D:\0-naswietlarnia magda\magda\1

Transkrypt

D:\0-naswietlarnia magda\magda\1
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
Badania potencja³u redoks na przyk³adzie sudeckich wód leczniczych
Dariusz Dobrzyñski1
Research of redox potential on the example of curative waters in the Sudetes Mts., Poland. Prz. Geol, 58: 46–53.
A b s t r a c t . In Poland, the redox potential (EH) is seldomly measured in groundwater. Since the year 2006 determination of redox potential is required for documenting properties of curative mineral waters. Investigations of redox
conditions in groundwater need both proper measurement and interpretation. In the paper, crucial questions of:
1) redox equilibrium in groundwater, 2) field measurement, 3) correction methods, and 4) EH interpretation are presented. Some aspects of applying the redox potential for interpreting groundwater chemistry and using geochemical modelling are illustrated by hydrochemical data of curative waters from spas in the Sudetes Mts., SW Poland.
Main reasons of the common redox non-equilibrium found in groundwater are co-existence of numerous aqueous
redox pairs and usually non-equilibrium in particular redox pairs. Redox determinations have to be done in the
field, and require extreme cleanness and precision, e.g., measuring without contact with the atmospheric air. Field measurements must
be corrected to the standard hydrogen electrode, considering: type of reference electrode, concentration of electrode filling solution,
type of standard redox solution, and water temperature. The redox potential has been measured in water at first from all the Sudetic
spas, totally in 33 water intakes. In curative waters from the Sudetes corrected EH ranges between –159 mV and +343 mV. Usually,
thermal waters show lower EH values than cold, CO2-rich waters. The lowest redox potential was found in the hottest thermal waters,
i.e., in water from Zdzis³aw intake (in L¹dek Zdrój) and C-2 intake (in Cieplice Œl¹skie Zdrój). Generally, the higher the pH, the lower
the EH in groundwater. Methods of geochemical modelling, which are often and often applied in groundwater research, also require the
EH determination. Information about EH are used in the calculation of speciation models of water, and affect the results of whole geochemical modelling as well as evaluations of the saturation state. The speciation-solubility modelling for the Sudetic curative waters,
presented in the paper, shows that the proper correction of field EH measurement determines the quality of calculations. Improperly
corrected EH values might lead to species activity errors, even up to several order of magnitudes, and erroneous interpretation of the
mineral phases stability in the hydrogeochemical system.
Keywords: groundwater chemistry, redox potential, curative water, Sudetes Mts.
Potencja³ utleniaj¹co-redukcyjny (redoks) jest jedn¹ z
cech fizykochemicznych, których pomiar jest wymagany
w dokumentacji w³aœciwoœci wód leczniczych (Rozporz¹dzenie Ministra Zdrowia, 2006). W Polsce badania
potencja³u redoks wód podziemnych s¹ prowadzone sporadycznie. Nawet wody lecznicze bardzo rzadko s¹ badane
pod tym k¹tem, pomimo ¿e ich sk³ad chemiczny, co najmniej podstawowy, jest zwykle doœæ dobrze rozpoznany i
udokumentowany wynikami d³ugich ci¹gów obserwacji.
Potencja³ utleniaj¹co-redukcyjny (wyra¿ony jako EH)
jest miar¹ potencja³u równowagi — mierzonego wzglêdem
standardowej elektrody wodorowej (standard hydrogen
electrode — SHE) — jaki rozwija siê na granicy elektrody
wykonanej z metalu szlachetnego i roztworu wodnego
zawieraj¹cego elektroaktywne specjacje redoks. Metodyka
badañ potencja³u EH wymaga zachowania szczególnej
skrupulatnoœci podczas pomiarów terenowych oraz w³aœciwego wprowadzenia korekt danych terenowych. Kolejnym
krokiem jest interpretacja wyników badañ EH i wykorzystanie ich w wyjaœnieniu genezy chemizmu wód podziemnych. W³aœciwa interpretacja pomiarów potencja³u EH
zale¿y od wielu czynników. Trudnoœci interpretacyjne
wynikaj¹ g³ównie st¹d, ¿e:
‘ procesy redoks zachodz¹ce w wodach podziemnych
s¹ w wiêkszoœci przypadków nieodwracalne;
‘ równoczeœnie przebiega wiele reakcji miêdzy specjacjami elektroaktywnymi;
‘ szybkoœæ reakcji jest zwykle ma³a;
‘ w przebiegu reakcji redoks aktywny udzia³ bior¹
mikroorganizmy;
‘ dochodzi do ci¹g³ych zmian stê¿eñ specjacji w
wodach.
1
Wydzia³ Geologii, Uniwersytet Warszawski, al. ¯wirki i
Wigury 93, 02-089 Warszawa
46
Pomimo problemów metodycznych interpretacja
pomiarów EH dostarcza cennych informacji o chemizmie
systemów wodonoœnych. W³aœciwe przeprowadzenie badañ
i interpretacji warunków redoks mo¿e pomóc w zrozumieniu warunków tworzenia siê sk³adu chemicznego wód leczniczych oraz u³atwiæ ocenê ewentualnego zagro¿enia ich
jakoœci.
Niewielka uwaga, jak¹ poœwiêca siê w Polsce badaniom potencja³u EH w wodach podziemnych, w tym w
wodach leczniczych, sk³oni³a mnie do zwrócenia uwagi
œrodowiska hydrogeologicznego na kilka najwa¿niejszych
kwestii dotycz¹cych metodyki pomiarów EH i interpretacji
ich wyników.
Zarys podstaw teoretycznych
i problemów metodycznych
badania potencja³u EH wód podziemnych
Badanie potencja³u redoks jest wa¿n¹ czêœci¹ geochemii wód podziemnych, gdy¿ ich sk³ad chemiczny w du¿ym
stopniu jest kszta³towany pod wp³ywem reakcji utleniania i
redukcji. Procesy te wp³ywaj¹ na rozpuszczalnoœæ i migracjê wodn¹ wielu pierwiastków. W badaniach i interpretacji
procesów redoks prezentowane s¹ dwa podejœcia metodyczne: podejœcie równowagowe i podejœcie kinetyczne.
Podejœcie równowagowe, czêœciej stosowane w badaniach hydrogeochemicznych, jest oparte na za³o¿eniach
chemii fizycznej. W opisie procesów redoks powszechnie
operuje siê pojêciem teoretycznej aktywnoœci elektronów
w roztworze (pe). Nale¿y zaznaczyæ, ¿e elektrony nie
wystêpuj¹ w stanie „wolnym” w roztworze wodnym, a pe
jest jedynie pojêciem umownym. Aktywnoœæ elektronów
w wodzie (pe) jest liniow¹ funkcj¹ ró¿nicy potencja³u
redoks (EH) (np. Stumm & Morgan, 1996):
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
pe =
F
EH
2,303RT
(1)
gdzie:
pe — ujemny logarytm aktywnoœci elektronów [1];
EH — ró¿nica potencja³u redoks [V];
F — sta³a Faradaya 9,64853·104 C/mol;
R — sta³a gazowa 8,31447 J/(mol·K);
T — temperatura absolutna [K].
