MOTION UNDER THE MICROSCOPE: MODERN - BIO

Transkrypt

MOTION UNDER THE MICROSCOPE: MODERN - BIO
MOTION UNDER THE MICROSCOPE: MODERN TECHNIQUES FOR STUDYING
CELL ADHESION AND MOTILITY
Paweł Pomorski
Laboratory of the Molecular Basis of Cell Motility
Nencki Institute of Experimental Biology, Warsaw, Poland
Ability to move is one of the fundamental functions of the living cells. It is due to the motility
that organism develops, immune system can work, organs are able to regenerate and wound
heal. In the same time motility studies are among methodologically most difficult ones.
Biochemical processes underlying motility are notoriously unsynchronized and motile cells
are usually not very numerous. Current paper reviews microscope techniques developed to
solve those problems. We discuss basic measurements, parameterizing motility and
substratum adhesion. Classical, structural microscopy used for motility studies are also
sketched shortly. We describe also use of molecular probes for signaling studies in motile
cells as well as we mention about microscopic experimental techniques, allowing experiments
on single cells.
Ruch i adhezja komórek
– metody mikroskopowe
Paweł Pomorski
18.06.2013
1. Obserwacja i
parametryzacja ruchu
komórek
2. Pomiar adhezji komórek
3. Zastosowanie w praktyce
doświadczalnej
ŚLEDZENIE KOMÓREK
Kontrast fazowy
200
180
160
140
120
100
80
60
40
20
0
0
200
400
600
800
1000
DIC Nomarski
200
180
160
140
120
100
80
60
0
50
100
150
200
250
300
350
400
M. fluorescencyjna
160
140
120
100
80
60
40
20
0
0
50
100
150
200
CrossCorrelation Tracking
CrossCorrelation Tracking
Trajektorie
170.5764
85.2882
0
-170.5764
-85.2882
85.2882
-85.2882
-170.5764
170.5764
Trajektorie
170.5764
85.2882
0
-170.5764
-85.2882
0
-85.2882
-170.5764
85.2882
170.5764
Confocal microscope Leica TCS LSI - practical applications
1
Płatek R., 2Korczyński J. and 1Skup M.
1
Laboratory for Reinnervation Processes and 2Laboratory for Confocal Microscopy
Nencki Institute of Experimental Biology, Warsaw, Poland.
Conventional confocal microscopy is dedicated mainly to proceed with thin tissue sections and cells
seeded on a cover slip. The Leica TCS LSI macro confocal is the first super zoom microscope that
combines all benefits of traditional confocal microscopy with large scale imaging of anesthetized,
alive objects as well as unfixed/fixed objects post mortem. In our experiments we have tested Leica
TCS LSI for scanning of (1) murine brains and spinal cords in vivo, and dissected in toto immediately
post mortem, and (2) fixed rat spinal cords. We used transgenic mice expressing green fluorescent
protein (GFP) under PLP promoter, to visualize oligodendrocytes, and rats with spinal cords
transduced with AAV vector coding for enhanced GFP under mCMV promoter, to visualize neurons
and glia. Super zoom confocal microscopy let us observe general distribution of GFP- expressing cells
in whole organs as well as to focus on single cells and fibers. We were able to discriminate well
between main morphological features of these cells. In murine brains we could visualize myelinated
axons and oligodendrocytes, whereas in rat spinal cords the extent of eGFP expressing cells and their
fibers traversing along entire spinal cord could be traced. The labeled objects could be visualized
from the regions lying within a range of 100 μm from the surface of the brain/spinal cord. The details
on the procedures applied, benefits and limitations of the method will be presented.
Mikroskop konfokalny Leica TCS LSI - przykłady zastosowania
Mikroskopia konfokalna - Praktyczny Kurs Badań In vivo
18-19.06.2013
Rafał Płatek; Pracownia Procesów Reinerwacyjnych
Mikroskopia konfokalna
Mikroskopia konfokalna
?
