Zastosowanie plazmotronu wnękowego w muflonowym palniku

Transkrypt

Zastosowanie plazmotronu wnękowego w muflonowym palniku
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
1
Przemysław KOBEL
Włodzimierz KORDYLEWSKI
Tadeusz MĄCZKA
Politechnika Wrocławska
Instytut Techniki Cieplnej i Mechaniki Płynów
Zakład Spalania i Detonacji
Ryszard KORDAS
Instytut Elektrotechniki oddział Wrocław
Mirosław MILEWICZ
Krzysztof MODRZEJEWSKI
Kogeneracja S.A. Wrocław
ZASTOSOWANIE PLAZMOTRONU WNĘKOWEGO W MUFLOWYM PALNIKU
PYŁOWYM DO ROZRUCHU KOTŁA ENERGETYCZNEGO
Streszczenie
Opisano budowę oraz zasadę działania prototypowego plazmotronu wnękowego stosowanego
do zapłonu węglowej mieszanki pyłowo-powietrznej. Zaprezentowano doświadczalna plazmową instalację rozruchowa z pyłowym palnikiem muflowym. Przedstawiono wyniki prób
zapłonu pyłu węglowego z wykorzystaniem plazmotronu, ich analizę oraz wytyczne do dalszych działań.
Summary
A construction and principle of operation of the prototype plasmatron used for ignition of
pulverized coal fuel-air mixture are described. The experimental plasma assisted start-up installation with pulverized coal muffle burner is shown. The results of pulverized coal fuel-air
mixture ignition tests and their analysis are presented. Also guidelines for further studies are
given.
1. Wstęp
Polska energetyka zawodowa opiera się głównie na blokach parowych z kotłami pyłowymi. Uruchomienie takiego kotła ze stanu zimnego wymaga przeprowadzenia procedury rozruchowej mającej na celu wygrzanie komory paleniskowej i zapewnienie stabilnych warunków
pracy palników głównych. Standardowo rozruch przeprowadza się z wykorzystaniem pomocniczych palników mazutowych. Ten sposób rozruchu kotła jest uciążliwy dla środowiska naturalnego ze względu na wysoką emisję do atmosfery ciężkich węglowodorów i sadzy. Wykorzystanie mazutu jest także kosztowne. Wynika to przede wszystkim z wysokiej i stale rosnącej ceny ropy naftowej. Dodatkowo instalacja mazutowa jest technologicznie skomplikowana
i cechuje się wysokimi kosztami inwestycyjnymi, jak i późniejszego utrzymania. Jest ona
również energochłonna ze względu na konieczność ciągłego grzania zawartego w niej mazutu
w celu utrzymania jego płynności.
1
mgr. inż. Przemysław KOBEL (doktorant), prof. dr hab. inż. Włodzimierz KORDYLEWSKI (profesor zwyczajny),
dr. inż. Tadeusz MĄCZKA (adiunkt) – autor korespondencyjny (e-mail: [email protected])
Politechnika Wrocławska
Instytut Techniki Cieplnej i Mechaniki Płynów
Zakład Spalania i Detonacji
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
dr. Ryszard KORDAS (z-ca dyrektora)
Instytut Elektrotechniki Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu
mgr inż. Mirosław MILEWICZ, mgr inż. Krzysztof MODRZEJEWSKI
Zespół Elektrociepłowni Wrocławskich KOGENERACJA SA
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
W obliczu zaostrzających się norm dotyczących ochrony środowiska oraz gwałtownego
wzrostu ceny ropy naftowej znalezienie metody alternatywnej dla rozruchu mazutowego wydaje się wysoce zasadne. Z ekonomicznego, energetycznego i ekologicznego punktu widzenia
najbardziej korzystne byłoby uruchamianie kotła wyłącznie przy użyciu pyłu węglowego. Jest
to jednak trudne, ponieważ wymaga zapewnienia pewnego zapłonu i stabilnego działania palnika pyłowego przy zimnym kotle. Konieczne jest zastosowanie dodatkowego źródła zapłonu
o dużej mocy, wystarczającego na pokrycie strat energii do otoczenia i zapewniającego pewny zapłon węglowej mieszanki pyłowo-powietrznej.