Takie zdefiniowanie parametru pe zaproponowa³ Holger Jørgensen (1945; vide Thorstenson, 1984). Indeks H
pochodzi od wodoru i oznacza, ¿e ró¿nica potencja³u (E)
jest wyra¿ana wzglêdem standardowej elektrody wodorowej. Potencja³ EH roztworu zale¿y, zgodnie z równaniem
Nernsta, od aktywnoœci wodnych specjacji — par specjacji
redoks (np. NO3-/NH4+; Fe3+/Fe2+) w warunkach równowagi chemicznej i od napiêcia standardowej elektrody wodorowej.
Ogólne równanie reakcji redoks:
xXred. + yYoks. « zZoks. + qQred.
(2)
jest zwykle zapisywane jako dwie reakcje po³ówkowe,
dla pary specjacji redoks X–Z i pary Y–Q. Zgodnie z konwencj¹ przyjêt¹ przez IUPAC (International Union of Pure
and Applied Chemistry), jedn¹ z reakcji po³ówkowych
równania (2) — reakcjê miêdzy par¹ X–Z — podaje siê
jako:
zZoks. + ne– – xXred.
(3)
a równanie Nernsta dla tej pary specjacji redoks:
EH = E o +
x
RT [X red. ]
ln
nF [Z oks. ] z
(4)
gdzie:
Eo — standardowy potencja³ elektrody, w temperaturze
298,15 K;
n — liczba elektronów transferowanych w reakcji;
X, Y, Z, Q — substraty i produkty reakcji;
x, y, z, q — wspó³czynniki stechiometryczne.
Pozosta³e parametry s¹ takie same jak w równaniu (1).
Koncepcjê równania (4) stworzy³ Walter Hermann
Nernst (1897; vide Thorstenson, 1984). Teoretyczne podstawy równania Nernsta s¹ szczegó³owo przedstawione
m.in. w pracy Stumma i Morgana (1996). Wartoœæ potencja³u redoks pojedynczej reakcji po³ówkowej w warunkach
równowagi mo¿na obliczyæ, gdy znana jest aktywnoœæ
reaguj¹cych specjacji. Wartoœci potencja³ów standardowych (Eo) s¹ zestawione w tablicach termodynamicznych
lub mo¿na je obliczyæ na podstawie standardowych swobodnych entalpii tworzenia (DGof ) substratów i produktów
reakcji.
Wykorzystanie tego teoretycznego podejœcia w badaniach wód naturalnych, w tym podziemnych, jest jednak z
dwóch zasadniczych przyczyn ograniczone:
‘ w wodach naturalnych wystêpuje równoczeœnie wiele par specjacji redoks;
‘ pary te bardzo rzadko prezentuj¹ stan równowagi
redoks, a w konsekwencji woda jako ca³oœæ nie osi¹ga
zwykle stanu równowagi.
Brak stanu równowagi wynika m.in. st¹d, ¿e osi¹gniêcie równowag redoks jest procesem bardzo wolnym.
Potencja³ EH w wodzie przyj¹³by unikaln¹, jedyn¹ wartoœæ
tylko wtedy, gdyby ca³y system by³ w równowadze termodynamicznej. W sytuacji, gdy aktywnoœæ specjacji w parze
redoks nie jest w równowadze, mo¿emy zmierzyæ lub obliczyæ nieskoñczenie wiele wartoœci EH, lecz ¿adna z nich nie
bêdzie odpowiadaæ wartoœci obliczonej dla warunków
równowagi z równania (4). Okreœlenie potencja³u EH roztworu jako ca³oœci by³oby mo¿liwe tylko wtedy, gdyby
wartoœci EH odpowiadaj¹ce równowadze wszystkich par
redoks by³yby takie same. W warunkach braku równowagi
ró¿ne pary redoks w tej samej wodzie prezentuj¹ du¿e zró¿nicowanie wartoœci EH (np. Lindberg & Runnells, 1984).
W wyniku wielu badañ stwierdzano, ¿e w warunkach braku
równowagi specjacje redoks charakterystyczne dla odmiennych œrodowisk mog¹ wspó³wystêpowaæ ze sob¹, np. rozpuszczony tlen mo¿e wspó³wystêpowaæ z siarkowodorem,
metanem czy jonem ¿elaza(II) (Appelo & Postma, 2005).
Do pomiaru potencja³u EH najczêœciej s¹ wykorzystywane elektrody platynowe. Niestety, z powodu trudnoœci
analitycznych, nawet w warunkach równowagi, pomiar EH
przy u¿yciu elektrod platynowych nie jest spójny z wartoœciami obliczonymi z równania Nernsta. Elektrody redoks
reaguj¹ na transfer elektronów miêdzy specjacjami wodnymi (Thorstenson, 1984). Jednak elektrody platynowe
reaguj¹ zadowalaj¹co szybko tylko na niektóre wa¿ne pary
redoks wystêpuj¹ce w wodach naturalnych (Drever, 1997),
np. na parê Fe2+/Fe3+. Elektrody te s¹ ma³o wra¿liwe np. na
pary O2/H2O, SO42–/H2S czy CO2/CH4, poniewa¿ takie gazy,
jak tlen, dwutlenek wêgla, siarkowodór, metan i azot, bardzo
powoli reaguj¹ z powierzchni¹ platyny (Chapelle, 2004).
W wodach podziemnych wiele procesów redoks jest
kierowanych przez aktywnoœæ mikroorganizmów (np. Lovley i in., 1989; Chapelle & Lovley, 1992). Mikroorganizmy
mog¹ siê rozwijaæ, gdy dostêpne s¹ Ÿród³a energii potrzebne do ich metabolizmu, czyli gdy w œrodowisku brak jest
równowagi termodynamicznej. Stosowanie zmierzonych
wartoœci EH do opisu procesów redoks katalizowanych
przez mikroorganizmy wymusza za³o¿enie stanu równowagi i prowadzi przez to do b³êdów interpretacyjnych
(Chapelle, 2000, 2004). Trudnoœci te spowodowa³y rozwój
tzw. podejœcia kinetycznego, czyli metod interpretacji
warunków redoks uwzglêdniaj¹cych nie równowagê, lecz
kinetykê reakcji redoks (Lovley i in., 1994).