Parametry Leica TCS LSI
Scanner Method
Confocal channels
Scanner galvo (x,y)
Sequential scan
Channel multiplexing
Scan formats [pixel]
Image depth [bit]
Spectral detection
Spectral bandwidth [nm]
Detector
Detector type
true confocal
1
Confocal Zoom
Zoom range [x]
Optical Zoom (Z16 APO)
continuously variable
1x – 16x
0.57 – 9.2x
Laser type
Number of lasers
Laser options [nm]
Excitation attenuation
solid state
max 4
405, 488, 532 or 561, 635
AOTF
Macro-Objectives
Working distance [mm]
Micro-Objectives
1x, 2x, 5x
97/39/19
10x, 20x, 40x, 63x
yes
1 – 8 sequential
128, 256, 512,1024, 2048
8 or 12, switchable
yes
430 – 750
1
ultra high dynamic PMT
Mikroskopia konfokalna
Model doświadczalny
Miejsce iniekcji - transdukowane komórki
Miejsce iniekcji - transdukowane komórki
Lezja
Aksony transdukowanych komórek
Rdzeń kręgowy szczura
preparat - R. Platek
zdjęcie – J.Korczynski + R. Platek
Dane niepublikowane
Instytut IBD Nenckiego
Porównanie czasowo-przestrzenne ekspresji EGFP w rdzeniach szczurów
Rat TP 7.3
7 DPO
DOOGŁOWOWO
Rat TP 14.2
DOOGONOWO
14 DPO
DOOGŁOWOWO
Rat TP 4.5
DOOGŁOWOWO
DOOGONOWO
35 DPO
DOOGONOWO
Rdzeń kręgowy szczura
preparat - R. Platek
zdjęcie – J.Korczynski + R. Platek
Dane niepublikowane
Instytut IBD Nenckiego
Sygnał EGFP - „rdzeń świecenia"
14
12
10
8
6
4
2
0
7 DPO
14 DPO
35 DPO
Zakres świecenia komórek – rdzeń
(mm) (średnia +/- SEM)
Zakres świecenia komórek – rdzeń
(mm) (średnia +/- SEM)
Porównanie czasowo-przestrzenne ekspresji EGFP w rdzeniach szczurów
14
Sygnał EGFP - „pojedyncze
komórki"
12
10
8
6
4
2
0
7 DPO
14 DPO
35 DPO
Rat 4.3
Rat 4.4
Doogonowa granica lezji
DOOGONOWY
Doogonowa granica lezji
DOOGONOWY
Leica TCS LSI – obrazowanie in vivo
Mózg mysi postmortem.
preparat - R.Platek,
zdjęcie - J.Korczynski + R.Platek
Dane nieopublikowane
Instytut IBD Nenckiego
Budowa opuszki węchowej
komórka mitralna
kłębuszek
(glomerulus)
opuszka
węchowa
kość
nabłonek
węchowy
węchowe
komórki
receptorowe
sygnał przesyłany
jest do wyższych
struktur mózgowych
sygnał przekazywany
jest w kłębuszkach
węchowe komórki
receptorowe są
aktywowane i
przesyłają pobudzenie
Budowa opuszki węchowej – dorosła mysz
Przekrój poprzeczny
przez opuszkę węchową
dorosłego samca myszy
(szczep: C57BL/6j).
Zdjęcie z mikroskopu
konfokalnego znakowanie jądrowe
TOTO3
Niebieski – warstwa
kłębuszkowa z ciałami komórek
około kłębuszkowych – miejsce
połączenia aksonów receptorów
węchowych z apikalnymi
dendrytami komórek mitralnych
Czerwony – warstwa
komórek mitralnych z
ciałami komórek
mitralnych i ziarnistych
w tej warstwie
Zielony – warstwa
komórek ziarnistych z
ciałami niedojrzałych,
migrujących
neuroblastów oraz
komórek ziarnistych.
Pseudokolory naniesione Photoshopem w celu pokazania 3 głównych
warstw anatomicznych
Źródło - Wikimedia Commons
Analiza całych struktur: kłębuszki opuszek węchowych u
myszy PLP
Mózg myszy PLP3 postmortem.
preparat - R.Platek,
zdjęcia - J.Korczynski + R.Platek
Nieopublikowane dane
Instytut IBD Nenckiego
Podsumowanie i wnioski
Zalety mikroskopu konfokalnego TCS LSI:
• szybka ocena skuteczności zastosowanej metody doświadczalnej,
• szybkie pozyskanie wyniku w analizach nie wymagających bardzo
dużych powiększeń,
• analiza wyników na dużą skalę – skanowanie dużych powierzchni
(in vivo oraz in vitro) – trudne do przeprowadzenia na pojedynczych
skrawkach,
• duża elastyczność obrazowania – użycie obiektywów makro (1x, 2x i 5x)
w połączeniu z elektronicznym zoom-em.