W charakterze takiego źródła wykorzystane mogą zostać zasilane energią elektryczną generatory plazmy (plazmotrony) zamontowane bezpośrednio na palnikach pyłowych. Rozwiązanie
takie umożliwia redukcję kosztów zarówno inwestycyjnych, jak i eksploatacyjnych [1]. Pozwoli ono również zmniejszyć uciążliwość rozruchu kotła dla środowiska.
Obecnie na świecie pracują instalacje plazmowego rozruchu o różnym stopniu zaawansowania technicznego (laboratoryjne, pilotowe, a nawet w pełnej skali przemysłowej). Do wysoce dojrzałych rozwiązań zaliczają się rosyjskie [2, 3], chińskie [4, 5] i czeskie [6, 7]. Jednakże technika ta jest stosunkowo nowatorska i brakuje pełnych danych eksploatacyjnych na
temat tych rozwiązań. Istnieje wiele wątpliwości i niewiadomych związanych chociażby z
niezawodnością działania plazmowych układów rozruchowych i ich czasem życia. Także
problem kompatybilności elektromagnetycznej jest wysoce istotny ze względu na prawidłową
i bezawaryjną pracę układu automatyki i zabezpieczeń bloku energetycznego [12]. Wiedza na
te tematy zawarta w dostępnej literaturze wydaje się niepełna i lakoniczna.
W Zakładzie Spalania i Detonacji Instytut Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej od kilku lat prowadzone są prace badawcze nad zastosowaniem techniki plazmowej do bezpośredniego rozruchu i stabilizacji pracy energetycznych kotłów pyłowych, których wyniki zamieszczono między innymi w pracach [1, 8-12]. Obecnie prace koncentrują się na opracowaniu i uruchomieniu instalacji plazmowego rozruchu kotłów opartej o
plazmotron wnękowy zasilany powietrzem.
2. Idea plazmowego rozruchu kotła pyłowego
Działanie plazmowego palnika pyłowego (PPP) polega na wprowadzeniu strumienia niskotemperaturowej plazmy do przewodu, którym przepływa mieszanka pyłowo-powietrzna
(rys. 1). Pod wpływem fizyko-chemicznego oddziaływania plazmy na pył węglowy następuje
gwałtowne wydzielanie części lotnych, rozpad cząstek i zapłon. W efekcie otrzymuje się stabilny płomień pyłowy [8, 11].
Rys. 1. Plazmowy palnik pyłowy – zasada działania
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
Procedura plazmowego rozruchu kotła pyłowego jest podobna do normalnego rozruchu z
zastosowaniem palników mazutowych. Wymagany czas wygrzania komory paleniskowej oraz
żądane parametry cieplne kotła pyłowego nie ulegają zmianie. Istotą rozruch plazmowego jest
to, że od stanu zimnego kotła pracują dysze pyłowe, na których zostały zainstalowane plazmotrony. Pozostałe palniki pyłowe są uruchamiane stopniowo po osiągnięciu wymaganych
parametrów cieplnych komory paleniskowej oraz innych elementów bloku. Ważną sprawą
jest zapewnienie dostawy pyłu węglowego dla PPP. Problemy z tym związane zostały szerzej
omówione w [11]. Jako PPP mogą zostać wykorzystane istniejące palniki pyłowe po modyfikacji lub nowe, specjalnie w tym celu stworzone. O liczbie i miejscu umieszczenia plazmotronów, decyduje przede wszystkim wydajność cieplna kotła pyłowego, rodzaj paleniska oraz
moc zastosowanych plazmotronów. Na rys. 2 pokazano przykładową konfigurację PPP w
kotle.
Rys. 2. Przykład umieszczenia PPP w kotle
Oprócz PPP w skład plazmowej instalacji rozruchowej wchodzą układy: zasilania energią
elektryczną, zasilania powietrzem, zasilania pyłem węglowym, chłodzenia oraz automatyki i
pomiarów. Szerzej zostaną one omówione w dalszej części pracy.
