Gospodarka energią wiatrową w Polsce

Transkrypt

Gospodarka energią wiatrową w Polsce
NR 82
Zeszyty Naukowe AKADEMII PODLASKIEJ w SIEDLCACH
Seria: Administracja i Zarz dzanie
2009
dr in . Henryk Wyr!bek
Akademia Podlaska w Siedlcach
Gospodarka energi" wiatrow" w Polsce
The economy of the wind energy in Poland
Streszczenie: Ju w staro ytnych czasach odkryto mo liwo!ci poboru energii za
pomoc" wiatru. Istnienie pierwszych silników wiatrowych w krajach !ródziemnomorskich i w Chinach odnotowano ko#o 1800 lat temu. Na prze#omie XX i XXI wieku najwa niejszymi $ród#ami pozyskiwania i przetwarzania energii cieplnej i elektrycznej na
!wiecie by#y surowce kopalniane, a tak e paliwa j"drowe oraz energia wiatrowa
i wodna. Spo!ród popularnych odnawialnych $róde# energii najbardziej dynamicznie
rozwija si% energetyka wiatrowa. W artykule przedstawiono warunki i zasady gospodarowania energi" wiatrow" w Polsce.
Abstract: In ancient times possibilities of the consumption of energy were already
revealed with the help of the wind. Existing of the first wind turbines in Mediterranean
countries and in China was taken note the circle of 1800 years ago. On the XX
turning point and the 21st century with the most important sources of recruiting and
converting the thermal energy and electric there were mine raw materials as well as
nuclear fuels and a wind power in world and water. Out of the popular renewable the
most dynamically the wind power industry is developing. In the article were presented
conditions and principles of the management of the wind power in Poland.
Wst!p
Odnawialne ród!a energii (OZE) nazywane s" inaczej niekonwencjonalnymi, maj" t# szczególn" w!a$ciwo$%, &e nie zu&ywaj" si# w procesie
ich u&ytkowania, a ich u&ytkowanie nie zuba&a przysz!ych pokole' w zasoby
energetyczne i walory $rodowiska naturalnego.1
Energia niekonwencjonalna to energia pozyskiwana ze róde! odnawialnych, a przede wszystkim energia wodna, wiatrowa, geotermalna, solarna, biopaliwa sta!e i p!ynne.2
Odnawialne ród!a energii uzyska!y tak&e swoj" definicj# w prawodawstwie polskim, wed!ug której „OZE to te, które wykorzystuj" w procesie
1
W. Jab!o'ski, J. Wnuk, Odnawialne $ród#a energii w energetyce Unii Europejskiej i Polski.
Efektywne zarz"dzanie inwestycjami – studia przypadków; WSZiM Sosnowiec 2004, cyt., s. 42.
2
Tam&e, cyt., s. 26.
200
H. Wyr!bek
przetwarzania niezakumulowan" energi# s!oneczn" w rozmaitych postaciach, w szczególno$ci energi# rzek, wiatru, biomasy, energi# promieniowania s!onecznego w bateriach s!onecznych.3 Ow" zale&no$% przedstawia rysunek 1.
Do zalet OZE nale&y:
- niewyczerpywalno$%,
- nieszkodliwo$% dla $rodowiska (nie wytwarzaj" produktów
ubocznych w procesie wydobywania i przetwarzania surowców
w energi#, nie przyczyniaj" si# do tworzenia zmian klimatycznych: ocieplenia klimatu, zanieczyszczania powietrza, gleb, wód,
zabijania organizmów &ywych),
Rys. 1. (ród!o, procesory i przemiany energii w $rodowisku
(ród!o: Flizikowski J., Bieli'ski K., Projektowanie $rodowiskowych procesów energii; Wydawnictwa Uczelniane Akademii Techniczno-Rolniczej; Bydgoszcz 2000, s. 14
Fig. 1. The source, processors and transformations of the energy in the environment
Source: J. Flizikowski., K. Bieli'ski., Designing environmental processes of the energy, Wydawnictwa Uczelniane Akademii Techniczno-Rolniczej, Bydgoszcz 2000, p. 14.
3
Ustawa z dnia 10 kwietnia1997 r. Prawo Energetyczne, art. 3, ust. 21.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
201
bardzo niskie ceny surowca (niekiedy za darmo),
dost#pno$% na ca!ym $wiecie (jednak w ró&nym stopniu), co rozwi"zuje problem transportu energii, gdy& mo&e ona by% pozyskiwana w dowolnym miejscu, co eliminuje równie& straty zwi"zane
z dystrybucj" i pozwala unikn"% budowy linii przesy!owych,
- w skali kraju produkcja energii z OZE pozwala uniezale&ni% si#
od importu paliw zwi#kszaj"c bezpiecze'stwo energetyczne kraju
i tym samym zapewniaj"c ci"g!o$% dostaw,
- w skali lokalnej przyczynia si# do redukcji nadwy&ek w rolnictwie
(ziemniaki, s!oma, ro$liny oleiste),
- pozwala zagospodarowa% nieu&ytki rolne,
- przyczynia si# do tworzenia stanowisk pracy dla wykwalifikowanych pracowników,
- ceny tradycyjnych surowców energetycznych stale id" w gór#, co
ma wp!yw na konieczno$% poszukiwania innych róde! energii,
- OZE przyczyniaj" si# do rozwoju jednego z najbardziej dynamicznych sektorów gospodarki (sektora energetycznego),
- promowane s" innowacje w ramach ogólnej polityki wspierania
konkurencyjno$ci gospodarki,
- wytwarzanie OZE jest wspierane odgórnie,
- OZE stanowi" energetyk# bardzo elastyczn", wykorzystuj"c"
ró&norodne lokalne, regionalne ród!a energii,
- oszcz#dno$% paliw kopalnianych (eliminacja zu&ycia w#gla, ropy
i gazu w produkcji energii elektrycznej).
OZE maj" tak&e swoje wady, do tych najwa&niejszych trzeba zaliczy%:
- wysoki koszt technologii w stosunku do uzyskiwanej mocy, bardzo kosztowne instalacje,
- wyst#powanie problemów technicznych w zwi"zku z utrzymaniem i serwisem niektórych urz"dze',
- wytwarzanie du&ego ha!asu przez niektóre urz"dzenia (turbiny
wiatrowe, elektrownie wodne),
- uzale&nienie (np. od pory roku oraz dnia i nocy, jak ma to miejsce
w przypadku energii s!onecznej, któr" w konsekwencji trzeba
magazynowa%), niektórych róde! energii dzia!aj"cych okresowo,
- ma!" moc uzyskiwanej energii,
- wyst#powanie w ogniwach s!onecznych szkodliwych pierwiastków,
- zasalanie uj$cia rzek przez elektrownie zasilane p!ywami morskimi, przyczynianie si# do erozji brzegów wskutek waha' wody,
a tak&e utrudnianie w#drówki ryb w gór# rzeki,4
- odnawialne ród!a energii w najbli&szej przysz!o$ci nie osi"gn"
znacznego udzia!u w bilansie energetycznym – OZE b#d" jedynie uzupe!nieniem energetyki tradycyjnej.
-
4
E. Klugmann-Radziemska, E. Klugmann, Systemy…, s. 21.
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
202
H. Wyr!bek
Do najpopularniejszych róde! energii odnawialnej zalicza si#:
- biomas#, która mo&e by% bezpo$rednio spalana, mo&e by% tak&e
wykorzystywana do produkcji paliw p!ynnych oraz jako biogaz,
- energi# wód p!yn"cych, która dostarcza blisko 20% elektryczno$ci na $wiecie; ma!e elektrownie wodne s!u&" do jej pozyskiwania,
- energi# S!o'ca – promieniowanie s!oneczne, które blisko tysi"ckrotnie przewy&sza zapotrzebowanie mieszka'ców Ziemi na
energi#; do pozyskiwania energii wykorzystuje si# kolektory termiczne i ogniwa fotowoltaiczne,
- energi# wiatrow", któr" pozyskuje si# poprzez elektrownie wiatrowe;
- energi# geotermaln", czyli energi# ciep!ych wód podziemnych.
