Assessment of body composition using bioelectrical impedance

Transkrypt

Assessment of body composition using bioelectrical impedance
Developmental Period Medicine, 2015;XIX,3(I)
297
© IMiD, Wydawnictwo Aluna
Nina Mól1, Przemko Kwinta1,2
ASSESSMENT OF BODY COMPOSITION USING
BIOELECTRICAL IMPEDANCE ANALYSIS
IN PRETERM NEONATES RECEIVING INTENSIVE CARE*
OCENA SKŁADU CIAŁA PRZY UŻYCIU BIOIMPEDANCJI
ELEKTRYCZNEJ U NOWORODKÓW URODZONYCH
PRZEDWCZEŚNIE WYMAGAJĄCYCH INTENSYWNEJ TERAPII
1
2
University Children’s Hospital of Krakow, Department of Pediatrics, Poland
Department of Pediatrics, Chair of Pediatrics, Polish-American Institute of Pediatrics,
Jagiellonian University, Medical College, Krakow, Poland
Abstract
Aim: Evaluation of bioelectrical impedance values and body composition during early infancy in groups
of preterm newborns and full term newborns.
Material and methods: A total of 38 newborns was enrolled in the study: 26 very low birth weight preterm
newborns with the mean birth weight of 1236 g (SD: 161) as the study group and 12 term newborns with
birth weight of 2500-4000 g as the control group. Anthropometric measurements and body composition
using bioimpedance analysis at the age of 1 week and at the age of 3 months were assessed.
Results: At the age of 1 week we noted higher resistance with the impedance variables R5, R50, R100 in the
group of preterm newborns compared to the full term newborns’ group (923 (144) vs. 647 (78) p<0.01; 870
(140) vs. 615 (73) p<0.01; 844 (141) vs. 599 (72) p<0.01). Moreover, the bioimpedance index and fat mass
(%) were significantly lower in the group of preterm infants at the age of 3 months (3.81 (0.9) vs. 5.72 (1.1)
p<0.01; 16.1% (1.7) vs. 18.9% (2.7) p=0.006). We observed a decreased amount of the percentage of total
body water (TBW%) in both of the analyzed infant groups throughout the observational period. At the
age of 3 months the amount of TBW % was similar in both groups (71.5% (7.03) vs. 70.8% (8.8) p=0.8).
Conclusions: Bioimpedance analysis is a simple, non-invasive, repeatable method to estimate total body
water, fat-free mass, and fat mass, both in term and preterm newborns. The study confirms differences in
body composition between preterm newborns and full term newborns. Moreover, we have shown that
the differences are present until the end of the 3rd month of life, with the exception of the amount of water
percentage (TBW%), which are similar in both groups.
Key words: preterm infants, body composition
Streszczenie
Cel pracy: Porównanie wartości impedancji bioelektrycznej oraz składu ciała w ciągu pierwszych 3
miesięcy życia w grupie noworodków urodzonych przedwcześnie oraz w grupie noworodków urodzonych
w fizjologicznym terminie porodu
Materiał i metody: Badaniem objęto łącznie grupę 38 pacjentów, w tym 28 noworodków urodzonych
z bardzo małą urodzeniową masą ciała (średnia 1236 g (SD: 161 g)) oraz 12 noworodków urodzonych
w fizjologicznym terminie porodu, z masą ciała 2500g-4000g. W pierwszym tygodniu życia oraz w
wieku 3 miesięcy wykonano pomiary antropometryczne oraz oceniono skład ciała przy użyciu metody
bioimpedancji elektrycznej
*Study sponsored by Grant number RG1/2013 obtained from NUTRICIA Foundation.