3. Plazmotron wnękowy - budowa i działanie
3.1. Konstrukcja plazmotronu
Do zastosowania w plazmowych układach rozruchowych opracowano prototypową konstrukcję plazmotronu – tzw. plazmotron wnękowy – który wykorzystuje powietrze jako czynnik plazmotwórczy (rys. 3). W rozwiązaniu tym elektrody mają postać tulei, środkiem których
przepływa powietrze. Tuleje te ustawione są wzdłużnie i oddzielone pierścieniową ceramiczną przegrodą izolacyjną. W celu zapewnienia wysokiej przewodności elektrycznej i
cieplnej części robocze plazmotronu wykonane są z miedzi, natomiast reszta korpusu jest mosiężna. Powietrze plazmotwórcze doprowadzane jest do plazmotronu dwoma niezależnymi
strumieniami. Pierwszy – tzw. wzdłużny – wprowadzany jest od strony katody i podlega zawirowaniu względem osi plazmotronu. Drugi – tzw. obwodowy – doprowadzany jest poprzez
wkładkę izolacyjną oddzielającą elektrody i również podlega zawirowaniu. Takie doprowadzenie powietrza powoduje wirowe przemieszczanie się punktów przyczepienia łuku po powierzchniach elektrod, co chroni je przed miejscowym przegrzaniem i przepaleniem oraz
zmniejsza ich erozją. Wielkości i wzajemny stosunek strumieni powietrza dobiera się ekspe-
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
rymentalnie celem zapewnienia optymalnej pracy plazmotronu. W celu odprowadzenia nadwyżki ciepła, mogącej uszkodzić plazmotron, elektrody są intensywnie chłodzone wodą przepływającą przez układy meandrów wewnątrz korpusu, oddzielne dla anody i katody co obrazuje rys. 3.
Rys. 3. Plazmotron wnękowy – schemat konstrukcji.
Na potrzeby badań wykonane zostało kilka plazmotronów o wyżej opisanej konstrukcji.
Tworzą one typoszereg o rożnej wielkości i pozwalają na osiągnięcie mocy od 20 do 100 kW.
Na rys. 4 pokazano plazmotron o mocy 20 kW podczas pracy na stanowisku laboratoryjnym.
Szczegóły konstrukcyjne są na bieżąco ulepszane, celem osiągnięcia optymalnych parametrów, maksymalnej niezawodności i trwałości.
Rys. 4. Plazmotron wnękowy 20 kW w działaniu.
3.2. Układ zapłonowy plazmotronu
Istotnym i niezbędnym elementem plazmotronu jest układ zapłonowy inicjujący. Aby wytworzyć główne wyładowanie plazmowe konieczne jest wstępne zjonizowanie czynnika plazmotwórczego w przestrzeni międzyelektrodowej. W oparciu o przeprowadzone badania do
inicjacji zapłonu w prezentowanych w pracy plazmotronach wybrano urządzenie rozruchowe
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
z wysokonapięciowym, niskoczęstotliwościowym wyładowaniem iskrowym (UR-WN) [12,
13]. Cechuje się ono prostą konstrukcją i dużą niezawodnością. Dodatkowym atutem urządzenia UR-WN jest niski poziomem zakłóceń elektromagnetycznych, dzięki czemu nie powoduje ono zakłóceń mogących mieć negatywny wpływ na pracę układów automatyki bloku
energetycznego [14]. W rozwiązaniu tym zastosowano elektrody pomocnicze, umieszczone w
ceramicznym pierścieniu izolacyjnym, których końce wprowadzono w przestrzeń pomiędzy
katodą a anoda (rys. 5). W momencie zapłonu do elektrod pomocniczych podawane jest wysokie napięcie (kilkadziesiąt kV) z transformatora zapłonowego. Powstające wyładowanie
iskrowe jonizuje lokalnie gaz plazmotwórczy co pozwala na utworzenie się głównego strumienia plazmy. Następnie zasilanie układu zapłonowego jest odłączane.
a)
UZAS
b)
UZAS
Rys. 5. Idea rozruchu plazmotronu z użyciem wysokonapięciowego wyładowania iskrowego
a) moment zapłonu b) normalna praca plazmotronu
Urządzenie rozruchowe UR-WN z elektrycznego punktu widzenia jest osobnym integralnym obwodem, galwanicznie odseparowanym od obwodu zasilania plazmotronu. Parametry
eksploatacyjne urządzenia i sposób rozruchu plazmotronu przy jego pomocy omówiono
szczegółowo w pracy [12].