Najsilniejszym bod cem przemawiaj"cym za OZE okazuje si# stan
$rodowiska naturalnego oraz wyczerpuj"ca si# ilo$% tradycyjnych surowców
energetycznych. Na uwadze trzeba tak&e mie% fakt, &e w#giel kamienny tworzy si# przez 460 mln lat, a w#giel brunatny przez kilkana$cie mln lat. Energia pochodz"ca z alternatywnych róde! energii jest praktycznie ogólnie dost#pna (pomijaj"c okresy, kiedy jest noc i s!o'ce nie $wieci lub kiedy wieje
za s!aby wiatr).
Udzia! poszczególnych odnawialnych róde! energii w produkcji
energii pierwotnej na $wiecie w 2003 przedstawia si# nast#puj"co:5
• biomasa – 79,9%,
• energia wody – 16,5%,
• energia geotermalna – 3,1%,
• energia wiatru – 0,3%,
• energia s!o'ca – 0,2%.
Warto zauwa&y%, &e zdecydowanie najwi#kszy udzia! OZE w produkcji energii nieodnawialnej ma biomasa, poniewa& jest ród!em energii
odnawialnej wsz#dzie dost#pnym, czy to pod postaci" drewna, jego pochodnych, czy p!odów rolnych przeznaczonych na cele energetyczne, np.
rzepak, z którego mo&na otrzyma% biopaliwo. Za biomas" kolejne miejsce
zajmuje energia wodna, której wykorzystywanie zale&y przewa&nie od dost#pno$ci rzek i innych zbiorników wodnych. Znacznie mniejszy udzia! pozosta!ych róde! odnawialnych (energia geotermalna wiatru, s!o'ca) w produkcji energii pierwotnej maj" pozosta!e trzy ród!a energetyczne, których
wykorzystywanie wymaga wi#kszej z!o&ono$ci procesów, wk!adów, a przede
wszystkim samej dost#pno$ci i zasobno$ci naszego kraju w te ród!a.
Energia biomasy
Wspó!cze$nie, zarówno w Polsce, jak i na $wiecie, najcz#$ciej wykorzystuje si# energi# pochodz"c" z biomasy.
5
http://www.biomasa.org/ Energia odnawialna, marzec 2007.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
203
Na biomas# sk!adaj" si#:
- biomasa przetworzona wyst#puj"ca pod postaci" drewna, s!omy,
ro$lin specjalnie hodowanych na cele energetyczne (malwa,
trzcina, wierzba energetyczna, topola, olszyna, konopie przemys!owe, trawa s!oniowa i olbrzymia, topinambur, $lazowiec pensylwa'ski, mozga trzcinowata, rdest sachali'ski),
- biomasa cz#$ciowo przetworzona tj. oleje ro$linne m.in. z rzepaku, lekkie alkohole – do produkcji biopaliwa, gaz drzewny,
- odpady, np. trociny, py! drzewny, makulatura, kora, wióry, odpadki po przetwarzaniu trzciny cukrowej, cz#$% odpadów komunalnych, !uski ry&owe, odpady organiczne i $cieki,
- gaz uwalniaj"cy si# w procesie przemiany materii organicznej
przy udziale bakterii, np. biogaz wysypiskowy, biogaz powsta!y
z fermentacji gnojowicy.6
Biomasa jest paliwem pochodz"cym z &ywej materii organicznej,
która ma t# w!a$ciwo$%, &e szybko ulega ponownemu wzrostowi i mo&e by%
powtórnie wykorzystywana.7 Inaczej mówi"c, biomasa stanowi wszelkie
substancje pochodzenia ro$linnego wyst#puj"ce powszechnie – drzewo
i pozosta!o$ci upraw rolniczych, które s" dost#pne szczególnie na terenach
wiejskich i s" !atwe do zagospodarowania. Od dawien dawna wykorzystuje
si# j" jako ród!o energii. Podczas spalania biomasy uwalniane do atmosfery
ilo$ci CO2 s" równe ilo$ci pobranego dwutlenku w#gla przez ro$lin# w okresie jej wzrostu, co w rezultacie wychodzi na zero.8 Jest takim no$nikiem
energii, który za przyczyn" s!o'ca, wody oraz wiatru potrafi regenerowa%
swój potencja!, i co wa&ne, jest najmniej kapita!och!onnym ród!em energii
odnawialnej. Jedynie w sytuacji intensywnej produkcji biomasy wymagane
s" dodatkowe nak!ady dotycz"ce mi#dzy innymi nawo&enia, nawadniania,
eliminacji szkodników oraz ochrony ro$lin.
Energia pozyskiwana z biomasy stanowi tylko 15% $wiatowego wykorzystania energii, natomiast w krajach rozwijaj"cych si# udzia! ten jest
wi#kszy i wynosi 38%.9
Aby wyprodukowa% jednostk# energii z biomasy, potrzeba kilka razy
mniej nak!adów inwestycyjnych w przeciwie'stwie do pozosta!ych rodzajów
energii alternatywnej. Zale&nie od sk!adu chemicznego omawianego ród!a
energii, biomasa nadaje si# do bezpo$redniego spalania, jak równie& mo&e
by% u&yta do produkcji biogazu, a tak&e p!ynnych paliw do pojazdów z silnikiem Diesla. Wa&n" zalet" produkowanych z biomasy biopaliw jest to, &e
emituje o 60-80% mniej gazów cieplarnianych do atmosfery w przeciwie'stwie do spalania paliw kopalnianych (ropy czy gazu).10 Do wytwarzania,
6
W Jab!o'ski., J. Wnuk, Odnawialne $ród#a energii…, s. 248.
www.barka.org.pl/; Materia!y konferencyjne, 2002 r.
8
E .Klugmann – Radziemska, E Klugmann, Systemy…, s. 22.
9
A.Drzyma!a, T. Knap, P. Sanecki, W. St#pie', A.B. Szyma'ski, T. Wi#cek, Przyjazne !rodowisku $ród#a energii. Materia#y dla nauczycieli szkó# podstawowych i gimnazjów, Wyd. Fundacja
Nauka dla Przemys!u i )rodowiska, Rzeszów 2002, s. 129.
10
„Problemy Ekologii”. Mo liwo!& wykorzystania biomasy na cele energetyczne, nr 1, stycze' –
luty 2006, s. 29.
7
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
204
H. Wyr!bek
przetwarzania i spalania biomasy nale&y zatrudni% dodatkowych pracowników, tworzy si# tym samym tzw. zielone miejsca pracy. Z bada' przeprowadzonych w ró&nych krajach Wspólnoty Europejskiej wynika, &e aby uzyska%
1000 ton biopaliw p!ynnych, potrzeba do pracy $rednio 12-16 osób.
W warunkach polskich, ze wzgl#du na mniejsze plony i niezbyt wysoki stopie' wykorzystania urz"dze' mechanicznych, ilo$% osób zatrudnionych b#dzie wi#ksza.11 Kolejn" zalet" przy produkcji biopaliw jest mo&liwo$% gospodarki od!ogowanymi i ugorowanymi gruntami, a tak&e wykorzystanie sprz#tu
b#d"cego w posiadaniu rolników.12 Dodatkowym atutem biomasy jest fakt,
&e b#dzie ona prawdopodobnie znacz"cym elementem rozwoju OZE w Polsce, a wykorzystywana b#dzie w skali lokalnej jako energia cieplna.13 Natomiast produkcja w!asnej, czystej energii zwi#ksza bezpiecze'stwo energetyczne kraju i mo&e przyczynia% si# do zmniejszenia importu surowców
energetycznych, a tak&e nie b#dzie szkodzi% $rodowisku naturalnemu.
Energia wodna
Energia wody („bia!y w#giel”) jest tradycyjnie wykorzystywanym ród!em energii. Jest ona zwi"zana z procesem obiegu wody w przyrodzie, natomiast ród!em tej energii jest energia s!oneczna. W wyniku parowania, woda dostaje si# do atmosfery, a nast#pnie w postaci opadów powtórnie trafia
na ziemi#.