298
Nina Mól, Przemko Kwinta
Wyniki: W pierwszym tygodniu życia wartości oporu mierzone przy częstotliwościach 5, 50 i 100 Hz były
istotnie większe w grupie noworodków urodzonych przedwcześnie (923 (144) vs. 647 (78) p<0,01; 870
(140) vs. 615 (73) p<0,01; 844 (141) vs. 599 (72) p<0,01). Dodatkowo, noworodki urodzone przedwcześnie
w wieku 3 miesięcy charakteryzowały się: niższym indeksem impedancji bioelektrycznej oraz niższą
procentową zawartością tkanki tłuszczowej (3,81 (0,9) vs. 5,72 (1,1) p<0,01; 16,1% (1,7) vs. 18,9% (2,7)
p=0,006). Zarówno w grupie noworodków urodzonych przedwcześnie, jak i fizjologicznym terminie
porodu stwierdzono zmniejszanie się procentowej ilości całkowitej zawartości wody w organizmie
(TBW%) wraz z wiekiem dziecka. W 3. miesiącu życia w obu grupach ilość wody w organizmie była
porównywalna (71,5% (7,03) vs. 70,8% (8,8) p=0,8).
Wnioski: Metoda impedancji bioelektrycznej jest prostą, nieinwazyjną metodą oceny ilości całkowitej
wody ciała, beztłuszczowej masy ciała oraz tkanki tłuszczowej u noworodków urodzonych przedwcześnie
oraz w fizjologicznym terminie porodu. Prezentowane badanie wskazuje na istotne różnice składu
ciała między grupą noworodków urodzonych przedwcześnie w stosunku do noworodków urodzonych
w fizjologicznym terminie porodu. Różnice te utrzymują się przez 3 pierwsze miesiące życia dzieci
z wyjątkiem zawartości wody w organizmie (TBW%), która w 3 miesiącu życia jest podobna w obu
grupach.
Słowa kluczowe: noworodki urodzone przedwcześnie, skład ciała
DEV PERIOD MED. 2015;XIX,3,I:297304
INTRODUCTION
MATERIALS AND METHODS
Extreme prematurity is a crucial problem in neonatology.
Compared to full term infants, preterm newborns are
more susceptible to malnutrition and extrauterine
growth retardation early in life, while in later life they
are more likely to experience growth failure, skeletal
mineral deficiencies, and neuropsychological development
restrictions [1]. On top of that, there is an increasing
prevalence of obesity in that group, which becomes an
important public health problem in childhood and leads
to numerous complications. Body composition disorders
in early life may play a key role in the programming of
a variety of health disorders in the future, including
hypertension, stroke, type 2 diabetes, and obesity [2, 3].
Thus, the energy balance and nutritional status are of vital
importance in the early stages of infancy, in particular
in preterm babies. An accurate assessment of neonatal
body composition is essential to determine the energy
status of preterm newborns, project their development
and to monitor their feeding interventions.
Routine methods used in clinical settings to assess body
composition in infants and children are largely based on
anthropometric measurements (such as length, weight,
skinfold thickness) and recently introduced bioelectrical
impedance analysis (BIA) techniques. The theory behind
BIA provides good grounds for the assessment of total body
water (TBW). The method implements a phenomenon
that only water (containing electrolytes) can conduct
electricity in the human body. The examination is quick,
relatively low-cost, and BIA equipment is inexpensive
and portable.
The aim of the present study is to evaluate whether there
is a difference in bioelectrical impedance values and body
composition between preterm newborns and newborns
born at term over the first 3 months of their lives.
The research project included preterm newborns with
birth weight between 1000-1500 g, and term newborns
with birth weight between 2500-4000 g, hospitalized due
to frequent, moderate complications in the neonatal period
(e.g. severe hiperbilirubinaemia, adaptation disorders),
admitted to the Neonatal Intensive Care Unit (Chair and
Department of Pediatrics, Jagiellonian University, Krakow)
between February 2014 and January 2015. A total of 38
newborns were enrolled in the study: 26 preterm infants as
the study group and 12 term infants as the control group.
Exclusion criteria for both groups were severe congenital
malformations, chromosomal aberrations, asphyxia with
Apgar Score in the 5th min. below 3 points, intraventricular
hemorrhage grade IV, and severe infections. The study
protocol was approved by the Jagiellonian University Medical
College Ethical Committee (issue No KBET/58/B/2013 from
4.04.2013). Written and informed consent was obtained
from the parents.