Jak wykazały pomiary poligonowe zaburzeń elektromagnetycznych przewodzonych i promieniowanych podczas rozruchu jak i właściwej pracy plazmotronu [14], oraz przeprowadzone próby na rzeczywistym obiekcie, poziom emitowanych zakłóceń zarówno podczas zapłonu
plazmotronu jak i jego właściwej pracy nie ma wpływu na układy automatyki i pomiarów, co
jest niezwykle istotne dla niezawodnej pracy bloku energetycznego.
4. Doświadczalna plazmowa instalacja rozruchowa
W celu wykonywania prób plazmowego zapłonu pyłu opracowano i wykonano instalację
doświadczalną. Została ona zamontowana na istniejącym palniku muflowym pełniącym rolę
palnika rozpałkowego kotła OP-130. Instalacja ta jest w pełni autonomiczna i nie ingeruje w
normalne funkcjonowanie kotła. Umożliwia ona prowadzenie badań plazmotronu zarówno w
czasie pracy, jak i postoju kotła. W skład instalacji wchodzą: muflowy palnik pyłowy (wraz z
układem zasilania w pył węglowy), plazmotron wnękowy zamontowany bezpośrednio na palniku muflowym, blok zasilania elektrycznego (układ zabezpieczeń, szafy sterowniczozasilające plazmotronu, integralne układy energoelektroniczne plazmotronu), układ zasilania
powietrzem, układ chłodzenia. Umiejscowienie plazmotronu na kotle i podstawowe elementy
instalacji schematycznie pokazano na rys. 6.
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
Rys. 6. Umiejscowienie plazmotronu na kotle;
1 – rozpałkowy palnik muflowy, 2 – zasilanie pyłem węglowym, 3 – plazmotron,
4 – szafa sterowniczo-zasilająca plazmotronu, 5 – układy energoelektroniczne plazmotronu, 6 – główne palniki kotła
4.1. Współpraca plazmotronu z rozpałkowym palnikiem pyłowym
Jak wspomniano wyżej, na potrzeby badań palnik muflowy został przerobiony tak, aby
umożliwić umieszczenie na nim plazmotronu wg idei z rys. 1. W górnej części korpusu palnika został wykonany króciec przyłączeniowy dla plazmotronu. Zastosowane rozwiązanie pozwala na łatwy montaż i demontaż plazmotronu (bez zaburzania właściwego cyklu pracy kotła). Palnik muflowy po modyfikacji – określany mianem plazmowego palnika pyłowego
(PPP) – pokazano na rys. 7
Rys. 7. Plazmotron umieszczony na palniku muflowym.
W celu zasilania PPP pyłem węglowym wykorzystywana jest istniejąca instalacja pyłowa
muflowego palnika rozpałkowego Pracuje ona w sposób analogiczny jak przy normalnym
rozruchu a jej działanie kontrolowane jest z nastawni kotłowni. Nominalna wydajność zasilania pyłem wynosi 0,1 kg/s.
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
4.2. Instalacja elektryczna plazmotronu.
Układ zasilania plazmotronu podłączono do wyodrębnionego do tego celu pola rozdzielni
elektrycznej bloku, dzięki czemu możliwe jest zdalne sterowanie jego pracą. Ze względu na
zapewnienie skutecznej ochrony przeciwporażeniowej układy elektryczne plazmotronu zasilano z trójfazowego transformatora separacyjnego a wszystkie części przewodzące dostępne
wchodzące w skład układów plazmotronu połączono przewodami wyrównawczymi miejscowymi. Dzięki zastosowaniu transformatora separacyjnego, jeśli dojdzie w obwodzie separowanym do uszkodzenia izolacji, to pojedyncze uszkodzenie nie tworzy zagrożenia. Prądy doziemne są stosunkowo małe ze względu na odizolowanie od ziemi części czynnych w całej
sieci (od pracuje w takim wypadku w układzie IT, w którym uszkodzenie izolacji podstawowej zwykle nie stwarza zagrożenia porażeniowego)[15].
Elektrody plazmotronu zasilane są prądem stałym. Zastosowano specjalnie w tym celu
skonstruowany i przetestowany energoelektroniczny zasilacz DPS (Dora Power System) z
układem regulacji mocy plazmotronu pracujący jako szeregowy regulator PWM opisany między innymi w pracy [16]. Schemat blokowy elektrycznego ukladu zasilania plazmotronu
przedstawia rys. 8.