Zarys metodyki pomiaru potencja³u redoks
w wodach podziemnych
Pomimo wskazanych trudnoœci i ograniczeñ interpretacyjnych badanie potencja³u EH w wodach podziemnych
mo¿e dostarczyæ wa¿nych informacji o pochodzeniu ich
sk³adu chemicznego.
W badaniach warunków redoks wód podziemnych
mo¿na by wyró¿niæ trzy etapy:
‘ wykonanie pomiarów terenowych;
‘ wprowadzenie korekt uwzglêdniaj¹cych rodzaj
elektrody odniesienia oraz temperaturê wody;
‘ w³aœciw¹ interpretacjê wyników.
Obecnie w pomiarach potencja³u EH powszechnie wykorzystuje siê zespolone elektrody redoks. Najczêœciej s¹ to
elektrody platynowe z wbudowan¹ (zespolon¹) elektrod¹
odniesienia (reference electrode). Jako elektrod odniesienia
czêœciej u¿ywa siê elektrod chlorosrebrowych (Ag/AgCl)
ni¿ nasyconych elektrod kalomelowych (Hg w roztworze
HgCl2). Elektrodê platynow¹ stanowi wypolerowana
47
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
blaszka lub drut platynowy, a chlorosrebrowa elektroda
odniesienia to najczêœciej srebrny drut pokryty warstewk¹
AgCl w roztworze KCl. Czynniki wp³ywaj¹ce na warunki
poprawnego pomiaru EH opisa³ m.in. Galster (1999).
W³aœciwy sposób przechowywania i kondycjonowania
elektrod redoks jest podawany przez producenta. Kluczowe
znaczenie dla poprawnoœci wyników ma czystoœæ ogniwa
pomiarowego. Elektrodê platynow¹ nale¿y regularnie czyœciæ z osadów i zanieczyszczeñ, w tym organicznych. Zwykle
wykorzystuje siê do tego celu gor¹c¹ wodê królewsk¹
lub chromiankê, tj. nasycony roztwór dichromianu(VI)
potasu, K2Cr2O7, w stê¿onym kwasie siarkowym(VI).
W przypadku pomiarów redoks nie przeprowadza siê
kalibracji czujników pomiarowych w sposób, w jaki standardowo czyni siê to w pomiarach pH, przewodnoœci elektrolitycznej w³aœciwej (PEW) czy temperatury. Ocenê
sprawnoœci elektrod redoks przeprowadza siê w roztworze
o znanym potencjale EH. Do tego celu najczêœciej jest u¿ywany roztwór ZoBella lub roztwór Lighta. Roztwór
ZoBella (ZoBell, 1946) jest to 0,1 M roztwór chlorku potasu (KCl), zawieraj¹cy równowa¿ne molowo (3,33 mM)
stê¿enia heksacyjano¿elazianu(III) potasu (K 3Fe(CN) 6)
i heksacyjano¿elazianu(II) potasu (K4Fe(CN)6). Sposób
przygotowania roztworu ZoBella poda³ np. Nordstrom &
Wilde (1998). Roztwór ZoBella nale¿y przechowywaæ
sch³odzony (do ok. 4°C) w szczelnym, ciemnym naczyniu i
transportowaæ z ostro¿noœci¹, gdy¿ jest on toksyczny oraz
³atwo reaguje z drobinami py³u i innych substancji. Sprzêt
pomiarowy powinien byæ testowany w laboratorium (lub w
terenie) wzglêdem roztworu ZoBella przed rozpoczêciem
pomiarów terenowych, jak i po ich zakoñczeniu.
W temperaturze 25°C roztwór ZoBella ma wzglêdem
standardowej elektrody wodorowej potencja³ EH = + 430 mV,
a wzglêdem elektrody Pt-Ag/AgCl z nasyconym KCl —
potencja³ EH oko³o + 231 mV. Podawane w literaturze zale¿noœci potencja³u EH roztworu ZoBella wzglêdem elektrody
wodorowej oraz potencja³u ró¿nych typów elektrod odniesienia wzglêdem elektrody wodorowej w zale¿noœci od
temperatury roztworu pozwalaj¹ oceniæ sprawnoœæ ogniwa
pomiarowego.
Trwalszy od roztworu ZoBella jest roztwór Lighta (Light,
1972). Jest to roztwór 1,00 M kwasu siarkowego(VI), zawieraj¹cy równowa¿ne molowo (0,100 M) stê¿enia siarczanu amonu ¿elaza(II) 6 hydrat, Fe(NH4)2(SO4)2·6H2O
(sól Mohr’a) i siarczanu amonu ¿elaza(III) 12 hydrat,
FeNH4(SO4)2·12H2O. W temperaturze 25°C potencja³ EH
roztworu Lighta wzglêdem elektrody Pt-Ag/AgCl z nasyconym KCl wynosi + 476 mV, wzglêdem zaœ elektrody
wodorowej + 675 mV. Wad¹ roztworu Lighta jest jego
du¿a agresywnoœæ — ma on pH oko³o 0,3.
Terenowy pomiar potencja³u EH nale¿y tak prowadziæ, aby do minimum ograniczyæ kontakt badanej wody
podziemnej z powietrzem atmosferycznym. Najw³aœciwszym rozwi¹zaniem jest pomiar w komorze przep³ywowej,
w warunkach wymuszonego przep³ywu przy ca³kowitym
wype³nieniu komory wod¹ (ryc. 1). Przed rozpoczêciem
w³aœciwego pomiaru EH nale¿y systematycznie mierzyæ
pH i T — a¿ do ustabilizowania siê termicznej równowagi
wody w uk³adzie pomiarowym. Po rozpoczêciu pomiarów
redoks co kilka minut rejestruje siê EH i T. Stabilizacja
potencja³u redoks nastêpuje zwykle w ci¹gu oko³o 30
minut, choæ w pewnych warunkach mo¿e trwaæ nawet kilkakrotnie d³u¿ej (np. Pitter i in., 1999). Jeœli protokó³ badañ
terenowych wymaga kontroli („kalibracji”) elektrody, tak
przed, jak i po zakoñczeniu w³aœciwych pomiarów w
wodzie podziemnej, nale¿y wykonaæ pomiar potencja³u w
roztworze standardowym (ZoBella lub Lighta) w warunkach ustabilizowanej temperatury, odpowiadaj¹cej temperaturze wody. W pompowanych otworach studziennych,
jeœli pozwalaj¹ na to warunki techniczne, pomiar EH mo¿na
przeprowadziæ z zastosowaniem sond opuszczanych do
otworu. Wymagania i uwagi dotycz¹ce utrzymania i przechowywania sprzêtu oraz pomiaru potencja³u redoks opublikowali np. Nordstrom & Wilde (1998), Galster (1999) i
Kölling (1999).