Anthropometric measurements such as: birth weight,
birth length, and head circumference were collected. All
the infants were weighed naked on an electronic baby scale
to the nearest 10 g. Crown-heel length was measured to
the nearest 0.5 cm. The occipitofrontal circumference was
measured by using a measuring tape. A single investigator
made all the measurements.
Body composition was measured with the multi-frequency
impedance body composition monitor (BCM; Fresenius
Medical Care, Bad Homburg, Germany), and special disposable
electrodes BCM-FMC (<25 kg). The BCM measured resistance
and reactance at 50 frequencies between 5 and 1000 kHz. The
amplitude of the electric current was 0.8mA. The newborns
examined were placed in the supine position with arms
and legs extended. Two electrodes were attached to each
dorsal surface of hand and foot. Measurements were made
Assessment of body composition using bioelectrical impedance analysis in preterm neonates receiving intensive care 299
Placing of electrodes/Umieszczenie elektrod
Distal electrode
Red clip
Distal electrode
Red clip
Elektroda dystalna
Zacisk czerwony
Proximal electrode
Black clip
Elektroda proksymalna
Zacisk czarny
Elektroda dystalna
Zacisk czerwony
Proximal electrode
Black clip
Elektroda proksymalna
Zacisk czarny
Fig. 1. Electrodes posi!on.
Ryc. 1. Umieszczenie elektrod.
after 2 minutes following attachment of the electrodes at
their respective sites (appropriate electrode positions are
presented in figure 1).
the observational period (tab. VI and VII) At the age of 3
months the amount of TBW% was similar in both groups
(71.5% (7.03) vs. 70.8% (8.8) p=0.8 − tab. V).
STATISTICAL ANALYSES
DISCUSSION
Our null hypothesis stated that there was no difference
in bioelectrical impedance values and body composition
between preterm infants and full term infants. Demographic
and clinical data comparisons between the study and
control groups were performed using Student’s t-test,
Mann-Whitney U-test, and chi-square test. The comparison
between the measurements acquired in the 1st week of
life and in the 3rd month of life were performed using the
paired t-test. The detected differences were considered
to be statistically significant in case of p<0.05.
Bioimpedance analysis is a noninvasive, low cost
and commonly used approach for body composition
measurements and the assessment of the patient’s clinical
condition. Bioimpedance or biological impedance is
defined as the ability of biological tissue to impede electric
current [4]. The measurement of bioimpedance is obtained
from the whole body and body segments separately, using
single frequency, multiple frequencies and bioimpedance
spectroscopy analysis. BIA is a method consisting in the
passage of a painless electric current of low amplitude (≤1
mA), and low and high frequencies through the organism.
The analysis of bioimpedance information obtained at
50 KHz electric current is known as single-frequency
bioimpedance analysis (SF-BIA). SF-BIA is the most
common, and one of the earliest methods for the estimation
of body compartments. The analysis of bioimpedance that
is obtained at more than two frequencies (frequency range
between 5-1000 kHz) is known as multiple-frequency
bioimpedance analysis (MF-BIA). MF-BIA is based on
the finding that exposing it to low and high frequency
electric currents can assess the ECF and TBW, respectively
[5]. Bioelectrical impedance analysis (BIA) is possible,
because impedance is a function of resistance (R) and
reactance (Xc) [6]. Due to its reduced water and electrolyte
content adipose tissue is non-conductive and shows high
electrical resistance. In contrast, lean tissue mass, due to
the high amount of intra- and extracellular water is a good
conductor, and shows low resistance to the passage of an
electric current. Low frequency electric current passes
through the extracellular compartment. Depending on the
frequency used, cell membranes act as small capacitors
or resistors. Having identified the levels of resistance
and reactance of the organism to electrical current, it is
possible to evaluate intra- (ICW) and extracellular water
(ECW) [7]. The introduction of different frequencies,
RESULTS
Thirty-eight newborns (26 preterm infants and 12
full-term infants) were included in the study. Their
anthropometric characteristics at birth and during the
second BIA examination are shown in table I.