Potencja! hydroenergetyczny $wiata szacowany jest w przybli&eniu
na ok. 2.2 TW. Z tego jedynie 375 GW przetwarzane jest w energi# elektryczn" i stanowi to zaledwie jego 16%.14
Energi# wód mo&na podzieli% nast#puj"co:
energia wód rzecznych (energia przep!ywu wód lub energia ró&nic poziomu),
energia pochodzenia oceanicznego (energia p!ywów morskich,
fal, pr"dów).15
W wyniku ruchu obrotowego naszej planety oraz przyci"gania Ksi#&yca i S!o'ca, wyst#puje ruch fal morskich (przyp!ywy i odp!ywy). Energi#
z tego ród!a odnawialnego mo&na pozyska% wykorzystuj"c uj$cie rzeki maj"cej wysokie brzegi, na której mo&na wybudowa% zapor#, tam# wodn", a ta
z kolei umo&liwi przedostanie si# wód morskich do doliny rzeki w momencie
przyp!ywu i jej wyp!yw przez turbiny wodne do morz" w chwili odp!ywu.
Energia p!ywów morskich najcz#$ciej jest wykorzystywana w sytuacjach, gdy
wysoko$% fal p!ywowych jest wi#ksza ni& 5 m, a tak&e kiedy wyst#puje
11
http://www.pan-ol.lublin.pl; Produkcja biomasy na cele energetyczne (mo liwo!ci i ograniczenia)/ marzec 2007.
12
„Nowa Wie$ Europejska”, nr 07 – 08/ 2006, s. 12.
13
„Problemy ocen $rodowiskowych”, nr 1 [3] 2007, s. 59.
14
http://www.energia.org.pl/ Energia wodna; marzec 2007.
15
W.M. Lewandowski, Konwencjonalne i odnawialne $ród#a energii. Zeszyty Zielonej Akademii;
Zeszyt nr 5; Wyd. Okr#gu Wschodniopomorskiego, Poleskiego Klubu Ekologicznego, Gda'sk
1996.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
205
sprzyjaj"ce ukszta!towanie terenu (w"ska zatoka oraz uj$cie rzeki w kszta!cie lejka).16
Natomiast do nap#du turbin w elektrowniach oceanicznych wykorzystuje si# ruchy mas wodnych wywo!ywane p!ywami, falowaniem i ró&nicami
g#sto$ci (pr"d Golfsztrom, Kuro Siwo, pr"dy równikowe).
W rzecznych elektrowniach wodnych energia kinetyczna lub energia
potencjalna wody przetwarzana jest na energi# elektryczn".17 Najpopularniejszymi elektrowniami wodnymi s" te zasilane energia kinetyczn" rzek. Korzystaj"c ze róde! energii odnawialnej zaoszcz#dza si# nieodnawialne surowce kopalniane i unika si# tym samym drogiego i ryzykownego wydobycia
i transportu tych surowców. Wytwarzanie energii z elektrowni wodnych jest
technicznie prostsze i na pewno przynosi zarówno ekologiczne, jak i ekonomiczne korzy$ci (mniejsze koszty obs!ugi, wi#ksza niezawodno$% pracy
elektrowni oraz ni&sze koszty u&ytkowania).
Najbardziej po&"danymi elektrowniami wodnymi s" jednak ma!e
elektrownie wodne z uwagi na mniejsz" ich szkodliwo$% w porównaniu z du&ymi elektrowniami wodnymi. Te bowiem:
• nadmiernie integruj" w $rodowisko przyrodnicze przyczyniaj"c
si# do trwa!ych zmian w strukturach hydrologicznych,
• zamulaj" zbiorniki wodne przyczyniaj"c si# do zamierania &ywych organizmów wodnych,
• i co istotne - nak!ady inwestycyjne s" dwu- lub trzykrotnie wi#ksze ni& elektrowni konwencjonalnych.
Natomiast w$ród zalet du&ych elektrowni wodnych wyró&nia si#:
• oszcz#dzanie paliw kopalnianych,
• niezanieczyszczanie otoczenia szkodliwymi spalinami i py!ami,
• ni&sze koszty eksploatacji i wi#ksza niezawodno$% ni& w elektrowniach tradycyjnych,
• 8-10-krotnie ni&sze koszty pozyskiwania energii elektrycznej.18
Ma!e elektrownie wodne produkuj" energi# g!ównie na potrzeby lokalne np. mielenie zbo&a, prace w tartaku lub ku ni.
W$ród zalet ma!ych elektrowni wodnych uwzgl#dni% mo&na to, &e:
• nie zanieczyszczaj" $rodowiska, mog" by% zainstalowane w wielu miejscach, nawet na niewielkich ciekach wodnych,
• czas zaprojektowania i wybudowy ma!ej elektrowni wynosi 1-2 lata, wyposa&enie jest ogólnie dost#pne, a technologia powszechnie znana,
• s" proste w budowie, a przy tym niezawodne, ich trwa!o$% si#ga
100 lat,
• mog" by% zdalnie sterowane, tote& nie wymagaj" obecno$ci personelu do ich obs!ugi,
16
E. Klugmann, E. Klugmann-Radziemska, Alternatywne $ród#a energii…, s. 31-32.
W.M. Lewandowski, Proekologiczne $ród#a energii odnawialnej, Wyd. Naukowo-Techniczne;
Warszawa 2001, s. 48.
18
Ibidem, s. 54.
17
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
206
H. Wyr!bek
• du&e rozproszenie w terenie zmniejsza odleg!o$% przesy!u energii
i zwi"zane z tym koszty,
• wywieraj" sprzyjaj"cy wp!yw na $rodowisko oraz przyczyniaj" si#
do zauwa&alnego obni&enia kosztów produkcji energii elektrycznej w ma!ych elektrowniach wodnych,19
• nie wytwarzaj" $cieków i zanieczyszcze' atmosfery,
• mog" s!u&y% w sytuacji przerw w zasilaniu energi" tradycyjn",
• pobudzaj" atrakcyjno$% terenu pod k"tem turystyki.
Energia geotermalna
Energia geotermalna nazywana jest zamiennie energi" wn#trza
Ziemi i jest ona zlokalizowana w ska!ach i wodach podziemnych. Ciep!o we
wn#trzu Ziemi jest ciep!em pierwotnie zwi"zanym z kszta!towaniem si# planety. Dodatkowym ród!em ciep!a jest proces naturalnego rozpadu nast#puj"cych pierwiastków promieniotwórczych: uran, tor i potas przy udziale promieniowania s!onecznego.20 Skorupa ziemska sk!ada si# w najwi#kszej
mierze z granitu i bazaltu, w których uprzednio wymienione pierwiastki wyst#puj". Rozpadowi promieniotwórczemu izotopów towarzyszy wytwarzanie
ciep!a, które nagrzewa wod# uwi#zion" pod warstwami skalnymi.21
Z bada' wynika, &e 30% ciep!a planety powstaje poprzez dzia!anie
procesów geologicznych, natomiast 70% w wyniku rozpadu pierwiastków radioaktywnych.22 Ciep!o geotermalne wydobywaj"ce si# z g!#bi naszej planety jest niejednokrotnie wy&sze ni& ilo$% ciep!a, jak" mo&na pozyska% ze
wszystkich tradycyjnych róde! energii (ropy, gazu i w#gla). Zatem powstaje
za!o&enie, &e im dalej w g!"b Ziemi, tym gor#cej (tabela 1).
Tabela 1. Budowa Ziemi
Table 1. Structure of the Earth
WARSTWA
skorupa i litosfera
p&aszcz
G"#BOKO$%
[km]
TEMPERATURA
[stopnie C]
0 - 100
930
100 - 2886
2730
j dro zewn!trzne
2886 - 5156
4200
j dro wewn!trzne
5156 - 6371
4500
(ród!o: www.mos.gov.pl; Budowa Ziemi; Marzec 2007.
Source: www.mos.gov.pl; Structure of the Earth; March 2007.
19
J. Flizikowski, K. Bieli'ski, Projektowanie !rodowiskowych procesów energii, Wydawnictwa
Uczelniane Akademii Techniczno-Rolniczej; Bydgoszcz 2000, s 140.