W badaniach potencja³u redoks umownym systemem
pomiarowym jest standardowa elektroda wodorowa, u¿ywana jako elektroda odniesienia, której potencja³, wed³ug
konwencji, przyjmuje siê jako równy zeru. W praktyce nie
stosuje siê w terenie wodorowych elektrod odniesienia,
gdy¿ s¹ one niewygodne w u¿yciu i niebezpieczne. Pomiar
potencja³u redoks z zastosowaniem innej elektrody odniesienia ni¿ wodorowa wymaga skorygowania danych terenowych. Elektrody odniesienia maj¹ pewien w³asny standardowy
potencja³ (Eref) wzglêdem elektrody wodorowej:
Eref = EH (ZoBell) – E (ZoBell-m)
(5)
gdzie:
EH (ZoBell) — teoretyczny potencja³ EH roztworu standardowego (np. roztworu ZoBella) wzglêdem elektrody
wodorowej w danej temperaturze [mV];
EH
pH, T
miernik wielofunkcyjny
multiparameter meter
roztwór standardowy
(ZoBella, Lighta)
standard solution
(ZoBell’s, Light’s)
z otworu, Ÿród³a
from well, spring
komora przep³ywowa
flow cell
Ryc. 1. Schemat instalacji do terenowego pomiaru potencja³u redoks
Fig. 1. Scheme of field installation for redox potential measurement
48
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
E (ZoBell-m) — (zmierzony) potencja³ roztworu ZoBella
wzglêdem elektrody odniesienia w danej temperaturze
[mV].
Skorygowanie wartoœci potencja³u zmierzonego w
wodzie (Em) wymaga uwzglêdnienia potencja³u elektrody
odniesienia w temperaturze wody:
EH-woda = Em + Eref = Em + EH (ZoBell) – E (ZoBell-m)
(6)
gdzie:
EH-woda — EH próbki wody podziemnej [mV];
Em — zmierzony potencja³ redoks próbki wody wzglêdem elektrody odniesienia [mV];
Pozosta³e parametry s¹ takie same jak w równaniu (5).
Jeœli nie dokonujemy w terenie pomiaru potencja³u roztworu standardowego (np. roztworu ZoBella — E (ZoBell-m))
w temperaturze, jak¹ ma badana woda, to na podstawie
danych literaturowych nale¿y przyj¹æ wartoœæ, jak¹ powinien on mieæ w tej temperaturze. Potencja³ elektrody
odniesienia wzglêdem elektrody wodorowej (Eref) zale¿y
od temperatury roztworu. Wartoœci potencja³u Eref w ró¿nych temperaturach dla najczêœciej stosowanego typu elektrody (Pt-Ag/AgCl z nasyconym KCl) obliczyli m.in.
Nordstrom (1977), Bard i in. (1985), Sawyer i in. (1995)
oraz Bard & Faulkner (2001). Na przyk³ad w przedziale
temperatur od 8°C do 85°C wartoœæ potencja³u Eref elektrody Pt-Ag/AgCl zmienia siê od 215 mV do 134 mV (wg
Nordstroma, 1977).
Korekta pomiarów terenowych powinna uwzglêdniaæ
wp³yw temperatury badanego roztworu. Nale¿y unikaæ
stosowania sta³ej — niezale¿nej od temperatury — wartoœci korekty, gdy¿ mo¿e to spowodowaæ dodatkowy b³¹d,
wiêkszy od samego b³êdu pomiarów terenowych.
Tab. 1. Potencja³ redoks, temperatura i pH w sudeckich wodach leczniczych
Table 1. Redox potential, temperature and pH of curative waters in the Sudetes Mts.
Nazwa ujêcia
(lokalizacja)
Intake name
(location)
Numer
ujêcia
Intake
number
pH
Temperatura
Temperature
[°C]
Potencja³ redoks
Redox potential
[mV]
zmierzony
measured
skorygowany
corrected
1
Zdzis³aw (L¹dek)
8,22
44,3
–338
–159
2
Chrobry (L¹dek)
8,94
27,5
–312
–116
3
Wojciech (L¹dek)
8,95
29,8
–271
–77
4
Sk³odowska-Curie (L¹dek)
8,90
26,0
–208
–10
5
D¹brówka (L¹dek)
8,96
20,0
–280
–76
6
Jerzy (L¹dek)
9,33
28,0
–302
–106
7
Wielka Pieniawa (Polanica)
5,65
12,5
39
250
8
Pieniawa Józefa 2 (Polanica)
5,82
11,8
68
280
9
P-300 (Polanica)
6,30
15,5
–65
143
10
J-150 (Jeleniów)
5,68
12,5
28
239
11
Œniadecki (2) (Kudowa)
6,14
16,1
–71
137
12
Marchlewski (3) (Kudowa)
5,83
13,4
81
291
13
K-200 (Kudowa)
6,30
13,3
–20
190
14
Jan Kazimierz (Duszniki)
6,10
16,7
33
240
15
Pieniawa Chopina (Duszniki)
6,16
17,9
12
217
16
B-39 (Duszniki)
6,17
18,4
28
233
17
B-4 (Duszniki)
6,30
17,2
–34
173
18
Sobieski (2) (Cieplice)
6,63
21,0
140
343
19
C-2 (Cieplice)
7,35
58,8
–304
–141
20
Nowe (4) (Cieplice)
7,59
29,4
75
269
21
Marysieñka (1) (Cieplice)
7,98
21,6
99
301
22
4 (Czerniawa)
5,79
11,6
–19
193
23
Górne (Œwieradów)
5,03
11,5
125
337
24
1A (Œwieradów)
5,40
9,7
43
257
25
2P (Œwieradów)
5,56
9,3
7
221
26
MCS (Œwieradów)
5,64
8,8
13
227
27
Marta (Sczawno)
5,81
12,9
85
295
28
M³ynarz (Szczawno)
5,95
14,9
108
317
29
D¹brówka (Szczawno)
5,84
13,9
105
315
30
Mieszko (Szczawno)
6,03
13,1
97
307
31
Renata (D³ugopole)
5,57
11,4
86
298
32
Kazimierz (D³ugopole)
5,52
11,0
89
301
33
Emilia (D³ugopole)
5,54
10,9
93
306
49
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
Wp³yw potencja³u EH na interpretacjê chemizmu
sudeckich wód leczniczych
W badaniach hydrogeochemicznych pomiary potencja³u EH w wodach podziemnych s¹ wykorzystywane w
ró¿ny sposób. Pozwalaj¹ one na jakoœciow¹ i iloœciow¹
interpretacjê warunków redoks i genezy sk³adników w
wodach.