We noted higher resistance with the impedance variables
R5, R50, R100 in the group of preterm infants in comparison
with the full term infants’ group; however only at the 1st
examination was the difference statistically significant (923
(144) vs. 647 (78) p<0.01; 870 (140) vs. 615 (73) p<0.01; 844
(141) vs. 599 (72) p<0.01). A similar correlation was observed
with reactance using 50 Hz frequency. Measurements in
the 1st week of life were statistically higher in the group of
preterm infants (tab. II, III, IV). The bioimpedance index
was positively correlated with total body water (TBW) in
both groups. Both the bioimpedance index (3.81 (0.9) vs.
5.72 (1.1) p<0.01) and total body water (2.52 l (0.6) vs. 3.77 l
(0.72); p<0.010) were significantly lower in the group of
preterm infants at the age of 3 months. Moreover, the
amount of adipose tissue was also significantly lower in
that group (16.1% vs 18.9%; p=0.006) − tab. V. We observed
a decreased amount of the percentage of total body water
(TBW%) in both of the infant groups analyzed throughout
300
Nina Mól, Przemko Kwinta
Table I. Baseline characteris!cs of the study popula!on (mean values and standard devia!on).
Tabela I. Charakterystyka badanych grup (dane przedstawiono jako średnią i odchylenie standardowe).
Study group
Grupa badana
n= 26
Control group
Grupa kontrolna
n=12
p value
Gesta!onal age (wk.)
Wiek ciążowy (tyg.)
30.5 (26-33)
39 (37-41)
<0.01a
Birth weight (g)
Urodzeniowa masa ciała (g)
1236 (165)
3262 (385)
<0.01a
Birth length (cm)
Urodzeniowa długość ciała (cm)
39.1 (2.12)
51.4 (3.15)
<0.01a
Sex (boys/girls)
Płeć (męska/żeńska)
11/15
9/3
n.s.b
Age at 1st BIA study (days)
Wiek w czasie 1-szego badania (dni)
4.7 (2.8)
4.6 (1.6)
n.s.c
Age at 2nd BIA study (days)
Wiek w czasie 2-go badania (dni)
84 (22)
87 (8)
n.s.c
Weight at 2nd BIA study (kg)
Masa ciała w czasie 2-go badania (kg)
3.52 (0.69)
5.44 (1.36)
<0.01a
Length at 2nd BIA study (cm)
Długość ciała w czasie 2-go badania (cm)
50.8 (3.7)
60.7 (5.1)
<0.01a
P value for: aStudent’s t test, bFisher’s exact test, cMann-Whitney U test; BIA − bioimpedance analysis/bioimpedancja elektryczna;
n.s. − non significant/nie istotne statystycznie.
Table II. Comparison of BIA values at the age of 1 week (1st examina!on).
Tabela II. Porównanie zmierzonych w 1. tygodniu życia (1. badanie) wartości impedancji w badanych grupach.
Study group
Grupa badana
n=26
Control group
Grupa kontrolna
n=12
p value for Student’s t test
R if f=5 Hz
923 (144)
647 (78)
<0.01
R if f=50 Hz
870 (140)
615 (73)
<0.01
Xc if f=50 Hz
52.7 (19)
34.2 (8.4)
<0.01
Phase angle if f=50 Hz
Kąt fazowy przy f=50 Hz
3.56 (1.53)
3.19 (0.67)
0.4
R if f=100Hz
844 (141)
599 (72)
<0.01
R − resistance/R − rezystancja
Xc − reactance/Xc − reaktancja
BIA − bioimpedance analysis/bioimpedancja elektryczna
Assessment of body composition using bioelectrical impedance analysis in preterm neonates receiving intensive care 301
Table III. Comparison of BIA values at the age of 3 months (2nd examina!on).
Tabela III. Porównanie zmierzonych w 3. miesiącu życia (2. badanie) wartości impedancji w badanych grupach.