E. Mokrzycki, Podstawy gospodarki surowcami energetycznymi, Uczelniane Wydawnictwa
Naukowo-Dydaktyczne, Kraków 2005 s. 307.
21
W. Ciechanowicz, Bioenergia a energia j"drowa, Wy&sza Szko!a Informatyki Stosowanej i Zarz"dzania, Warszawa 2001, s. 24-25.
22
http://www.energiaodnawialna.republika.pl; Energia geotermalna, marzec 2007.
20
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
207
Licz"c od skorupy ziemskiej, z ka&dym kilometrem w g!"b, odczuwa
si# wzrost temperatury $rednio o 30 stopni Celsjusza. Inaczej mówi"c, wzrostowi temperatury o 10 C odpowiada zej$cie o 33 m w g!"b Ziemi.23
Pozyskiwanie energii geotermalnej odbywa si# w miejscach anomalii
geologicznych, np. w miejscach wyst#powania gejzerów i tzw. gor"cych
ska!. Gejzery powstaj" poprzez erupcj# pary wodnej b"d gor"cej wody
z wn#trza Ziemi. Natomiast by korzysta% z ciep!a gor"cych ska!, nale&y wywierci% otwory (tzw. odwierty).24 Wydobywanie ciep!ej wody na powierzchni#
dokonuje si# za pomoc" odwiertów funkcjonuj"cych na wzór odwiertów ropy
naftowej lub gazu. Jednym otworem pobiera si# ciep!" wod#, a drugim wt!acza si# t* wod# z powrotem, ale ju& ozi#bion". Wydobyta wodA musi by%
uzupe!niona, aby zachowa% równe proporcje. Wn#trze planety s!u&y tu jako
ogromny zbiornik grzewczy, dostarczaj"cy stale gor"c" wod#. Pewnego rodzaju trudno$ci" przy eksploatacji ciep!ych wód jest ich znaczne zasolenie.25 Ponadto wody geotermalne w swej zawarto$ci maj" wiele sk!adników
mineralnych np.: NaCl, KCl, CaCl2, SiO2 oraz gazy (najcz#$ciej s" to
CO2, N2).
To, czy op!acalne oka&e si# wykorzystywanie ciep!a geotermalnego,
zale&e% b#dzie od stanu techniki g!#boko$ci odwiertów, lokalizacji, temperatury czynnika grzejnego. Do produkcji energii elektrycznej op!acalne jest
pozyskiwanie ciep!a o temperaturze 120-1500 C, natomiast przy ni&szych
temperaturach, energi# t* mo&na przeznaczy% na cele ciep!ownicze, klimatyzacyjne, do ogrzewania wody w miastach i na p!ywalniach, do celów relaksacyjnych, zdrowotnych, do hodowli ryb, itp.26
Niestety eksploatacja energii geotermalnej przyczynia si# do powstawania problemów ekologicznych, w$ród których najpowa&niejszym jest
emisja szkodliwych gazów – siarkowodoru, który, zgodnie z prawem ameryka'skim, niezw!ocznie musi by% zaabsorbowany w przystosowanych do tego
instalacjach, a te wp!ywaj" na podniesienie kosztów produkcji energii elektrycznej. Ponadto zagro&enie stwarza produkt radioaktywnego rozpadu, jakim jest radon uwalniaj"cy si# razem z par" wodn" ze studni termalnej. Problem ten do tej pory nie jest rozwi"zany i nadal stanowi zagro&enie dla
$rodowiska naturalnego.27
Energia s#oneczna
Energia promieniowania s!onecznego jest jednym z wa&niejszych
róde! w energetyce odnawialnej, jednak&e mo&liwo$ci jej wykorzystania
przedstawiaj" si# w sposób nierównomierny. Jest to w g!ównej mierze uwarunkowane k"tem nachylenia Ziemi wzgl#dem S!o'ca w poszczególnych
miesi"cach, obrotem planety wokó! w!asnej osi, czego efektem jest dzie'
23
E. Klugmann, E. Klugmann-Radziemska, op. cit., s. 48.
J. Kucowski, D. Laudyn, M. Przekwas, Energetyka a ochrona !rodowiska, Wyd. Naukowo-Techniczne, Warszawa 1997, s. 418.
25
W. Jab!o'ski, J . Wnuk, op. cit., s. 38.
26
E. Klugmann-Radziemska, E. Klugmann, op. cit., s. 23.
27
W.M. Lewandowski, op. cit., s. 185.
24
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
208
H. Wyr!bek
i noc oraz obrotem Ziemi wokó! S!o'ca, co daje pory roku. Do tego dochodz" jeszcze inne czynniki fizyczne i geograficzne.
Blisko 1/3 energii emitowanej przez S!o'ce dociera do Ziemi, gdzie
odbijana jest przez atmosfer#, 20% energii jest przez ni" poch!aniane, a tylko 50% dociera do powierzchni naszej planety. Po!owa dostarczonej energii
stanowi a& 27.000.000.000 MW, natomiast zapotrzebowanie ludzko$ci na
energi# (nie tylko elektryczn", równie& mechaniczn" i ciepln") wynosi
0,01*1.000.000.000 MW. Energia s!oneczna jest praktycznie nie do wyczerpania, a jej pozyskiwanie nie szkodzi $rodowisku. Niestety ród!o to ma wad#. Aby zapewni% spo!ecze'stwu $wiata dostateczn" ilo$% energii pochodzenia s!onecznego, nale&a!oby pokry% 745.000 km2 powierzchni (czyli 0.5%
ca!ej powierzchni l"dów) ogniwami s!onecznymi.28
Wyró&nia si# dwa sposoby poboru energii solarnej:
• kolektory s!oneczne pobieraj"ce promienie S!o'ca i przekazuj"ce
pobran" energi# np. wodzie (ogrzewanie pomieszcze', podgrzewanie wody) lub powietrzu (suszenie p!odów rolnych),
• ogniwa fotowoltaiczne bezpo$rednio przetwarzaj"ce promienie
s!oneczne w energi# elektryczn"29.
Pomys!ów na wykorzystanie energii s!onecznej jest coraz wi#cej,
oprócz ogrzewania wody i o$wietlania pomieszcze', mo&na j" równie& zastosowa% do suszenia ro$lin (surowce spo&ywcze, drewno), ch!odzenia przy
konserwacji &ywno$ci, a w najbli&szej przysz!o$ci energia s!oneczna zyska
jeszcze wiele wi#cej zastosowa'.
Pocz"tkowo by!o wiele oporów zwi"zanych z wytwarzaniem energii
s!onecznej. Pierwszym z nich by!a kapita!och!onna produkcja ogniw s!onecznych opartych na specyficznie zaprojektowanych warstwach krzemu
(kryszta!ki krzemu trzeba by!o wyhodowa%). Z czasem kryszta!ki krzemu zast"pione zosta!y bezpostaciow" warstw" krzemu (du&o ta'sz" i mniej pracoch!onn"), co znacznie zmieni!o punkt widzenia i nastawienie na ten rodzaj
energii. Kolejnym problemem okaza!o si# zapotrzebowanie na du&e obszary,
na których mo&na za!o&y% farm# s!oneczn". Tereny najbardziej do tego
przystosowane mieszcz" si# w znacznej mierze na pustyniach, ale to mog!oby zak!óci% tamtejsz" flor# i faun#, a kolejnym problemem by!by fakt, i&
cz#$% spo!ecze'stwa woli mie% w!asne fotoogniwa s!oneczne. Jednak ta
cz#$% obszarów pustynnych, jakie by!yby potrzebne do wytwarzania energii
dla Ziemi, nie spowodowa!yby takich zniszcze' w $rodowisku naturalnym,
jakie powodowane s" wykorzystywaniem nieodnawialnych surowców s!u&"cych wytwarzaniu energii. Nast#pnym problemem jest fakt istnienia nocy,
kiedy to S!o'ce nie $wieci. W tej sytuacji nale&y przekszta!ci% energi# s!oneczn" w energi# pozwalaj"c" si# zmagazynowa%.30 Obecny rozwój techniki
i technologii osi"gn"! ju& poziom umo&liwiaj"cy pe!niejsze wykorzystywanie
magazynowanie energii ze S!o'ca.