Znajomoœæ potencja³u EH mo¿na wykorzystaæ do interpretacji chemizmu wód stosuj¹c diagramy pól trwa³oœci
wodnych i sta³ych specjacji redoks w uk³adzie pe (EH) – pH.
Diagramy pól trwa³oœci (nazywane tak¿e diagramami stabilnoœci) od dawna s¹ wykorzystywane w geochemii do
interpretacji udzia³u specjacji i stanu równowag. Zasady
konstruowania tego rodzaju diagramów szczegó³owo opisali ju¿ Garrels i Christ (1965). Diagramy pe–pH umo¿liwiaj¹ wskazanie dominuj¹cej specjacji w roztworze lub te¿
fazy sta³ej (zawieraj¹cej pierwiastki elektroaktywne)
wykazuj¹cej najwy¿sze przesycenie.
Zestawienia diagramów sporz¹dzonych dla systemów
geochemicznych z ró¿nymi pierwiastkami opublikowali
Pourbaix (1966) i Brookins (1988). Najnowsz¹ tego rodzaju prac¹ jest Atlas of Eh-pH diagrams (2005). Jednak z
uwagi na to, ¿e po³o¿enie granic pól trwa³oœci zale¿y od
stê¿eñ rozpuszczonych sk³adników, najw³aœciwszym rozwi¹zaniem by³oby interpretowanie diagramów sporz¹dzonych ka¿dorazowo dla wód o rzeczywistym sk³adzie.
1,2
20
2+
15
B
1,0
FeOH
Fe
1,2
20
A
+
Fe(OH)2
3+
Niektóre aspekty wp³ywu potencja³u EH na interpretacjê wyników badañ hydrogeochemicznych przedstawiam na
przyk³adzie w³asnych pomiarów EH wód leczniczych z 33 ujêæ
zlokalizowanych we wszystkich sudeckich uzdrowiskach
(tab. 1). Terenowe pomiary redoks w wodach leczniczych
skorygowa³em stosuj¹c funkcje empiryczne podane przez
Nordstroma (1977).
Rycina 2 przedstawia pozycjê sudeckich wód leczniczych w uk³adzie pe-pH dwóch przyk³adowych systemów
geochemicznych, Fe-O-H i U-O-H. Po³o¿enie skorygowanych pomiarów EH wskazuje, ¿e sudeckie wody lecznicze
w systemie Fe-O-H (ryc. 2A) lokuj¹ siê na ogó³ w warunkach równowagi miêdzy dominuj¹c¹ specjacj¹ wodn¹ (Fe2+)
a przyk³adow¹ faz¹ sta³¹ (w tym przypadku hematytem).
W systemie U-O-H (ryc. 2B) widaæ, i¿ w wodach leczniczych o pe > 0 dominuj¹c¹ specjacj¹ wodn¹ uranu jest
prawdopodobnie jon UO2OH+, podczas gdy wody lecznicze wystêpuj¹ce w warunkach redukcyjnych s¹ wyraŸnie
przesycone wzglêdem sta³ych faz uranonoœnych. Zastosowanie nieskorygowanych pomiarów EH prowadzi do uzyskania znacznie ró¿ni¹cego siê obrazu warunków redoks.
Klasyczne diagramy pól trwa³oœci (jak pokazane na
ryc. 2) kryj¹ w sobie pewne uproszczenia. Miêdzy innymi
ich konstrukcja zak³ada, ¿e w warunkach równowagi miêdzy formami (ci¹g³e linie) obydwie specjacje wodne
wystêpuj¹ w równych sobie aktywnoœciach, granicz¹ce zaœ
ze sob¹ fazy sta³e maj¹ ten sam stopieñ nasycenia. Ponadto
1,0
15
2+
UO2
0,8
0,8
+
–
0,2
0
Pomiary redoks:
Redox measurement:
skorygowane
corrected
nieskorygowane
uncorrected
-10
0
2
4
+
FeOH
FeO(c)
6
8
pH
10
0
0,0
U4O9(s)
URANINIT
URANINITE
-0,4
-0,2
-0,6
Pomiary redoks:
Redox measurement:
14
–
0
2
4
-0,4
U(OH)5
skorygowane
corrected
nieskorygowane
uncorrected
-10
-0,8
12
0,2
+
UO2
-5
–
-5
3+
UOH
-0,2
Fe(OH)3
MAGNETYT
MAGNETITE
0,0
U
5
0,4
(UO2)3(OH)7
4+
pe
pe
Fe(OH)4
–
5
0,6
0,4
2+
EH [V]
Fe
10
EH [V]
0,6
HEMATYT
HEMATITE
10
UO2OH
-0,6
-0,8
6
8
10
12
14
pH
Ryc. 2. Skorygowane (wype³nione zielone kó³ka) i nieskorygowane (niewype³nione czerwone kó³ka) wyniki pomiarów redoks w
sudeckich wodach leczniczych na diagramach pe-pH wybranych systemów ze specjacjami ¿elaza (2A) i uranu (2B), w warunkach
298,15K i 105 Pa
Fig. 2. Corrected (filed green circles) and uncorrected (blank red circles) redox measurements in curative waters from Sudetes Mts. in
pe-pH diagrams for selected systems with iron (2A) and uranium (2B) species, at 298.15K and 105 Pa
50
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
1E-3
®
A
1E-5
1E-7
1E-9
1E-11
H3AsO3 [mol]
Ryc. 3. AktywnoϾ wybranych specjacji arsenu(III)
(3A) i arsenu(V) (3B) w sudeckich wodach leczniczych w zale¿noœci od wykorzystanej w obliczeniach
wartoœci potencja³u EH. Numery ujêæ jak w tab. 1
Fig. 3. Activity of selected arsenic(III) and arsenic(V)
species in curative waters from the Sudetes Mts.
according to EH potential value used in calculations.
Intake numbers as given in Table 1.