Study group
Grupa badana
n=26
Control group
Grupa kontrolna
n=12
p value for Student’s t test
R if f=5 Hz
730 (87)
697 (48)
0.4
R if f=50 Hz
692 (81)
653 (53)
0.25
Xc if f=50 Hz
39.4 (10)
40.7 (6.2)
0.8
Phase angle if f=50 Hz
Kąt fazowy przy f=50 Hz
3.25 (0.7)
3.59 (0.7)
0.3
R if f=100Hz
673 (79)
633 (53)
0.24
R − resistance/R − rezystancja
Xc − reactance/Xc − reaktancja
BIA − bioimpedance analysis/bioimpedancja elektryczna
Table IV. Comparison of body composi!on assessed using BIA values at the age of 1 week (1st examina!on).
Tabela IV. Porównanie oszacowanego na podstawie pomiaru BIA składu ciała – wartości dla 1. tygodnia życia. (pierwsze
badanie).
Study group
Grupa badana
n=26
Control group
Grupa kontrolna
n=12
p value for Student’s t test
Impedance index
(ht2/R if f=50 Hz)
Index impedancji
1.81 (0.35)
4.35 (0.64)
<0.01
TBW (l)
1.1 (0.15)
2.82 (0.39)
<0.01
TBW (%)
89.4 (6)
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
86.7 (9.9)
0.3
FFM (kg)
FFM (%)
FM (kg)
FM (%)
2.77 (0.29)
85.3 (1.4)
0.48 (0.1)
14.6 (1.4)
ht − height; R − resistance; TBW − total body water; FFM − fat-free mass; FM − fat mass
ht − długość ciała; TBW − całkowita zawartość wody w organizmie; FFM − beztłuszczowa masa ciała; FM − masa tkanki tłuszczowej
Table V. Comparison of body composi!on assessed using BIA values at the age of 3 months (2nd examina!on).
Tabela V. Porównanie oszacowanego na podstawie pomiaru BIA składu ciała – wartości dla 3. miesiąca życia (drugie
badanie).
Impedance index
(ht2/R if f=50 Hz)
Index impedancji
TBW (l)
TBW (%)
FFM (kg)
FFM (%)
FM (kg)
FM (%)
Study group
Grupa badana
n=26
Control group
Grupa kontrolna
n=12
p value for Student’s t test
3.81 (0.9)
5.72 (1.1)
<0.01
2.52 (0.6)
71.5 (7.03)
2.94 (0.5)
83.9 (1.7)
0.58 (0.17)
16.1 (1.7)
3.77 (0.72)
70.8 (8.8)
4.38 (1.0)
81 (2.7)
1.06 (0.35)
18.9 (2.7)
<0.01
0.8
<0.01
0.01
<0.001
0.006
ht − height; R − resistance; TBW − total body water; FFM − fat-free mass; FM − fat mass
ht − długość ciała; TBW − całkowita zawartość wody w organizmie; FFM − beztłuszczowa masa ciała; FM − masa tkanki tłuszczowej
302
Nina Mól, Przemko Kwinta
Table VI. Comparison of BIA values and assessed body composi!on in full- term neonates (n=12) at the age of 1
week and 3 months (1st and 2nd examina!on).
Tabela VI. Porównanie wartości impedancji oraz oszacowanego składu ciała w pomiarach w 1. tż. oraz 3. mż.
(1. i 2. badanie) w grupie noworodków urodzonych w fizjologicznym terminie porodu.