Rys. 8. Schemat blokowy instalacji elektrycznej plazmotronu
Zastosowane w instalacji elektrycznej plazmotronu rozwiązania techniczne i urządzenia
zapewniają wysoką niezawodność i poziom bezpieczeństwa podczas plazmowyego
rozruchem kotła.
4.3. Instalacja powietrzna plazmotronu
W badanych plazmotronach czynnikiem plazmotwórczym jest powietrze. W celu zapewnienia odpowiedniego kształtowania łuku w plazmotronie powietrze podawane jest dwoma
niezależnymi strumieniami – wzdłużnym i obwodowym (patrz pkt. 3.1.).
Strumień objętości powietrza wykorzystywanego do wytwarzania plazmy uzależniona jest
od mocy plazmotronu. Ponieważ moc plazmotronu może być zmieniana zależnie od potrzeb
konieczne jest umożliwienie regulacji strumienia powietrza – w przypadku instalacji doświadczalnej regulacja odbywa się ręcznie przy użyciu zaworów dławiących. Aby umożliwić
kontrolę procesu chłodzenia instalacja powietrzna wyposażona jest w mierniki strumienia
przepływu (rotametry), oraz manometry. Wykorzystywane powietrze czerpane jest z obiektowej instalacji sprężonego powietrza (P=6 bar). Schemat instalacji pokazano na rys. 9.
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
5K
p 2
1
4K
3K
K
5A
4A
A
3A
6
7
Rys. 9. Instalacja powietrzna plazmotronu;
1- przyłącze zasilające i zwór główny, 2 – manometr, 3 – zawory dławiące, 4- rotametry
5 – przyłącza plazmotronu; 6 – plazmotron, 7 – dodatkowy punkt czerpalny powietrza
4.4. Instalacja wodna plazmotronu
W stosowanych w badaniach plazmotronach, jako czynnik chłodzący używana jest woda
przepływająca przez układ meandrów wewnątrz elektrod. Każda z dwóch elektrod posiada
niezależny obieg wody. W przyjętym rozwiązaniu obiegi wody chłodzącej są otwarte –
ogrzana woda jest zrzucana do kanalizacji – upraszcza to konstrukcje układu chodzenia. Ilość
koniecznego do odebrania ciepła uzależniona jest od mocy plazmotronu – stanowi kilka procent mocy elektrycznej zasilania. Ponieważ moc plazmotronu może być zmieniana zależnie
od potrzeb konieczne jest umożliwienie regulacji strumienia wody chłodzącej – w przypadku
instalacji doświadczalnej regulacja odbywa się ręcznie przy użyciu zaworów dławiących. Aby
umożliwić kontrolę procesu chłodzenia instalacja wodna wyposażona jest w mierniki strumienia przepływu (rotametry), temperatury wody zimnej i ogrzanej oraz manometry. Na rys.
10 pokazano schemat instalacji wody chłodzącej.
8K
2
1
T
p
3K
6
4
3A
5K
K
T
7K
8A
5A
T
A
9K
7A
+
10
Rys. 10. Instalacja wody chłodzącej;
1 – przyłącze i zawór główny, 2 – termometr i manometr wody zasilającej, 3 – zawory dławiące,
4 – dławik, 5 – przyłącza plazmotronu, 6 – plazmotron, 7 – przyłącza powrotne,
8 – termometry i rotametry wody powrotnej, 9 – wyloty wody ciepłej, 10 – dodatkowy punkt czerpalny wody.
9A
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
4.5. Analiza pracy plazmowego palnika pyłowego
Przeprowadzone zostały próby działania plazmotronu we współpracy z muflowym palnikiem rozpałkowym. Celem ich było sprawdzenie poprawności działania plazmowej instalacji
zapłonowej i jej podzespołów w warunkach rzeczywistych, sprawdzenie możliwości zapłonu
pyłu węglowego i określenie charakterystyk plazmotronu.