1E-13
1E-15
1E-17
1E-19
EH skorygowane
EH corrected
EH nieskorygowane (terenowe)
EH uncorrected (field)
EH przyjmowane w programie PHREEQC
EH assumed in PHREEQC programme
1 2 3 4 5 6 7 8 9 10 11121314151617181920 21222324252627282930 313233
numer ujêcia
water intake number
B
H2AsO4– [mol]
pole trwa³oœci danej specjacji wodnej oznacza,
¿e ma ona w tym zakresie aktywnoœæ wiêksz¹ od
1E-21
aktywnoœci wszystkich innych specjacji, nie
pokazanych w tym polu, choæ obecnych w roz1E-23
tworze. Z kolei pole trwa³oœci fazy sta³ej oznacza, ¿e ma ona w tym zakresie wiêksze
1E-25
przesycenie (wiêksz¹ wartoœæ wskaŸnika nasycenia) od innych faz sta³ych, które równie¿
mog¹ siê tworzyæ w danych warunkach geochemicznych — niejednokrotnie nawet du¿o
³atwiej. Œwiadomoœæ tych uproszczeñ jest nie1E-4
zbêdna do w³aœciwej interpretacji klasycznych
diagramów pe-pH. W celu zwiêkszenia mo¿liwoœci interpretacyjnych zaproponowano tworzenie bardziej z³o¿onych diagramów pe-pH,
1E-6
pozwalaj¹cych m.in. na równoczesne uwzglêdnienie wiêkszego zespo³u specjacji wodnych i
faz sta³ych. Zasady tworzenia nowego typu diagramów pe-pH przedstawi³ Kölling i in. (1999).
1E-8
Diagramy te mo¿na konstruowaæ dla wód o
sk³adzie rzeczywistym, a do ich opracowania
niezbêdne s¹ obliczenia specjacyjno-rozpuszczalnoœciowe wykonywane z zastosowaniem
1E-10
programów do modelowania geochemicznego.
Nowy rodzaj diagramów pe-pH zosta³ wykorzystany w badaniach chemizmu wód podziem1E-12
nych w rejonie D¹browy Górniczej (Samborska
& Kowalczyk, 2007).
Programy do modelowania geochemicznego wód podziemnych, jak np. doœæ czêsto stoso1E-14
wany program PHREEQC (Parkhurst & Appelo,
1999), umo¿liwiaj¹ miêdzy innymi obliczenie
modelu specjacyjnego wody i wskaŸników
nasycenia wzglêdem faz sta³ych i gazowych.
1E-16
Model specjacyjny wody jest iloœciowym opisem dystrybucji pierwiastków miêdzy poszczególne formy (specjacje), w jakich wystêpuj¹ one
w roztworze wodnym (przy za³o¿eniu warunków równowagi miêdzy specjacjami). Pomiar
EH stanowi istotne uzupe³nienie informacji o chemizmie
wody. Wartoœæ potencja³u EH u¿ytego w obliczeniach specjacyjnych wp³ywa na aktywnoœæ specjacji pierwiastków
elektroaktywnych i wartoœci wskaŸników nasycenia wody
wzglêdem minera³ów zawieraj¹cych je w swoim sk³adzie.
W sytuacji, gdy nie dysponujemy pomiarem EH, program
zak³ada pewn¹ sta³¹ wartoœæ potencja³u redoks wody.
W programie PHREEQC przyjmowana jest wartoϾ pe =
4,0, co w wodzie o temperaturze 10°C odpowiada potencja³owi EH = 225 mV.
EH skorygowane
EH corrected
EH nieskorygowane (terenowe)
EH uncorrected (field)
EH przyjmowane w programie PHREEQC
EH assumed in PHREEQC programme
1 2 3 4 5 6 7 8 9 10 11121314151617181920 21222324252627282930 313233
numer ujêcia
water intake number
Wartoœci aktywnoœci specjacji s³u¿¹ do obliczenia
wskaŸników nasycenia (SI) wody wzglêdem faz sta³ych i
gazowych. Wyniki obliczeñ specjacyjno-rozpuszczalnoœciowych s¹ wykorzystywane w bezpoœredniej interpretacji pochodzenia chemizmu wód podziemnych oraz na
przyk³ad do tworzenia za³o¿eñ modeli koncepcyjnych w
procesie modelowania bilansu masy w wodach podziemnych (Dobrzyñski, 2006).
Obliczone wartoœci aktywnoœci specjacji pierwiastków
elektroaktywnych zale¿¹ od wartoœci EH u¿ytej w oblicze51
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
1
A
¬
Ryc. 4. Wartoœci wskaŸnika nasycenia (SI) w leczniczych wodach termalnych z L¹dka Zdroju i Cieplic
Œl¹skich Zdroju wzglêdem syderytu (A) i uraninitu
(B) w zale¿noœci od wykorzystanej w obliczeniach
wartoœci potencja³u EH. Objaœnienia jak na ryc. 3
Fig. 4. Saturation index (SI) for thermal curative
waters from L¹dek Spa and Cieplice Spa with respect
to siderite (A) and uraninite (B), according to the EH
potential value used in calculations. Explanations as
given in Fig. 3
0
-1
SI syderyt
SI siderite
-2
-3
-4
EH skorygowane
EH corrected
EH nieskorygowane (terenowe)
EH uncorrected (field)
EH przyjmowane w programie PHREEQC
EH assumed in PHREEQC programme
-5
-6
-7
-8
1
2
3
4
5
6
18
19
20
21
numer ujêcia
water intake number
6
B
4
2
0
SI uraninit
SI uraninite
-2
-4
-6
-8
EH skorygowane
EH corrected
EH nieskorygowane (terenowe)
EH uncorrected (field)
EH przyjmowane w programie PHREEQC
EH assumed in PHREEQC programme
Podsumowanie
-10
-12
-14
1
2
3
4
5
6
18
19
numer ujêcia
water intake number
niach. Rycina 3 przedstawia skalê zmiennoœci aktywnoœci
specjacji arsenu(III) — H3As30 i arsenu(V) — H2AsO4– w
wodach leczniczych z Sudetów w trzech wariantach obliczeñ, z u¿yciem:
‘ skorygowanej wartoœci potencja³u EH;
‘ nieskorygowanej, terenowej wartoœci EH;
‘ wartoœci przyjmowanej przez program PHREEQC
w przypadku braku danych EH.
Wskazane dwie specjacje arsenu s¹ zwykle dominuj¹cymi formami, w jakich arsen(III) i arsen(V) wystê52
puj¹ w zwyk³ych wodach podziemnych. Wyniki
obliczeñ ukazuj¹ kolosalny wp³yw EH na aktywnoœæ specjacji, siêgaj¹cy nawet kilkunastu rzêdów wielkoœci.
Informacje o aktywnoœci i stê¿eniu specjacji
s¹ wykorzystywane nie tylko w analizach geochemicznych. Specjacje danego pierwiastka
ró¿ni¹ siê toksycznoœci¹ i dane o ich stê¿eniu s¹
u¿yteczne tak¿e w analizach zagro¿enia roœlin,
zwierz¹t i ludzi.