28
http://proekologia.pl/ Energia s#oneczna, marzec 2007.
W. Jab!o'ski, J. Wnuk, Odnawialne $ród#a energii…,s. 178.
O’M Bockkris J., T. Nejat Veziroglu, Debbi Smith; t!. z ang. Marek Szklarczyk; S#o'ce i wodór
niewyczerpalne $ród#a energii: sposób ocalenia Ziemi; Wydaw. PLJ, Warszawa 1993, s. 75-7.8
29
30
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
209
Energia wiatrowa
W konsekwencji powsta!ego w 1973 roku kryzysu energetycznego,
$wiat coraz przychylniej zacz"! spogl"da% w kierunku alternatywnych róde!
energii, w tym na energi# wiatru. Rozpocz#to instalowanie turbin wiatrowych
w miejscach charakteryzuj"cych si# najkorzystniejszymi warunkami wiatrowymi. Aktualnie pracuje ponad 50000 turbin wiatrowych, a sektor energetyki
wiatrowej cieszy si# rosn"c" popularno$ci". Aby móc korzysta%
z energii wiatru do produkcji energii elektrycznej, potrzebne s" odpowiednie
warunki, tzn. wiatr musi mie% odpowiedni" pr#dko$%. Najbardziej optymalna
i korzystna pr#dko$% wiatru wynosi 15-20 m/s, jednak&e elektrownie wiatrowe mog" pracowa% tak&e przy pr#dko$ci wiatru wynosz"cej od 5 m/s. Zbyt
ma!a pr#dko$% wiatru uniemo&liwi produkcj# energii o dostatecznej mocy,
natomiast wiatr wiej"cy ze zbyt du&" pr#dko$ci" móg!by przyczyni% si# do
mechanicznych i nieodwracalnych uszkodze' wiatraków. Najbardziej odpowiednimi miejscami dla energetyki wiatrowej s" tereny nadmorskie i podgórskie.
W 2010 roku moc zainstalowana w OZE nie powinna by% ni&sza ni&
75 tys. MW, a do roku 2020 ma by% dwukrotnie wy&sza – takie zamierzenia
postawi!a Unia Europejska. Bior"c pod uwag# $rodowisko naturalne i technologi#, taka moc by!aby mo&liwa do osi"gni#cia tylko przy wykorzystaniu
w!a$nie elektrowni wiatrowych. Inne alternatywne ród!a energii nie by!yby
w stanie dostarczy% tak poka nego przyrostu mocy.31 Zasoby wiatru s" niewyczerpywalne, a korzystanie z elektrowni wiatrowych nie niesie za sob"
powstawania zanieczyszcze' $rodowiska. Przepisy prawne warunkuj" tworzenie farm wiatrowych – powinny one znajdowa% si# nie bli&ej ni& 500 m od
najbli&szych siedlisk ludzkich, poniewa& wiatraki te wytwarzaj" ha!as, nie jest
on g!o$ny, ale jego monotonia mo&e negatywnie wp!ywa% na psychik# okolicznych mieszka'ców. W zale&no$ci od stosowanych turbin, ilo$ci wiatraków, ukszta!towania terenu, odleg!o$% od siedlisk ludzkich mo&e by% inna.32
Do g!ównych zalet elektrowni wiatrowych nale&y zaliczy%:
• ekologiczny charakter,
• wykorzystywanie energii alternatywnej,
• niskie koszty wytwarzania tej energii,
• przyczynianie si# do ograniczania konieczno$ci przetwarzania
paliw kopalnianych silnie degraduj"cych $rodowisko.
Odnawialne ród!o energii maj" równie& swoje wady:
• mog" zak!óca% fale radiowe i telewizyjne oraz wytwarzaj" monotonny ha!as, co mo&e by% uci"&liwe dla mieszkaj"cej w pobli&u
ludno$ci,
• wiatraki zniekszta!caj" naturalny krajobraz,
31
Z. Lubo$ny, Elektrownie wiatrowe w systemie elektroenergetycznym; Wyd. Naukowo-Techniczne; Warszawa 2006 <przedmowa>.
E. Mokrzycki (red.), Podstawy gospodarki surowcami energetycznymi; Uczelniane Wydawnictwa Naukowo-Dydaktyczne; Kraków 2005, s. 265-266.
32
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
210
H. Wyr!bek
• mog" stanowi% powa&ne zagro&enie dla przelatuj"cych ptaków
i innych siedlisk zwierz"t,
• wiatr nie wieje stale, kiedy akurat by!oby zapotrzebowanie na
energi#.33
Po#o enie geograficzne i ukszta#towanie terenu jako determinanty
rozwoju gospodarki wiatrowej w Polsce
Charakterystyczne dla klimatu Polski jest pasmowe ukszta!towanie
terenu: na po!udniu wysokie góry stopniowo przechodz"ce w pas wy&yn;
$rodkowa cz#$% kraju zaj#ta jest przez rozleg!e niziny, natomiast na pó!nocy
wyst#puje m!odoglacjalna strefa pojezierzy, s"siaduj"ca bezpo$rednio z Morzem Ba!tyckim. Wp!ywa ono na powstawanie lokalnego wiatru w pasie si#gaj"cym kilkudziesi#ciu kilometrów w g!"b l"du, dzi#ki czemu pó!nocna
cz#$% kraju posiada wi#ksze zasoby energii wiatrowej. Na warunki wiatrowe
ma wp!yw równie& umiarkowany klimat kraju, który powoduje zmienne mo&liwo$ci poboru energii odnawialnej pochodz"cej z wiatru w zale&no$ci od
wp!ywu mas powietrza oraz wysoko$ci nad poziomem morza.
Wykaz $rednich pr#dko$ci wiatru dla poszczególnych miast Polski
przedstawia tabela 1.
Uprzywilejowanymi rejonami w Polsce pod wzgl#dem zasobów wiatru s":
• tereny nadmorskie - zw!aszcza cz#$% zachodnia oraz pó!nocno-wschodni kraniec Polski (najwi#cej dni wietrznych i najwi#ksza
si!# wiatru),
• Suwalszczyzna,
• $rodkowa Wielkopolska i Mazowsze,
• Beskid )l"ski i +ywiecki,
• Bieszczady i Pogórze Dynowskie.34
Obszarami o najmniej korzystnych warunkach aerodynamicznych s"
kotliny $ródgórskie, takie jak: Jeleniogórska, Nowos"decka, Tarnowska,
Niecka Nidzia'ska i Kotlina Raciborska.
Wp!yw na pozyskiwanie energii wiatrowej ma m.in. ukszta!towanie
terenu i jego szorstko$%. Pr#dko$% wiatru uzale&niona jest od wysoko$ci nad
poziomem morza (tab. 2). Na przyk!ad, w strefie bardzo korzystnej na wysoko$ci 10 m n.p.m. mo&na pozyska% energi# blisk" 1000 kWh/m2,
a umieszczaj"c turbin# wiatrow" 20 m wy&ej, energia uzyskana z wiatru wyniesie oko!o 1500 kWh/m2. Inaczej mówi"c, im wy&ej po!o&ony jest teren,
tym wiatr jest silniejszy, jednak tylko do pewnej wysoko$ci (tzw. wysoko$%
wiatru gradientowego), kiedy to pr#dko$% wiatru nie jest ju& zale&na od stopnia szorstko$ci terenu.