Podczas prób moc plazmotronu regulowano w zakresie około20-50 kW. W trakcie eksperymentu zmieniano zarówno strumień powierza osiowego (przepływającego wzdłuż osi plazmotronu) jak i obwodowego odpowiedzialnego za zawirowanie kanału plazmowego w obrębie katody i anody. Jego sumaryczny strumień objętościowy w czasie prób regulowano w
zakresie 20-40 m3/h. Podczas wszystkich prób zachowano stałość proporcji: strumień osiowy
stanowił około 20% strumienia obwodowego Każdorazowo po zmianie parametrów przepływowych gazu roboczego rejestrowano prąd kanału plazmowego i spadek napięcia na plazmotronie. Moc plazmotronu określano jako iloczyn prądu kanału plazmowego i spadku napięcia
na plazmotronie. Próby wykonywane były na kotle będącym w normalnym ruchu, w związku
z czym nie można było dokładnie przebadać stabilności płomienia pyłowego (płomień w komorze spalania wpływał na warunki w paliku muflowym). Strumień masy pyłu wynosił około
0,05 kg/s.
W tab. 1 zestawiono podstawowe parametry robocze plazmotronu zarejestrowane podczas
jego działania w warunkach ustalonych.
Tablica. 1.
Podstawowe parametry robocze plazmowego palnika pyłowego
1
2
3
4
5
Strumień objętości powietrza
3
m /h
22
29
29
34
34
Prąd kanału
plazmowego
A
128
130
153
152
174
Napięcie na
plazmotronie
V
170
230
220
250
250
Wydzielona
moc
kW
21,8
29,9
33,7
39,5
43,5
6
38
175
260
45,5
7
38
176
260
45,8
L.p.
Rys. 11. Moc plazmotronu w zależności od strumienia gazu
roboczego
Uwagi
Początki
niestabilności
kanału plazmowego
Rys. 12. Charakterystyka prądowo-napięciowa kanału plazmowego
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
Na podstawie przeprowadzonych prób można stwierdzić że zwiększenie strumienia objętości
powietrza przepływającego przez plazmotron można znacznie zwiększyć moc plazmy co pokazuje rys. 11. Zwiększenie mocy wydzielonej w plazmotronie związane jest najprawdopodobniej z jednoczesnym wydłużeniem kanału plazmowego (zwiększenia spadku napięcia na
kanale plazmowym) i jego przekroju czynnego. Przemawia za tym tendencja liniowości charakterystyki prądowo-napięciowej kanału plazmowego co pokazano na rys. 12. Ograniczeniem dalszego wzrostu mocy jest niestabilność kanału plazmowego przy strumieniu powyżej
38 m3/h. Dalsze zwiększenie przepływu doprowadza do zerwania kanału plazmowego. Wnioskuje się, że W celu uzyskania większej mocy plazmy trzeba wykonać plazmotron o większych wymiarach geometrycznych (średnica i długość).Zarejestrowane orientacyjne temperatura plazmy (mierzona płaszczową termoparą NiCr-Ni) tuż na wylocie z pyłowego palnika
plazmowego wynosiła ok. 1170-1200 °C. W odległości 5 cm od wylotu z plazmotronu wynosiła ok. 940 °C.
Próby wykazały także, że możliwy jest zapłon węglowej mieszanki pyłowo-powietrznej w
muflowym palniku pyłowym przy pomocy plazmotronu o mocy max. 50 kW. Jednak w celu
sprawdzenia stabilności płomienia płomienia pyłowego i dokładnego zaobserwowania zachodzących zjawisk konieczne jest wykonanie prób na kotle w czasie postoju.
Po okresie próbnej pracy (w sumie ok. 2h) plazmotron rozmontowano celem sprawdzenia
zużycia elektrod. Oględziny wykazały brak istotnych uszkodzeń typu erozja i przetopienie,
widoczne były niewielki ślady oddziaływania plazmy. Elektrody pokryte zostały nalotem zawierającym m.in. krzem pochodzący z substancji mineralnej węgla zassanego w wyniku recyrkulacji do wnętrza plazmotronu (rys 13). Przewiduje się dokładniejszą obserwację tego
zjawiska w czasie dalszych prób.
Rys. 13. Anoda plazmotronu po próbach.
4.6. Wnioski z prób i dalsze działania
Wyniki pierwszych próby wykazały poprawne działanie plazmotronu i jego właściwą
współpracę z muflowym palnikiem pyłowym. Wszystkie elementy plazmowej instalacji rozruchowej działały prawidłowo i zgodnie z założeniami.