Do interpretacji pochodzenia sk³adników
wód i oceny trwa³oœci faz sta³ych oœrodka skalnego wykorzystywane s¹ tak¿e wskaŸniki nasycenia (SI). Poprawnoœæ obliczeñ aktywnoœci
wp³ywa oczywiœcie na wartoœci wskaŸników
nasycenia. Na ryc. 4 przedstawiono skalê zró¿nicowania wartoœci wskaŸnika nasycenia
dwóch wybranych faz mineralnych (syderytu i
uraninitu) wobec ró¿nych wartoœci potencja³u
EH. Zró¿nicowanie obliczonych wartoœci SI jest
na tyle du¿e, ¿e mo¿e prowadziæ nawet do
odmiennych wniosków co do zachowania siê
faz mineralnych w wodonoœcu. W przypadku
niektórych wód wartoœci SI tego samego minera³u zmieniaj¹ siê od ujemnych do dodatnich
(ryc. 4). Wartoœci SI powy¿ej zera wskazuj¹ na
stan przesycenia wody wzglêdem fazy mineralnej (i chocia¿by teoretyczn¹ tendencjê do
tworzenia siê fazy sta³ej), a wartoœci poni¿ej
zera sugeruj¹ istnienie warunków sprzyjaj¹cych
rozk³adowi fazy mineralnej.
20
W Polsce potencja³ EH jest cech¹ bardzo
rzadko badan¹ w wodach podziemnych, w tym
tak¿e w wodach leczniczych, których sk³ad chemiczny jest wzglêdnie dobrze rozpoznany. Do
jednego z nielicznych wyj¹tków nale¿¹ tutaj
21
badania potencja³u EH w wodach leczniczych
L¹dka Zdroju (Ciê¿kowski, 1980). Zawarty w
Rozporz¹dzeniu Ministra Zdrowia z dn.
13.04.2006 r. (w sprawie zakresu badañ niezbêdnych do ustalenia w³aœciwoœci leczniczych naturalnych surowców leczniczych i w³aœciwoœci leczniczych
klimatu, kryteriów ich oceny oraz wzoru œwiadectwa
potwierdzaj¹cego te w³aœciwoœci) wymóg badania potencja³u redoks podczas dokumentowania w³aœciwoœci wód
leczniczych powinien w przysz³oœci poprawiæ stan rozpoznania tej cechy fizyczno-chemicznej w wodach leczniczych. Nale¿y jednak zwróciæ uwagê, ¿e rozporz¹dzenie to
nie precyzuje ¿adnych kwestii dotycz¹cych metodyki
pomiaru redoks w wodach leczniczych, a na przyk³ad ana-
Przegl¹d Geologiczny, vol. 58, nr 1, 2010
logiczny akt prawny na S³owacji (Vyhláška, 2006) okreœla
podstawowe wymogi dotycz¹ce podawanych wartoœci
potencja³u EH w wodach leczniczych.
Pomiar potencja³u redoks jest du¿o bardziej pracoch³onny od pomiarów innych, powszechnie badanych
cech, takich jak pH czy PEW. Badania EH wymagaj¹:
‘ w³aœciwego sprzêtu i odczynników;
‘ zachowania szczególnej starannoœci podczas pomiarów;
‘ wprowadzania odpowiednich korekt pomiarów terenowych.
W polskich badaniach hydrogeochemicznych coraz
czêœciej siêga siê po metody modelowania geochemicznego.
Z przedstawionych w niniejszym artykule przyk³adów jasno
wynika, ¿e zignorowanie w interpretacji chemizmu i modelowaniu geochemicznym wód podziemnych wyników badañ
potencja³u EH (lub te¿ w³aœciwego korygowania danych
terenowych) mo¿e prowadziæ do b³êdnych wniosków.
Wartoœæ interpretacyjn¹ napotykanych w literaturze
archiwalnych danych dotycz¹cych potencja³u redoks w
wodach podziemnych umniejsza fakt, ¿e w pracach tych
zwykle brakuje informacji o metodzie pomiaru i korekty EH.
Sudeckie wody lecznicze charakteryzuj¹ siê du¿¹
zmiennoœci¹ potencja³u redoks, od – 159 mV do 343 mV.
Generalnie wody termalne charakteryzuj¹ siê ni¿szym
potencja³em EH ni¿ wody ch³odne. Najni¿szy potencja³ EH
wykazuj¹ przy tym wody termalne o najwy¿szej temperaturze (wody ujêcia Zdzis³aw w L¹dku Zdroju i ujêcia C-2 w
Cieplicach Œl¹skich Zdroju). Pozosta³e wody termalne w
tych uzdrowiskach s¹ efektem mieszania siê wg³êbnych
wód termalnych z p³ytkimi wodami ch³odnymi. Widaæ jednak wyraŸn¹ ró¿nicê miêdzy wodami L¹dka i Cieplic.
Wszystkie wody termalne w L¹dku, tak¿e te bêd¹ce wynikiem mieszania, maj¹ niski potencja³ EH, podczas gdy w
wodach termalnych Cieplic bardzo wyraŸnie zaznacza siê
efekt mieszania, poprzez wysokie EH w wodach ujêæ Nowe,
Marysieñka i Sobieski. Sudeckie wody ch³odne to przewa¿nie szczawy. Wystêpuj¹ one w trzech rejonach: centralnej
czêœci synklinorium œródsudeckiego wraz z rowem Górnej
Nysy K³odzkiej i Górami Bystrzyckimi, pó³nocno-zachodniej czêœci synklinorium œródsudeckiego oraz w Górach
Izerskich. Wody D³ugopola Zdroju i Szczawna Zdroju
maj¹ EH wy¿sze (295–317 mV) od pozosta³ych wód
ch³odnych (137–291 mV). Mo¿na stwierdziæ, ¿e w sudeckich wodach termalnych niski potencja³ EH idzie w parze z
wysokim pH, w wodach ch³odnych zaœ wysokiemu EH
towarzyszy odczyn kwaœny (od 5,03 do 6,30). Obydwa te
parametry s¹ najwa¿niejszymi zmiennymi rz¹dz¹cymi
migracj¹ wodn¹ wielu pierwiastków. Potencja³ redoks w
wodach leczniczych wymaga rozpoczêcia szczegó³owych
badañ, m.in. z uwagi na wp³yw na rozpuszczalnoœæ i specjacje pierwiastków toksycznych.
Literatura
APPELO C.A.J. & POSTMA D. 2005 — Geochemistry, groundwater
and pollution. 2 wyd. A.A. Balkema, Rotterdam.
Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases.
2005. Geological Survey of Japan, Open File Report no. 419: 1–285.
BARD A.J. & FAULKNER L.R. 2001 — Electrochemical methods:
Fundamentals and applications. 2 wyd. Wiley, New York., USA.