Weight at !me of study (g)
Masa ciała
w trakcie badania (g)
R if f=5 Hz
R if f=50 Hz
Xc if f=50 Hz
Phase angle if f=50 Hz
Kąt fazowy przy f=50 Hz
R if f=100 Hz
Impedance index
(ht2/R if f=50 Hz)
Index impedancji
TBW (l)
TBW (%)
FFM (kg)
FFM (%)
FM (kg)
FM (%)
1st examina%on
pierwsze badanie
2nd examina%on
drugie badanie
p value for paired t-test
3.3 (0.42)
5.44 (1.4)
<0.01
628 (54)
600 (52)
30 (5.3)
697 (48)
653 (53)
40.7 (6.2)
0.05
0.1
0.01
2.83 (0.6)
3.6 (0.7)
0.044
586 (53)
633 (53)
0.1
4.55 (0.4)
5.7 (1.1)
0.014
2.94 (0.3)
89 (6.5)
2.81 (0.3)
85.5 (1.4)
0.48 (0.1)
14.5 (1.4)
3.76 (0.72)
71 (8.8)
4.38 (1.0)
81 (2.7)
1.05 (0.35)
18.9 (2.7)
0.1
<0.01
0.003
0.001
0.002
0.001
ht − height; R − resistance; Xc − reactance; TBW − total body water; FFM − fat-free mass; FM − fat mass; BIA − bioimpedance analysis
ht − długość ciała; R − rezystancja; Xc − reaktancja; TBW − całkowita zawartość wody w organiźmie; FFM − beztłuszczowa masa ciała;
FM − masa tkanki tłuszczowej; BIA − bioimpedancja elektryczna
total body water (TBW), fat-free mass (FFM) and fat
mass (FM) can be estimated [8. 9]. Reactance causes the
electric current to lag behind the voltage creating a phase
shift. This shift is quantified geometrically as the angular
transformation of the ratio of reactance to resistance or
the phase angle –φ [10]. The phase angle has proved to be
a good predictor of prognosis and mortality in patients
that undergo hemodialysis [11] or are diagnosed with
cancer [12], human immunodeficiency syndrome (HIV)
[13], and liver [14] and geriatric [15] diseases. The phase
angle depends on cell membrane integrity and body
cell mass. There is a correlation between phase angle
values and body cell mass. The phase angle gives indirect
information about nutritional status [6].
The use of bioimpedance to estimate fat-free mass
(FFM) is based on the assumption that adipose tissue, due
to reduced water and electrolyte content is non-conductive.
However, it has been observed that in fact adipose tissue has
a wide range of conductivity depending on the degree of its
perfusion. Moreover, the composition of fat in a newborn is
different from that in an adult. The water content is highest
at birth (45-48%), decreasing to 27-38% at the age of 6-10
months and further down to 20-26% in adulthood [16].
The increased vascularization and high water content in
adipose tissue in the first months of life may be the reason
for the increased conductivity of the fat. Such changes in fat
composition might account for our inability to determine
fat mass and fat-free mass during the 1st week of life in the
preterm infant group in our study.
Kushner et al. [17] concluded that the impedance
index (ht2/R) is a significant predictor of total body water
at various ages from infancy to adulthood. Our study
confirms the correlation between the impedance index
and total body water in both the groups examined.
Uthaya et al. assessed the quantity and distribution
of adipose tissue in term infants of equivalent age using
magnetic resonance imaging. The authors reported that
their preterm infants had a highly significant decrease in
their subcutaneous adipose tissue and significantly increased
intra-abdominal adipose tissue compared withthe control
group of neonates born at term. Accelerated postnatal
weight gain was accompanied by increased total and
subcutaneous adiposity. Increased and aberrant adiposity
are risk factors of cardio-vascular diseases in later life
[18]. Gianni et al. [19] examined children with birth
weight <1800 g and gestational age <34 weeks at the age
of 4.8-6.6 years using dual energy X-ray absorptiometry
(DXA). They found a significantly lower amount of adipose
tissue in the group of preterm infants in comparison
with the full term infants’ group. Moreover, aberrant fat
distribution with reduced subcutaneous and increased
intra-abdominal amount of adipose tissue was noted.
Assessment of body composition using bioelectrical impedance analysis in preterm neonates receiving intensive care 303
Table VII. Comparison of BIA values and assessed body composi!on in preterm neonates (n=26) at the age of 1 week
and 3 months (1st and 2nd examina!on).