Podziękowania:
Marian Kawczynski,
Kaw.aska, Zalesie Górne, Polska
• prof. Wanda Kłopocka
Pracownia Mikroskopii Konfokalnej, Nencki
• prof. Małgorzata Skup
Pracownia Procesów Reinerwacyjnych, Nencki
• Jarek Korczyński
Pracownia Mikroskopii Konfokalnej, Nencki
Dziękuję za uwagę
Cell cycle analysis using time-lapse microscopy
Grażyna Mosieniak
Laboratory of Molecular Bases of Aging
Nencki Institute of Experimental Biology, Warsaw, Poland
Among many different techniques used in microscopy in order to visualize biological processes, time-laps
microscopy gives unique opportunity to observe living cells on single cell level in time. One of the
important processes that gain special interest is mitosis. Equal and undisturbed distribution of genetic
material into two daughter cell that take place during mitosis is prerequisite of genome stability. In
contrary, mitosis disturbances give rise to chromosomal instability, aneuploidy and cancer.
Morphological changes that characterize mitotic cells enables to monitor cell division as well as tracking
the fate of daughter cells. Moreover, transfection of the cells with vectors coding fluorescent proteins
which expression changes during cell cycle make possible to follow the cell cycle progression of
individual cell. One of the very interesting process that gain attention in cancer biology research is
senescence of cancer cells. This process is induced during chemotherapy and thus it determine the
outcome of it. Using video-microscopy we were able to show that aberrant mitosis could be the primary
cause of senescence of cancer cells. Moreover video-microscopy enables to observe the fate of
senescent cells and help to answer the question whether senescence of cancer cells lead to permanent
growth arrest or is transient and could results in regrowth of cancer cells after therapy.
Cell cycle analysis using time-lapse microscopy
Grażyna Mosieniak
Laboratory of Molecular Bases of Aging
CYKL KOMÓRKOWY
4N
4N
2N
2N-4N
BADANIE CYKLU KOMÓRKOWEGO OPIERA SIĘ NA POMIARACH ILOŚCI
DNA Z WYKORZYSTANIEM CYTOMETRU PRZEPŁYWOWEGO
G1/G0
G2/M
2N
4N
S
apoptoza
<2N
2N<
<4N
poliploidy
>4N
CYKL KOMÓRKOWY
Mitoza dziś …
RIEDER C.L., KHODJAKOV A., 2003 Science 300, 91-96
Mitoza dawniej …
W. Flemming, Zellsubstanz, kern und
zelltheilung (Verlag Vogel, Leipzig, 1882).
RIEDER C.L., KHODJAKOV A., 2003 Science 300, 91-96
Lata 20-te XX w
VIDEO-MIKROSKOPIA UMOŻLIWIA ŚLEDZENIE LOSÓW KOMÓRKI
CZAS
VIDEO-MIKROSKOPIA WYMAGA KOMPROMISÓW
•
•
•
•
Intensywność światła
długość fali
Czas
Temperatura
jakość obrazu
żywotność komórek
Live imaging of influence of MMP-9 enzymatic activity on spine morphology
through integrins.
Izabela Rutkowska-Włodarczyk
Laboratory of Neurobiology
Nencki Institute of Experimental Biology, Warsaw, Poland
Synaptic plasticity can be defined as a re-organization comprising both, alterations at
the morphological level and changes at the functional level of dendritic spines, carrying
postsynaptic domains of excitatory synapses. It has been reported that motor learning leads to
rapid formation of dendritic spines (spinogenesis) in the motor cortex mice (Xu et al., 2009; Yang
et al., 2009). Changes in spine dynamics are region- and learning-specific, indicating that motor
learning causes synaptic reorganization in the corresponding motor cortex (Xu et al., 2009) and
synaptic connections are not only capable of undergoing rapid changes in response to new
experience but also can serve as substrates for long-term information storage (Yang et al.,
2009). This is why it became important to effectively quantify changes in dendritic spine
morphology. However, the results of this quantitative analysis can be largely influenced by the
the diversity in dendritic spine population. The detection of differences in spine morphology
between control and test group is often compromised by the number of dendritic spines taken
for analysis. For example, to have statistically significant detection of hidden morphological
differences between control and test groups in terms of spine head-width, length and area in
which the values of each morphometric variable under investigation grew in a 20% rate there
are required 12, 21 and 24 cells respectively with around 30 spines/cell. Simulation of changes
occurring in a subpopulation of spines reveal the strong dependence of detectability on the
statistical approach applied (Ruszczycki et al. 2012). This is way the best method to track spine
morphology changes is live imaging.