BARD A.J., PARSON R. & JORDAN J. 1985 — Standard potentials in
aqueous solution. CRC Press, USA.
BROOKINS D.G. 1988 — Eh-pH diagrams for geochemistry, Springer,
New York.
CHAPELLE F.H. & LOVLEY D.R. 1992 — Competitive exclusion of
sulfate-reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water, 30: 29–36.
CHAPELLE F.H. 2000 — Groundwater microbiology and geochemistry. 2 wyd. Wiley, New York.
CHAPELLE F.H. 2004 — Geochemistry of groundwater. [W:] Holland
H.D. & Turekian K.K. (red.), Treatise on geochemistry, vol. 5, Drever J.I.
(red.), Surface and ground water, weathering, erosion and soils: 425–449.
CIʯKOWSKI W. 1980 — Hydrogeologia i hydrochemia wód termalnych L¹dka Zdroju. Problemy Uzdrowiskowe, 150(4): 125–193.
DOBRZYÑSKI D. 2006 — Modelowanie geochemiczne. [W:] Podstawy
hydrogeologii stosowanej, A. Macioszczyk (red.). Wydaw. Nauk. PWN:
280–304.
DREVER J.I. 1997 — The geochemistry of natural waters: surface and
groundwater environments. 3 wyd., Prentice-Hall. Upper Saddle River.
GALSTER H. 1999 — Technique of measurement, electrode processes
and electrode treatment. [W:] Schüring J., Schulz H.D., Fischer W.R.,
BÖTTCHER J. & DUIJNISVELD W.H.M. (red.), Redox: Fundamentals,
processes and applications. Springer, Berlin, Heidelberg, New York: 13–23.
GARRELS R.M. & CHRIST C.L. 1965 — Solutions, minerals, and
equilibria. Harper & Row, New York.
KÖLLING M. 1999 — Comparison of different methods for redox
potential determination in natural waters. [W:] Schüring J., Schulz
H.D., Fischer W.R., Böttcher J. & Duijnisveld W.H.M. (red.), Redox:
Fundamentals, processes and applications. Springer, Berlin Heidelberg
New York: 42–54.
KÖLLING M., EBERT M. & SCHULZ H.D. 1999 — A novel approach to the presentation of på/pH-diagrams. [W:] Schüring J., Schulz
H.D., Fischer W.R., Böttcher J. & Duijnisveld W.H.M. (red.), Redox:
Fundamentals, processes and applications. Springer, Berlin Heidelberg
New York: 55–63.
LIGHT T.S. 1972 — Standard solution for redox potential measurements. Analytical Chemistry, 44(6):1038–1039.
LINDBERG R.D. & RUNNELLS D.D. 1984 — Ground water redox
reactions: an analysis of equilibrium state applied to Eh measurements
and geochemical modeling. Science, 225: 925–927.
LOVLEY D.R., CHAPELLE F.H. & WOODWARD J.C. 1994 — Use
of dissolved H2 concentrations to determine distribution of microbially
catalyzed redox reactions in anoxic groundwater. Environmental
Science and Technology, 28: 1205–1210.
LOVLEY D.R., BAEDECKER M.J., LONERGAN D.J.,
COZZARELLI I.M., PHILLIPS E.J.P. & SIEGEL D.I. 1989 — Oxidation of aromatic contaminants coupled to microbial iron reduction.
Nature, 339: 297–299.
NORDSTROM D.K. & WILDE F.D. 1998 — Reduction oxidation
potential (electrode method). [W:] National Field Manual for the Collection of Water-Quality Data, F.D. Wilde, D.B. Radtke, J. Gibs, & R.T.
Iwatsubo (red.), U.S. Geological Survey, Techniques in Water-Resources Investigations, Book 9, Handbooks for Water-Resources Investigations, Chapter A6.5: 1–20.
NORDSTROM D.K. 1977 — Thermochemical redox equilibria of
ZoBell’s solution. Geochim. et Cosmochim. Acta, 41: 1835–1841.
PARKHURST D.L. & APPELO C.A.J. 1999 — User’s guide to
PHREEQC (version 2) — A computer model for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, WRI Report, 99–4259: 1–326.
PITTER P., SÝKORA V. & SCHEJBAL P. 1999 — Mìøení oxidaènì-redukèního poteniálu ve vodách. [W:] Mat. V Conf. Hydrogeochemia, Comenius University, Bratislava, Slovakia: 13–19.
POURBAIX M. 1966 — Atlas of electrochemical equilibria in aqueous
solutions. Pergamon Press, Oxford.
Rozporz¹dzenie Ministra Zdrowia z dn. 13.04.2006 w sprawie zakresu badañ
niezbêdnych do ustalenia w³aœciwoœci leczniczych naturalnych surowców
leczniczych i w³aœciwoœci leczniczych klimatu, kryteriów ich oceny oraz
wzoru œwiadectwa potwierdzaj¹cego te w³aœciwoœci. Dz.U. 80, poz. 565.
SAMBORSKA K. & KOWALCZYK A. 2007 — Zastosowanie diagramów stabilnoœci i modelowania hydrogeochemicznego w celu
wyjaœnienia procesów kszta³tuj¹cych sk³ad chemiczny wód podziemnych ujêcia z rejonu D¹browy Górniczej. [W:] Wspó³czesne Problemy
Hydrogeologii, T. XII, cz. 2. AGH, Kraków: 193–201.
SAWYER D.T., SOBKOWIAK A. & ROBERTS J.L. 1995 — Electrochemistry for chemists. 2 wyd. Wiley, NewYork, USA.
STUMM W. & MORGAN J.J. 1996 — Aquatic Chemistry, 3 wyd.
Wiley-Interscience, New York.
THORSTENSON D.C. 1984 — The concept of electron activity and its
relation to redox potentials in aqueous geochemical systems. U.S. Geological Survey, Open-File Report, 84–072: 1–45.
Vyhláška Ministerstva zdravotníctva Slovenskej republiky zo 6. februára 2006, ktorou sa ustanovujú poiadavky na prírodnú lieèivú vodu a
prírodnú minerálnu vodu, podrobnosti o balneologickom posudku, rozdelenie, rozsah sledovania a obsah analýz prírodných lieèivých vôd a
prírodných minerálnych vôd a ich produktov a poiadavky pre zápis
akreditovaného laboratória do zoznamu vedeného Štátnou kúpe¾nou
komisiou. Zbierka zákonov è. 100/2006.
ZOBELL C.E. 1946 — Studies on redox potential of marine sediments.
AAPG Bulletin, 30: 477–513.
Praca wp³ynê³a do redakcji 23.03.2009 r.
Po recenzji akceptowano do druku 23.06.2009 r.
53

Podobne dokumenty