Technological modifications in pilot research on CO capture process

Transkrypt

Technological modifications in pilot research on CO capture process
XV Conference Environmental
Technological modifications in pilot research
on CO2 capture process
Tomasz SPIETZ*, Lucyna WIĘCŁAW-SOLNY, Adam TATARCZUK, Aleksander KRÓTKI, Marcin STEC
– Institute for Chemical Processing of Coal, Zabrze, Poland
Please cite as: CHEMIK 2014, 68, 10, 884–892
Introduction
In recent years, there has been a growing interest in research
regarding CO2 removal [1]. This is related to the implementation
of energy and climate package by the European Union in 2008,
which aims to reduce CO2 emissions from power facilities.
Currently published papers present among others studies on new
amine sorbents [2, 3], physicochemical data of amine solutions [4],
analytical methods of determination of CO2 loadinge (α) and sorbent
concentration [5], as well as model testing [6] and experimental
data from research plants [7].
There are many pilot installations for CO2 capture from flue gas,
both worldwide and in Poland – including Mobile Pilot Installation for
CO2 removal from flue gas of TAURON group launched in 2010 and
exploited by the Institute for Chemical Processing of Coal [8, 9].
Pilot installations operating with real flue gas allow thorough
examination of the process, thus helping to choose optimum
operation parameters, which cannot be measured on a laboratory
scale, such as corrosion or effect of other acid flue gas components
on sorbent operation.
The barrier in applying chemical absorption method for CO2
removal from flue gas on industrial scale is the energy consumption
of the process, mainly due to the high amount of energy required for
sorbent regeneration. For achieving efficiency of 90% of captured CO2,
energy supplied for installation operation is equivalent to the decrease
in power plant efficiency by approx. 20% [10]. Decrease in the energy
consumption can be achieved not only by changing the sorbent, but
also through various technological modifications [11].
Classic system for amine CO2 removal
Process diagram of amine installation for CO2 removal, showing
classical processing system is presented in Figure 1. It shows only
part related to CO2 absorption, without taking into account flue gas
pre-treatment and desulphurization units. However, in each case, flue
gas (input gas) entering the absorber is pre-cooled and dedusted in
columns with water spray and then purified from excess SO2 and NOx.
For that purpose absorption columns are most commonly used, in
which flowing gas contacts alkaline solution [8, 12].
Fig. 1. Flow sheet of the standard amine CO2 capture process
Corresponding author:
Tomasz SPIETZ – MSc., e-mail: [email protected]
888 •
CO2 removal process in classic configuration of apparatus is carried
out as follows. Pre-treated gas is directed to the absorber, where it
contacts with counter-current flow of cooled and lean amine solution.
In this column, amine reacts chemically with CO2 from flue gas and then
gas purified from carbon dioxide leaves the column.
Then, amine solution reach with CO2 is directed to the top of
desorption column (regenerator), where it contacts hot vapours
coming from heating the solution in the bottom part of the column,
and CO2 desorption occurs. CO2 released from the reach solution
leaves the desorption column. CO2 reach with water is cooled and
the steam condesed in the cooler is collected in the separator and
recirculated to the stripper.
Hot lean solution is firstly directed to the heat exchanger,
where it is partially cooled, transferring heat to the reach solution
and then cooled to 40°C in aftercooler, after which it is recirculated
to absorption column. This way absorption-desorption cycle occurs
in a continuous manner.
In order to improve CO2 capture process, numerous technological
modifications are being implemented. Additional columns (strippers)
are used, whose task is to ensure better regeneration of the solution.
Moreover, except the main streams of amines from the columns
– lean and reach amine – there can be two or only one additional
split streams (semi-lean). Moreover, condensation heat of vapours
generated in regenerator can be also used – by leading steam out of
the column, letting it to expand and then compressing it, after which it
is redirected to the column.
Due to the vastness of discussed topic, only selected modifications
are discussed in the paper. Other solutions can be found in the literature
describing CCS installations [10, 12, 13].
Temperature modification in absorption column
Modifications that allow temperature change inside absorption
column may increase efficiency of absorption process. One of such
technological modifications is the use of additional sorbent cooling
system in absorption column.
Solution from the bottom part of the absorber is pumped through
the cooler and then recirculated to the column. It was found that
cooling the solution taken from the bottom part of the column
to 40°C gives the best results, in comparison with heating or cooling
the solution from other parts of the column [10].
The modified installation is presented in Figure 2.
The driving force of absorption process is the difference between
partial pressure of CO2 at given column height (so-called operating line)
and partial pressure of CO2, which settles at equilibrium (in the same
column operating conditions). Solution cooling causes the decrease in
equilibrium partial pressure of CO2 at the column height, at which
cooled sorbent is recirculated into the column, which corresponds
with the increase of driving force of absorption process.