Live imaging of influence of MMP-9
enzymatic activity on spine morphology
through integrins.
Izabela Rutkowska-Wlodarczyk
Laboratory of Neurobiology
The Nencki Institute of Experimental Biology
OVERVIEW OF THE PROJECT
Changes in dendritic spine morphology
underlie learning processes
(Xu et al., Nature,2009;
Yang et al., Nature, 2009)
Matrix metallopeptidase 9

extracellurally operating protease that is expressed by the
neurons and released in response to enhanced neuronal
activity Michaluk et al., J. Biol. Chem., 2007

plays a key role in synaptic plasticity associated with
memory and learning processes; Nagy et al, J. Neurosci., 2006;
Okulski et al., Biol. Psychiatry, 2007

was found to be present in a subset of dendritic spines
bearing asymmetric synapses; Wilczynski et al., J. Cell Biol., 2008.
Dziembowska&Wlodarczyk, Int. J. Biochem. Cell Biol, (2012)
Integrins:
• play a role in the synaptic structural changes associated with LTP
(Lee et al., 1980).
• stabilizing LTP
(Staubli et al., 1990)
Dendritic spine elongation and new
filopodia formation are induced by
integrin activating peptide.
Shi &Ethell, J Neurosci 26, 1813 (2006).
Enzymatic activity of MMP-9 causes
elongation and thinning of dendritic
spines
P. Michaluk et al., J Cell Sci 124, 3369 (2011).
MMP-9 dependent spine morphology changes are
integrin b1 dependent
P. Michaluk et al., J Cell Sci 124, 3369 (2011).
HYPOTHESIS
MMP-9-mediated spines morpholgy changes
are integrins dependent
MMP-9
integrins
spine
elongations
MMP-9 activate integrins
2. MMP-9 activates
integrins directly
1. MMP-9 exposed
integrin-activating
epitope
adapted from
Dityatev et al., Nat Rev Neurosci (2010)
HYPOTHESIS VERIFICATION
Source of MMP-9 substrates:
hippocampal tissue
aaMMP-9
400ng/ml
37oC, 1h
MMP-9
Integrin
conneXtion
Identification of MMP-9 substrates which serve
as integrin activators
MIX
GFP-transfected
21 DIV hipocampal culture
Zeiss LSM780
‘Live’ experiments-protocol
inhibitor
-30
MIX
0
5 10
20
30
‘Live’ experiments allow to track changes in the
spines morphology
Filopodia
Thin
Mushroom
Stubby
Quantitative analysis of spines morphology was
done by the use of Spine Magick
Ruszczycki, Wlodarczyk, Kaczmarek
SpineMagick
Local brightness variation:
Halo correction:
before correction
after correction
spines covered
by dendrite halo
Z-section
Spine head anti-detachment:
spine heads often separated;
necks barely visible
Ruszczycki, Wlodarczyk,Kaczmarek
improved
segmentation
of spine neck
Acknowledgement
Kasia Zalewska
Amanda Costa
Marta Pyskaty
Thank you for your attention
The application of the FRAP technique and live cell imaging to investigate an impact of HAX-1
protein on the formation and movement of P-bodies in HeLa cell line.
Ewa A. Grzybowska
Cancer Center Institute, Warsaw, Poland
HAX-1 is a multifunctional protein involved in several key processes like apoptosis, cell
migration and regulation of calcium homeostasis, but its mechanisms of action remain unknown.
HAX-1 is also known to bind to the 3'UTR of at least two mRNA targets. Our research indicate that
HAX-1 co-localizes with P-body marker, decapping protein 1 (Dcp1). Using Fluorescence
Recovery After Photobleaching (FRAP) technique we demonstrated that HAX-1 dynamically
interchanges between P-body and the cytoplasm, but it is also bound in P-body to significant extent.
Concurrently, using live-cell imaging, we showed that HAX-1 is not responsible for the
immobilization of P-bodies on actin filaments.