Tabela VII. Porównanie wartości impedancji oraz oszacowanego składu ciała w pomiarach w 1. tż. oraz 3. mż. (1. i 2.
badanie) w grupie noworodków urodzonych przedwcześnie.
Weight at !me of study (g)
Masa ciała
w trakcie badania (g)
R if f=5 Hz
R if f=50 Hz
Xc if f=50 Hz
Phase angle if f=50 Hz
Kąt fazowy przy f=50 Hz
R if f=100 Hz
Impedance index
(ht2/R if f=50 Hz)
Index impedancji
TBW (l)
TBW (%)
FFM (kg)
FFM (%)
FM (kg)
FM (%)
1st examina%on
pierwsze badanie
2nd examina%on
drugie badanie
p value for paired t-test
1.24 (0.19)
3.52 (0.7)
<0.01
911 (150)
868 (148)
47 (13)
730 (87)
692 (81)
39 (10)
0.012
0.001
0.09
3.21 (1.2)
3.25 (0.7)
0.9
844 (149)
673 (79)
0.001
1.85 (0.4)
3.82 (0.91)
<0.001
1.12 (0.2)
90 (6.4)
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
Not es!mated
/nie oszacowano
2.52 (0.6)
71.6 (7)
<0.001
<0.001
2.94 (0.5)
84 (1.7)
0.58 (0.17)
16.1 (1.7)
ht − height; R− resistance; Xc − reactance; TBW − total body water; FFM − fat-free mass; FM − fat mass; BIA − bioimpedance analysis
ht − długość ciała; R − rezystancja; Xc − reaktancja; TBW − całkowita zawartość wody w organiźmie; FFM − beztłuszczowa masa ciała;
FM − masa tkanki tłuszczowej; BIA − bioimpedancja elektryczna
Our observations in children examined at the age of
3 months were in agreement with data reported from
other groups showing lower body fat percentage in the
infants born preterm compared with those born at term.
Kwinta et al. [20] examined children with extremely
low birth weight (<1000 g) at the age of 7 years using
the BIA method. They reported a significantly lower
amount of adipose tissue in the group of preterm infants
in comparison with the full term infants’ group (11% vs.
16%). In this study at the age of 3 months we noticed a
lower amount of fat tissue (16.1% vs 18.9%), a greater
amount of fat-free mass and increased total body water
in the group of preterm infants compared with the group
of neonates born at term.
CONCLUSIONS
Bioimpedance analysis is a simple, non-invasive,
repeatable method to estimate total body water, fat-free
mass, and fat mass both in term and preterm infants. This
study should prove to be a useful tool for the assessment
of the changes in total body water and body composition
in the neonatal care department.
REFERENCES
1. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, StrangKarlsson S, Kajantie E, et al. Decreased bone mineral density
in adults born with very low birth weight: a cohort study.
PLoS Med. 2009;6:e1000135.
2. Ram Weiss MD, James Dziura PhD, Tania S Burgert MD,
William V Tamborlane MD, Sara E Taksali MPH, Catherine
W Yeckel PhD, Karin Allen RN, Melinda Lopes RN, Mary
Savoye RD, John Morrison MD, Robert S Sherwin MD and
Sonia Caprio MD Obesity and the Metabolic Syndrome in
Children and Adolescents N Engl J Med. 2004;350:23622374.
3. Chen F, Wang Y, Shan X, Cheng H, Hou D, Zhao X,
Wang T, Zhao D, Mi J. Association between childhood
obesity and metabolic syndrome: evidence from a large
sample of Chinese children and adolescents. PLoS One.
2012;7(10):e47380.
4. Martinsen OG, Grimnes S. Bioimpedance and Bioelectricity
Basics. Academic Press; Waltham. MA. USA: 2011.
5. Scheltinga MR, Jacobs DO. Kimbrough TD. Wilmore DW.
Identifying body fluid distribution by measuring electrical
impedance. J Trauma. 1992 Nov;33(5):665-670.