33
T. Wieczorek, J. Soja, Biuletyn maturalny. Geografia, Wydawca – Centralna Komisja Egzaminacyjna, Warszawa 2005, s. 30.
34
http://energiazwiatru.w.interia.pl/; Walory energetyczne wiatru w Polsce, listopad 2007.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
211
Tabela 1. )rednia pr#dko$% wiatru w 2005 roku dla najwi#kszych miast Polski
Table 1. The medium wind speed in 2005 for major cities of Poland
rednia pr!dko"# wiatru w m/s
w 2005 roku
12,9
4,7
3,9
3,8
3,8
3,8
3,8
3,7
3,7
3,7
3,7
3,6
3,4
3,3
3,3
3,2
3,1
3,1
3,0
3,0
2,9
2,8
2,8
2,8
2,7
2,6
2,6
2,6
2,4
1,9
1,4
Stacje meteorologiczne
$nie'ka
"eba
Szczecin
Hel
Chojnice
Warszawa
Kalisz
Rzeszów
W&odawa
M&awa
Suwa&ki
Pozna(
"ód)
Zielona Góra
Koszalin
Wroc&aw
Olsztyn
Lublin
Terespol
Bielsko - Bia&a
Kielce
K&odzko
Toru(
Gorzów Wielkopolski
Cz!stochowa
Katowice
Bia&ystok
Kraków
Jelenia Góra
Nowy S cz
Zakopane
(ród!o: GUS, Ochrona $rodowiska, 2006.
Source: GUS, Environmental protection, Warsaw 2006.
Tabela 2. Energia wiatru w kWh/m2 na ró&nych wysoko$ciach w poszczególnych strefach
Table 2. Wind power in kWh/m² on different heights in individual zones
Nr i nazwa strefy
Energia wiatru na wys. 10 m
Energia wiatru na wys. 30 m
I – bardzo korzystna
II – korzystna
III – do*+ korzystna
IV – niekorzystna
V – b. niekorzystna
VI – szczytowe partie gór
>1000
750 - 1000
500 - 750
250 - 500
<250
Tereny wy& czone
>1500
1000 - 1500
750 - 1000
500 - 750
<500
Tereny wy& czone
(ród!o: http://kape.gov.pl/; Energia wiatru w wyró nionych strefach Polski w kWh/(m²/rok); Listopad 2007.
Source: http://kape.gov.pl/, Windpower in zones singled out of Poland in the kWh/ (m² / year),
November 2007.
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
212
H. Wyr!bek
Za szorstko$% terenu rozumie si# rodzaj pokrycia powierzchni:
wszelkie przeszkody, drzewa, budynki.
Elektrownie wiatrowe najkorzystniej lokalizowane s" na terenie o jak
najmniejszej szorstko$ci (tereny równinne, nieporo$ni#te wysok" ro$linno$ci", niezabudowane, a tak&e nieobj#te ochron" np. Natura 2000), a tak&e
z dobrym zapleczem drogowym i z dost#pem do sieci energetycznych.
Elektrownie wiatrowe w Polsce
Polska jest krajem, gdzie $rednia pr#dko$% wiatrów szacowana jest
na oko!o od 2,8 do 3,5 m/s. Aby uzyska% pr#dko$% wiatru powy&ej 4 m/s, co
traktowane jest za najmniejsz" warto$% efektywnego wykorzystania energii
wiatru, nale&y umieszcza% turbiny na wysoko$ci minimum 25 metrów.
Umieszczenie turbiny wiatrowej na wysoko$ci minimum 50 metrów umo&liwi
pobór energii z wiatru wiej"cego z pr#dko$ci" przekraczaj"c" 5m/s. Jednak
jest to obszar niewielki. Pr#dko$% wiatru ma du&y wp!yw na uzyskiwan" moc
– nawet przy niewielkim wzro$cie pr#dko$ci mo&na uzyska% du&y przyrost
mocy i ilo$% wytworzonej energii. Np. wzrost pr#dko$ci wiatru o 0,5 m/s
w przedziale 5,5-6,0 m/s spowoduje wzrost produkcji energii elektrycznej a&
o 50%.35
Wi#kszo$% turbin wiatrowych wytwarza pr"d przy pr#dko$ci wiatru
wynosz"cej 10-18 km/h (od 4 m/s), a optymalne pozyskiwanie energii dokonuje si# przy pr#dko$ci 54-72 km/h (do 20 m/s). Gdy przekroczona jest maksymalna pr#dko$% wiatru, wydajno$% elektrowni spada, turbina odwraca si# od
wiatru, co jest wymuszone wzgl#dami bezpiecze'stwa.36 Wraz z post#pem
technicznym zakres pracy turbin wiatrowych przy okre$lonych pr#dko$ciach
wiatru (mniejszej i wi#kszej ni& optymalna) b#dzie ulega% sta!ym zmianom.
Chc"c prawid!owo zweryfikowa% zasoby wiatru do celów energetycznych,
trzeba dokonywa% pomiarów wiatru na wysoko$ciach minimum 60 m.
Rozmieszczenie wiatraków w terenie ma równie& du&e znaczenie.
Tu wysuwa si# pewien problem wymagaj"cy kompromisu mi#dzy oszcz#dno$ci" terenu pod farm# a op!acalno$ci" i efektywno$ci" produkcji. Nale&y
uwzgl#dni% fakt, &e elektrownie wiatrowe wymagaj" zasadniczo du&o miejsca na lokalizacj# ze wzgl#du na wielko$% konstrukcji wiatraka. Przyk!adowo
elektrownia o mocy 1 MW potrzebuje oko!o 1 ha powierzchni (przeci#tnie od
5 do 9 $rednic wirnika turbiny skierowanych w stron# wiatru i 3-5 $rednic
wirnika bokiem do wiej"cego wiatru), by efektywnie funkcjonowa% oraz aby
wiatraki nie zabiera!y sobie wiatru w sytuacji ich zbyt bliskiej lokalizacji. Du&y
rozstaw turbin b#dzie niós! za sob" koszty wykupu gruntu.37
Pod farmy wiatrowe powinny by% przeznaczane tylko te tereny, które
nie mog" by% przeznaczone na inne cele, lecz w praktyce zdarza si#, &e na
terenach wokó! turbin wiatrowych znajduj" si# pola uprawne lub s" one
35
http://www.ozee.kape.gov.pl/; Energia wiatrowa. Strefy energetyczne i zasoby wiatru w Polsce, listopad 2007.
36
„Farmer”, nr 12/2007, Energia z natury; s. 16.
37
http://www.elektro.info.pl/; Elektrownie wiatrowe - aspekty techniczne, listopad 2007.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
213
przeznaczone na hodowl# zwierz"t. Optymalnym rozwi"zaniem w tej sytuacji s" tereny na morzu oraz wysokie ha!dy. Umiejscowienie wiatraków na
otwartym morzu w pewnej odleg!o$ci od linii brzegowej jest korzystne
z uwagi na fakt, &e jest tam du&o wi#cej miejsca, si!a wiatru jest znacznie
wi#ksza ni& na l"dzie, a tak&e nie przeszkadza mieszka'com w odbiorze telewizyjnym, do l"du nie dociera ha!as wiatraków i tzw. efekt disco, czyli refleksy $wietlne wywo!ane odbijaniem od !opat wirnika promieni s!onecznych.
Nowoczesne turbiny nie wytwarzaj" ju& a& tak uci"&liwego ha!asu.38 Mimo
to, zgodnie z przepisami prawa, odleg!o$% od osad ludzkich musi wynosi%
minimum pó! kilometra.
Proces za!o&enia farmy wiatrowej sk!ada si# z wielu istotnych etapów i w sytuacji niesprzyjaj"cych okoliczno$ci czas jego realizacji mo&e wyd!u&y% si# do kilku lat.39
Z ekonomicznego punktu widzenia elektrownie wiatrowe maj" niskie
koszty eksploatacji, do których m.in. zalicza si# konserwacj# urz"dze' wiatrowych. Znacznie wy&szym kosztem jest sam zakup wiatraków, ich transport oraz monta& nie pomijaj"c tak&e kosztów zwi"zanych z zakupem odpowiedniego terenu pod farm# wiatrow".
Wraz ze wzrostem popularno$ci farm wiatrowych i konieczno$ci"
zwi#kszania ilo$ci pozyskiwania energii odnawialnej, firmy produkuj"ce turbiny wiatrowe zmuszone s" do obni&ania kosztów z uwagi na rosn"c" konkurencj# w tym sektorze.
Z opinii niektórych w!a$cicieli farm wiatrowych na Pomorzu (dane
z 2003 roku) wynika, &e inwestycje w energetyce wiatrowej wci"& nie s"
op!acalne dla inwestorów. Inwestorzy otrzymuj" za energi# elektryczn" produkowan" przez si!ownie wiatrowe cen# ni&sz" od kosztów wytworzenia.