Referat konferencyjny: Jubileuszowa Konferencja Kotłowa 2009, Szczyrk, 13-15 X 2009
Druk w: Prace Naukowe, Monografie, Konferencje - Politechnika Śląska. Instytut Maszyn i Urządzeń Energetycznych, z. 23,
2009, s. 33-46.
W celu dokładnego zbadania działania PPP (w tym analizy problemu trwałości) oraz określenia wytycznych do rozruchu kotła takich jak moc palnika plazmowego, ich liczba, czas
rozruchu itp. konieczne są dalsze badania, w tym także wymagające wyłączenia kotła z pracy.
Równolegle prowadzone będą badania plazmotronu w warunkach laboratoryjnych. Dodatkowo planuję się wykonanie analizy numerycznej i symulacji komputerowych procesów cieplno-przepływowych zachodzących podczas generowania plazmy mających na celu optymalizacje konstrukcji plazmowych palników rozruchowych.
Prace wykonano w ramach grantu nr 0359/R/T021/2008/04 Ministerstwa Nauki i Szkolnictwa Wyższego
Bibliografia
[1] P. Bukowski, A. Dyjakon, W. Kordylewski, M. Salmonowicz, Analiza ekonomiczna plazmowego rozruchu kotłów pyłowych, Międzynarodowa X Konferencja Kotłowa 2006,
Szczyrk 17-20.10.2006;
[2] E. Karpenko, V. Messerle, A. Ustimenko, Plasma application for coal combustion activation, 31st EPS Conference on Plasma Phys, London, 28.06-2.07.2004 ECA Vol. 28G, P1.023 (2004)
[3] E. Karpenko, V. Messerle, A. Ustimenko, Plasma-aided solid fuel combustion, Proceedings of the Combustion Institute 31 (2007), s. 3353–3360
[4] The Application of Plasma Ignition Technology in China, prezentacja firmy EDF China
Division, 2008
[5] Plasma Technology for Ignition an Stabilized Combustion of Pulverized-Coal Fired Boilers, materiały firmy Yantai Longyuan Co., 2006
[6] Plasma Technology - The most modern technology of boiler starting, prezentacja firmy
ORGREZ a.s., Międzynarodowa X Konferencja Kotłowa 2006, Szczyrk 17-20.10.2006;
[7] J. Lojkasek i inni, Plazmotron, Opis ochronny wzoru użytkowego PL64036;
[8] A. Dyjakon W. Kordylewski, Stabilisation of pulverized coal burning with plasma assists.
Archivum Combustionis. 2002 vol. 22, nr 3/4, s. 121-129;
[9] A. Dyjakon W. Kordylewski, Stabilisation of pulverised coal firing with a plasma torch.
Verbennung und Feuerungen. 21. Deutscher Flammentag, Cottbus, 9-10.09.2003.
Dusseldorf : VDI Verlag, 2003. s. 45-51;
[10] A. Dyjakon, Plazmowy rozruch kotłów pyłowych, Energetyka. 2005 nr 7, s. 456-462;
[11] P. Kobel, W. Kordylewski, Zastosowanie plazmotronu zasilanego powietrzem do stabilizacji płomienia pyłowego, Archiwum Spalania 2008, vol. 8, nr 1-2 s. 55-62,
[12] P. Kobel, W. Kordylewski, T. Mączka, Opracowanie i wykonanie bezzakłóceniowych
układów rozruchu plazmotronu dużej mocy, Raporty ITCMP Politechniki Wrocławskiej.
2008, Ser. SPR nr 37
[13] W. Kordylewski i inni, Sposób i urządzenie do uruchamiania palników plazmowych,
zgłoszenie patentowe nr P 382394 z dnia 10.05.2007
[14] Protokół z pomiarów emisji zaburzeń elektromagnetycznych palników plazmotronowych PPAL i PWN, Nr LKE/001/2009 z 20.01. 2009, Laboratorium Kompatybilności
Elektromagnetycznej, Politechnika Wrocławska
[15] W. Jabłoński, Ochrona przeciwporażeniowa w urządzeniach elektroenergetycznych
niskiego i wysokiego napięcia, WNT, Warszawa 2008
[16] Dora J., i inni, Elektroniczne źródła mocy, Elektronizacja, nr 9, 2003.

Podobne dokumenty