304
Nina Mól, Przemko Kwinta
6. Drożdż D, Kwinta P, Korohoda P, Pietrzyk JA, Drożdż M,
Sancewicz-Pach K. Wartości pomiarowe bioimpedancji
elektrycznej u dzieci zdrowych. Stand Med.2007;T. 4, nr
1:60-65.
7. Deurenberg P, Schouten FJ. Loss of total body water and
extracellular water assessed by multifrequency impedance.
Eur J Clin Nutr. 1992 Apr;46(4):247-255.
8. Lukaski HC. Methods for the assessment of human
body composition: traditional and new. Am J Clin Nutr.
1987;46:537-556.
9. PeilyJ. Assesment of body composition in infants and
children. Nutrition 1998;14:821.
10. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric
impedance phase angle and body composition. Am J Clin
Nutr. 1988;48:16-23.
11. Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo
R, Marra M, et al. Early changes in bioelectrical estimates
of body composition in chronic kidney disease. J Am Soc
Nephrol. 2006;17:1481-1487.
12. Gupta D, Lis CG, Dahlk SL, King J, Vashi PG, Grutsch JF,
et al. The relationship between bioelectrical impedance
phase angle and subjective global assessment in advanced
colorectal cancer. Nutr J. 2008;7:19.
13. de Luis DA, Aller R, Bachiller P, Gonzalez SM, Martin J, Izaola
O. Influence of hormonal status and oral intake on phase
angle in HIV-infected men. Nutrition 2004;20:731-734.
14. Selberg O, Selberg D. Norms and correlates of bioimpedance
phase angle in healthy human subjects. hospitalized patients.
and patients with liver cirrhosis. Eur J Appl Physiol.
2002;86:509-516.
15. Wirth R, Volkert D, Rosler A, Sieber CC, Bauer JM. Bioelectric
impedance phase angle is associated with hospital mortality
of geriatric patients. Arch Gerontol Geriatr. 2010;51:290294.
16. Baker GL. Human adipose tissue composition and age.
Am J Clin Nutr. 1969 Jul;22(7):829-835
17. Kushner RF, Schoeller DA, Fjeld CR, Danford L. Is the
impedance index (ht2/R) significant in predicting total
body water? Am J Clin Nutr. 1992 Nov;56(5):835-839.
18. Uthaya S, Thomas EL, Hamilton G, Doré CJ, Bell J, Modi
N. Altered adiposity after extremely preterm birth. Pediatr
Res. 2005 Feb;57(2):211-5. Epub 2004 Dec 20.
19. Gianni ML, Mora S, Roggero P, Amato O, Piemontese
P, Orsi A, Vegni Ch, Puricelli V, Mosca F. Regional fat
distribution in children born preterm evaluated at school
age. JPGN 2008;46:232-235.
20. Kwinta P, Klimek M, Grudzień A, Piątkowska E, Kralisz A,
Nitecka M, Profus K, Gasińska M, Pawlik D, Lauterbach
R, Olechowski W, Drożdż D, Pietrzyk JJ. Ocena rozwoju
somatycznego i składu ciała dzieci w 7. roku życia
urodzonych z ekstremalnie małą masą ciała (<1000 g)
– wieloośrodkowe badanie przekrojowe kohorty urodzonej
w latach 2002-2004 w woj. małopolskim. Med Wieku
Rozwoj. 2012;XVI:2:81-88.
Author’s contributions/Wkład Autorów
According to the order of the Authorship/Według kolejności
Conflicts of interest/Konflikt interesu
The Authors declare no conflict of interest.
Autorzy pracy nie zgłaszają konfliktu interesów.
Received/Nadesłano: 10.03.2015 r.
Accepted/Zaakceptowano: 26.05.2015 r.
Published online/Dostępne online
Address for correspondence:
Nina Mól
Department of Pathology and Intensive Care of Newborn,
Clinic of Children’s Diseases, Chair of Paediatrics,
Jagiellonian University Medical College
265 Wielicka Street, 30-663 Krakow
tel. (12) 658-02-56
e-mail: [email protected]

Podobne dokumenty