Inwestorzy w krajach UE anga&uj"cy si# w energetyk# wiatrow"
mog" liczy% na preferencyjne kredyty, których sp!ata roz!o&ona jest na 20 lat.
Jednocze$nie otrzymuj" te& ulgi z tytu!u inwestowania w ochron# $rodowiska. W Polsce taka sytuacja jest nadal projektem do realizacji w przysz!o$ci,
mimo &e zarówno w Polsce, jak i w innych krajach UE ceny energii z elektrowni wiatrowych s" wy&sze ni& energia elektryczna ze róde! konwencjonalnych.
Wi#kszo$% krajów Europy wykazuje ch#% pomocy przy inwestowaniu w energetyk# wiatrow" wspó!finansuj"c j" ró&nymi funduszami na tego
typu przedsi#wzi#cia. Przyczyn" takiego zachowania jest fakt, &e kupuj"c
dro&sz", ale ekologiczn" energi# mo&na zaoszcz#dzi% na kosztach ochrony
$rodowiska. Równie& w Polsce, gdyby do cen energii pozyskiwanej z elektrowni w#glowej doliczy% koszty dotacji dla sektora górnictwa oraz koszty
ochrony $rodowiska (koszty odpylania, odsiarczania, odazotowania spalin
oraz koszty redukcji emisji CO2) mo&e si# okaza%, &e dotychczasowy sposób
produkcji energii elektrycznej rzeczywi$cie jest kosztowniejszy.40
38
Ibidem.
„Tygodnik Rolniczy”, nr 37/2007, Energia z wiatru, s. 16.
Materia!y filmowe, Odnawialne (ród!a Energii, EKO-generacja przysz!o$ci, pakiet edukacyjny,
2004.
39
40
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
214
H. Wyr!bek
Odpowiednie rozmieszczenie wiatraków w terenie mo&e zmniejszy%
zagro&enie dla &ycia przelatuj"cych ptaków. Szacuje si#, &e w wyniku zderzenia z turbinami $mier% ponosi od 30 do 60 ptaków/MW/rok. Ponadto farmy wiatrowe wp!ywaj" na fizyczn" i efektywn" utrat# siedlisk spowodowanych odstraszaj"cym dzia!aniem si!owni oraz wymuszaj" zmiany tras
przelotów ptaków.41
Podsumowanie
Potencja! energii wiatrowej szacowany jest w granicach 6,0-8,0 TWh
energii elektrycznej na rok. W 2001 roku nast"pi!o zahamowanie dynamiki
rozwoju energetyki wiatrowej spowodowane mi#dzy innymi:
• problemem d!ugotrwa!ych procedur zmian w planach zagospodarowania przestrzennego. Grunty, pod które planowano inwestycje
za!o&enia farmy, najcz#$ciej by!y przeznaczone na pola uprawne,
tote& gminy musia!y dokona% zmian w przepisach okre$laj"cych
charakter i przeznaczenie tych terenów, a to nie by!o procesem
!atwym i krótkotrwa!ym,
• dla niektórych terenów energetyka wiatrowa by!a rzecz" now", inwestorzy chc"cy pokry% koszty inwestycji niejednokrotnie spotykali
si# ze sprzeciwami ze strony mieszka'ców danej okolicy. Wówczas trzeba by!o u$wiadamia% ludzi, jak wa&na dla energetyki jest
inwestycja w energi# odnawialn" i jakie korzy$ci przynosi,
• konieczno$ci" dokonania dok!adnych pomiarów pr#dko$ci wiatru
w danym regionie, co ma wp!yw na op!acalno$% inwestycji i sam
sens tworzenia farmy w tym miejscu,
• trudno$ciami wynikaj"cymi z mo&liwo$ci pod!"czenia farmy wiatrowej do sieci energetycznej ze wzgl#dów technicznych,
• w praktyce istnia! problem z zawieraniem przedwst#pnych umów
na sprzeda& energii na czas d!u&szy ni& 5 lat,
• cena wytworzonej energii by!a wy&sza ni& cena energii elektrycznej wytwarzanej metodami konwencjonalnymi, co mia!o odzwierciedlenie w analizie ekonomicznej ca!ego przedsi#wzi#cia.42
W Polsce obecnie funkcjonuje oko!o 50 elektrowni wiatrowych zlokalizowanych w znacznej mierze na terenach nadmorskich i na przedgórzu
(rys. 2). G!ównymi przyczynami powstawania farm wiatrowych s" sprzyjaj"ce warunki wiatrowe danego regionu, obowi"zek zakupu energii elektrycznej
z OZE na!o&ony na zak!ady energetyczne przez Ministra Gospodarki, a tak&e konieczno$% zwi#kszenia do roku 2010 udzia!u energii elektrycznej pozyskiwanej z odnawialnych róde! w ca!kowitym zu&yciu energii elektrycznej.
41
http://www.pigeo.org.pl/, Informacje wst%pne, lListopad 2007.
S. Flejterski, P. Lewandowski, W. Nowak, Energia odnawialna na Pomorzu Zachodnim.
I Regionalna Konferencja i Wystawa, Szczecin 2003, s. 46-47.
42
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
215
Rys. 2. Lokalizacja najwa&niejszych elektrowni wiatrowych w Polsce
w 2003 roku
Fig. 2. Location of the most important wind power stations in Poland in 2003
(ród!o: http://www.turbiny.pl/; Rozmieszczenie elektrowni wiatrowych w Polsce; listopad 2007.
Source: http://www.turbiny.pl/, Arranging wind power stations in Poland, november 2007.
W 1999 roku za!o&ono pierwsz" profesjonaln" farm# wiatrow" w Barzowicach niedaleko Dar!owa. Powsta!o wtedy 6 wiatraków o mocy oko!o
850 kW ka&dy, co w sumie daje blisko 5 MW energii elektrycznej. Ka&da turbina wiatrowa wyposa&ona jest w automatyczne sterowanie umo&liwiaj"ce
optymalne wykorzystanie si!y wiatru. Koszt utworzenia farmy wyniós! 25 mln
z!.43 )rodki na pokrycie budowy tej elektrowni pozyskano ze $rodków w!asnych, z dotacji EkoFunduszu i preferencyjnego kredytu z Narodowego Funduszu Ochrony )rodowiska i Gospodarki Wodnej. Obie instytucje s" w stanie dofinansowa% 60% projektu inwestycji z uwagi na s!uszno$% realizowania
takich projektów.
Najwi#ksz" farm" wiatrow" w ca!ej Polsce jest elektrownia w Tymieniu ko!o Ustronia Morskiego, która za!o&ona zosta!a w czerwcu 2006 roku.
43
http://www.pigeo.org.pl/; Energetyka odnawialna: wiatrowa, listopad 2007.
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
216
H. Wyr!bek
Wybudowany park wiatrowy mie$ci 25 turbin wiatrowych o !"cznej mocy
50 MW. ,"czny koszt inwestycji szacowany jest na 250 mln z!.44 Farma ta
zajmuje powierzchni# 35 ha. Ka&dy z 25 fundamentów ma obj#to$% 550 m3.
Inwestycja ta wymaga!a wybudowania ok. 81 tys. m2 dróg dojazdowych.45
Utworzenie tej farmy wiatrowej nie spotka!o si# z protestami ze strony
mieszka'ców z uwagi na uatrakcyjnienie regionu, wzrost liczby turystów,
a tak&e popraw# infrastruktury drogowej.
