmutacja, czyli zamienianie
izotopów, które żyją długo, w takie, które żyją krótko. Znacząco skróciłoby to konieczny okres magazynowania
radioaktywnych odpadów. Transmutacja to jednak wciąż odległa przyszłość. Inne podejście do problemu
zaproponowali uczeni z Uniwersytetu w Bochum w Niemczech.
Szef grupy badaczy profesor Claus Rolfs na pomysł skracania półokresu rozpadu niektórych pierwiastków wpadł
trochę przez przypadek. Rolfs jest astrofizykiem i badał reakcje fuzji jądrowej we wnętrzu gwiazd. Swoje
eksperymenty, w których rozpędzonymi protonami (tzw. pociskami) bombardował jądra atomowe (tzw. tarcze),
prowadził w małym akceleratorze cząstek. Zauważył, że reakcje fuzji pomiędzy przyspieszonymi cząstkami a jądrami
zachodzą częściej, gdy te drugie otoczone są warstwą metalu.
Jak wytłumaczyć to zjawisko? Wiadomo, że ładunki elektryczne tego samego znaku (jednoimienne) się odpychają, z
kolei różnoimienne przyciągają. W metalu elektrony nie są "przypisane" do żadnego konkretnego jądra atomowego. Są
wolne i dlatego mogą przewodzić prąd elektryczny (stąd metale są przewodnikami). Jądro lekkiego pierwiastka
pozbawione w akceleratorze swoich elektronów miało ładunek elektryczny dodatni i przyciągało wolne elektrony z
metalicznego otoczenia. Ujemny ładunek elektryczny tych elektronów przyciągał z kolei rozpędzone w akceleratorze i
naładowane dodatnio protony. Tym samym częściej dochodziło do kolizji i fuzji pomiędzy cząstką-pociskiem i
jądrem-tarczą. Czy to ma jakiś związek ze składowaniem odpadów radioaktywnych? Ma, i to bardzo duży.
- Najdłużej spośród wszystkich produktów reakcji rozszczepienia żyją ciężkie izotopy alfa promieniotwórcze - mówi
Maciej Jurkowski, dyrektor departamentu bezpieczeństwa jądrowego w Państwowej Agencji Atomistyki. Rozpad alfa
polega na wyrzuceniu z radioaktywnego jądra dodatnio naładowanej cząstki, która jest zlepkiem dwóch protonów i
dwóch neutronów. Umieszczenie w pobliżu takiego niestabilnego jądra czegoś naładowanego ujemnie - np. metalu z
chmurą swobodnych elektronów - powinno spowodować szybsze wyrwanie cząstki alfa na zewnątrz. Tym samym
półokres rozpadu izotopów alfa powinien ulec skróceniu.
I tak jest rzeczywiście. Pomysł został już wstępnie przetestowany na alfa promieniotwórczym izotopie polonu-210.
Teraz metoda skracania półokresu rozpadu ma zostać sprawdzona na izotopie radu-226. Ten pierwiastek występuje w
wypalonym paliwie jądrowym, a jego półokres rozpadu wynosi 1,6 tys. lat. Profesor Claus Rolfs twierdzi, że jest w
stanie zredukować ten okres do zaledwie jednego roku - to w wersji optymistycznej - a maksymalnie do stu lat.
- Jeżeli to, co obiecują naukowcy z Bochum, jest prawdą, mielibyśmy do czynienia z przełomem w dziedzinie
postępowania z odpadami jądrowymi - mówi Maciej Jurkowski.
Rolfs twierdzi, że półokres rozpadu innych niebezpiecznych izotopów alfa promieniotwórczych uda się skrócić tak
samo drastycznie jak radu-226. - To oznacza, że nie będziemy zostawiali do rozwiązania problemu wypalonego paliwa
naszym prapraprawnukom, tylko rozwiążemy go sami - uważa profesor Rolfs.
Źródło: gazeta.pl
strona 1 / 1