Z protestami mieszka'ców i ekologów spotka! si# natomiast projekt
utworzenia nast#pnej farmy wiatrowej, zlokalizowanej w Gnie&d&enie (woj.
pomorskie, powiat pucki). Mimo wszystko farma zosta!a utworzona w grudniu 2006 roku. Sk!ada si# ona z 11 si!owni wiatrowych po 2 MW ka&dy i wysoko$ci 126 m. W planach uwzgl#dniono budow# kolejnych 8 wie&.46
Kolejn" z wi#kszych elektrowni wiatrowych jest elektrownia w Zagórzu ko!o Wolina w woj. zachodniopomorskim (2003 rok), któr" zasila 15 turbin wiatrowych o mocy 2 MW ka&da, co daje !"cznie 30 MW wytworzonej
energii. Inwestycja wynios!a blisko 125 mln z!, a roczna produkcja energii
mie$ci si# w przedziale 63-70 mln kWh. Farma wiatrowa, której w!a$cicielem
jest spó!ka Wolin–North, przyczyni!a si# do znacznego obni&enia emisji CO2
(o 45 tys. ton/rok), SO2 (o 300 ton) i NO (o 100 ton) do atmosfery.47
W Cisowie ko!o Dar!owa znajduj" si# dwie farmy wiatrowe, z których
jedna z 2001 roku generuje energi# o mocy 18 MW (9 turbin po 2 MW),
a druga z 1999 roku – 660 kW (5 x 132 kW).
W planach na rok 2007-2008 jest utworzenie pierwszej w województwie zachodniopomorskim farmy wiatrowej w Golicach k. S!ubic, której inwestorem jest niemiecko-holenderskie przedsi#biorstwo Starke Wind. Farma
ma si# sk!ada% z dziesi#ciu 100-metrowych wiatraków o 35-metrowej rozpi#to$ci skrzyde!. Ostatecznie b#dzie tam pracowa% !"cznie 19 turbin o mocy
2 MW ka&da na powierzchni 340 ha.48
Do po!owy 2008 roku na terenach gmin S!upsk i Ustka ma równie&
powsta% 180 turbin wiatrowych o mocy ca!kowitej 240 MW firmy General
Electric. PS Wind Management zamierza przeznaczy% na t# inwestycj# a&
350 mln euro (oko!o 1,3 mld z!). Zarz"d firmy zapewnia, &e przeprowadzi! ju&
wszelkie niezb#dne badania i analizy tych regionów pod k"tem przyrodniczym, jak i ornitologicznym. Farma b#dzie w stanie zaspokoi% potrzeby
energetyczne ca!ego powiatu s!upskiego. W!a$cicielom terenów pod inwestycj# firma oferuje na podstawie d!ugoletnich umów dzier&awnych
(30-letnich) coroczn" rekompensat# (czynsz dzier&awny) w wysoko$ci 20
tys. z! netto od ka&dej turbiny. Tymi okolicami s" tak&e zainteresowane dwie
inne firmy: niemiecka spó!ka CB Wind-Energy S!upsk oraz konsorcjum
44
„Zielone Brygady. Pismo Ekologów”; nr 1 (215) / 2006, s. 17.
http://www.przeglad-techniczny.pl/; Wiatr w turbinach, listopad 2007.
46
Tam&e.
47
http://www.panorama-miast.com.pl; Zamiast ropy, w%gla, czy atomu; listopad 2007.
48
„ Farmer”, nr 17/2007, s. 9.
45
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82
Gospodarka energi wiatrow w Polsce
217
japo'skich spó!ek Mitsu i J. Power, które chc" postawi% odpowiednio 104
wiatraki o mocy 2,3 MW oraz 24 elektrownie wiatrowe.49
Wed!ug danych z 2006 roku, na $wiecie ca!kowite ilo$ci ropy naftowej stanowi" 404 mld. W 2005 roku wydobyto 3,62 mld ton ropy. Zgodnie
z prognozami, przy obecnym tempie eksploatacji, powinno jej wystarczy%
jeszcze na oko!o 40 lat. W#gla kamiennego wystarczy na blisko 115 lat, zak!adaj"c, &e roczne wydobycie wynosi 3,5 mld ton. Gazu natomiast wystarczy% ma jeszcze na 200 lat. Potwierdzone zasoby tego surowca wynosz"
161 500 × 109 m3 za$ roczna eksploatacja kszta!tuje si# na poziomie 2464 ×
× 109 m3.50 Ilo$ci nieodnawialnych surowców, które jeszcze pozosta!y, nie
s" zadowalaj"ce. Fakty te zmuszaj" wi#c do intensywnego rozwoju konstruktywnych prac badawczych nad pozyskiwaniem energii z odnawialnych
jej róde!.
W wyniku ubywaj"cych ilo$ci surowców energetycznych z my$l"
o nast#pnych pokoleniach i ochronie $rodowiska naturalnego, wszyscy jeste$my zmuszeni do ograniczenia zu&ycia w#gla, ropy naftowej i gazu. Alternatyw" zaspokojenia wzrastaj"cego zapotrzebowania energetycznego
przy praktycznie zerowym negatywnym wp!ywie na $rodowisko s" ród!a
energii odnawialnej.
W wielu krajach $wiata stosuje si# ju& bardziej zaawansowane technologie bazuj"ce na generacji energii pochodz"cej z wiatru, s!o'ca, biomasy, geotermii, wody, fal morskich, uranu, itp. Uregulowania prawne nak!adaj"
obowi"zek wytwarzania energii ze róde! odnawialnych. Konwencja klimatyczna, szczegó!owy protokó! do konwencji (protokó! z Kioto) ukierunkowuj"
do wzmo&enia dzia!a' nad efektywnym pozyskiwaniem i wykorzystywaniem
energii odnawialnej. Nowe regulacje unijne ju& bardziej precyzyjnie okre$laj"
wymagania dotycz"ce zwi#kszenia udzia!u róde! odnawialnych w ogólnym
bilansie energetycznym, jednak&e nale&y jeszcze dostosowa% prawodawstwo krajowe u!atwiaj"ce rozwój sektora energetyki odnawialnej.
Rozpowszechnianie wiedzy o odnawialnych ród!ach energii, o ich
zaletach i mo&liwo$ciach wykorzystania, jest dobrym krokiem ku zwi#kszeniu
zainteresowania alternatywn" energi" w$ród spo!ecze'stwa. Polska zdecydowanie za ma!o wytwarza energii ze róde! odnawialnych w porównaniu
z innymi krajami. Krajem, w którym udzia! energii elektrycznej ze róde! odnawialnych w ca!kowitym zu&yciu energii elektrycznej w 2004 roku si#ga
prawie 60%, jest Austria a tu& za ni" jest ,otwa i Szwecja z ponad 55%
udzia!em OZE.
Literatura
1. Chody'ski A. (red.), Wspó#czesne wyzwania zarz"dzania organizacjami,
Krakowska Szko!a Wy&sza im A. Frycza Modrzewskiego, Kraków 2006.
49
„Puls Biznesu” 17/5/2007; PS Wind wyda na wiatraki 1,3 mld z#; s.13.
St. Pytko, P. Pytko, Problemy energetyczno-surowcowe Polski i !wiata, BIP 154/155 czerwiec/lipiec 2006.
50
ZN nr 82
Seria: Administracja i Zarz"dzanie (9)2009
218
H. Wyr!bek
2. Flejterski S., Lewandowski P., Nowak W., Energia odnawialna na Pomorzu Zachodnim. I Regionalna Konferencja i Wystawa; Szczecin 2003.
3. Jab!o'ski W., Wnuk J., Odnawialne $ród#a energii w energetyce Unii Europejskiej i Polski. Efektywne zarz"dzanie inwestycjami – studia przypadków, WSZiM, Sosnowiec 2004.
4. Klugmann-Radziemska E., Klugmann E., Systemy s#onecznego ogrzewania i zasilania elektrycznego budynków, Wydawnictwo Ekonomia
i )rodowisko, Bia!ystok 2002.
5. Lubo$ny Z.; Elektrownie wiatrowe w systemie elektroenergetycznym,
Wyd. Naukowo-Techniczne, Warszawa 2006.
6. Mokrzycki E. (red.), Podstawy gospodarki surowcami energetycznymi,
Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2005.
7. Ustawa z dnia 10 kwietnia 1997 r., Prawo Energetyczne, art. 3, ust. 21.
8. Wieczorek T., Soja J., Biuletyn maturalny. Geografia, Wydawca – Centralna Komisja Egzaminacyjna, Warszawa 2005.
Seria: Administracja i Zarz dzanie (9)2009
ZN nr 82