In the plot (Fig. 3) presenting the drop of CO2 partial pressure with
the increase of column height, it may be seen that equilibrium curve
shifts in place of applying additional sorbent cooling (1.78 m), and thus
driving force increases. For the purpose of comparison, plot shows
also equilibrium curve for reference system (i.e. classic configuration
of installation) [10].
nr 10/2014 • tom 68
Fig. 2. Flow sheet of the absorber intercooling process
Fig. 4. Split-stream process flow sheet modification
by Shoeld
Fig. 3. Operating and equilibrium lines for the
intercooling process
Application of intercooling results also in the increase in
sorbent absorption capacity and, therefore, CO2 loading of reach
amine has higher values than for installation without cooling.
Such a modification causes also the decrease in the amount
of heat required for sorbent regeneration by approx. 6.4% in
comparison with classical configuration. This is caused by the fact that
in order to achieve the same efficiency as in classical configuration
installation, lower solution circulation is applied. And the longer the
residence time of the solution in the desorption column, the better
sorbent regeneration.
Split streams
Another widely used modification in CO2 capture installations
is the division of columns (absorber and desorber) into sections and
isolation of additional sorbent streams.
The first concept of split streams was suggested by Shoeld in 1934
(Fig. 4). He has divided absorber and desorption column into two
sections, from which he had separated, respectively, streams: semireach amine – from the upper part of the absorber – and semi-lean
amine – from the bottom part of regenerator [14].
Streams of semi-lean and semi-reach amine circulate between
intermediate stages of columns, while streams of reach and lean amine
remain in the classic circulation.
This modification is to ensure optimum temperature profile
in absorption column and increase absorption efficiency. Shoeld’s
method provides the decrease of heating steam consumption
by 50% reach and lean amine. However, such analysis is based on
nr 10/2014 • tom 68
The concept of split-stream operation is that the semi-lean
amine solution directed to the bottom part of the absorber contacts
gas of high concentration (high partial pressure of CO2) of acid
component. At this stage, most of the CO2 is captured, and in the
upper part of the absorber, lean amine stream purifies gas from
remaining amounts of component, whose partial pressure is at this
point rather low. Using of split flows equalize the driving force of
absorption.
Similar solution was applied in the testing plant of capacity of
100 m3/h launched in 2012 for studies on CO2 removal process in
the Centre of Clean Coal Technology in the Institute for Chemical
Processing of Coal (IChPW) in Zabrze [15, 16].
Towler [17] concluded, on the basis of model studies, that
as a result of steam condensation in regenerator the solution
becomes diluted, mainly at the tray below the inlet of reach
amine stream. The researcher modified previously described
process, removed stream of semi-reach amine solution and
added heater on the pipeline of semi-lean amine, which was
to maintain constant concentration of solution. He also suggested
directing condensate from separator to the lower point of
the column (evaporator). The entire process is presented
in Figure 5.
The system proposed by Towler was intended for selective
removal of H2S from high-pressure systems, however Aroonwilas [12]
has carried out model studies for such a system for removal of CO2
from flue gas, using 30% MEA solution and for CO2 removal efficiency
of 95%. He has found that heat required for sorbent regeneration is
lower by 17% – 62% (depending on the studied case) in comparison
with system without split streams. However, the size of regenerator
increases 2 – 4-fold.
Fig. 5. Process flow sheet modification introduced by Towler
• 889
XV Conference Environmental
absorption of acid gas using sorbent containing sodium phenolate,
and the system was initially intended for purification of gas from
high-pressure processes [14].
XV Conference Environmental
Stripping column with internal heat exchange
Another process modification, which aims to decrease energy
consumption in CO2 removal process, is the using a heat-integrated
stripper (heat recorvery) [12]. Diagram of modified plant is
presented in Figure 6.
In this case, a hot solution of semi-lean amine, as well as lean
amine is recirculated to the desorption column, where flowing
through the part of column via spiral pipeline it transfers heat
directly and then, after leaving the column, it is directed further to
the absorber.
Fig. 6. Process flow diagram using a heat-intgerated stripper
This modification causes that heat of hot solution is transferred
to the inside of stripping column, instead of being exchanged in
heat exchangers outside the column, as for installation with classic
configuration. Heat exchange outside the column is associated with
higher losses to the environment.
Heat transferred inside the desorption column results in the
increase of column internal temperature and improves solution
regeneration. IIn comparison with classic flow sheet configuration,
reboiler heat duty is lower [12]. According to Oyenekan [18], the
total energy expenditure of column (including CO2 compression) is
lower by 17% in comparison with the desorption column without
internal heat transfer.
Experimental part
In order to test effect of technological configuration on the process
of CO2 removal from flue gas, number of research campaigns was
carried out using Pilot Installation in Łaziska Power Plant – TAURON
Wytwarzanie S.A. [19].
The Pilot Installation uses modified technology of amine
absorption. One of the technological modifications in presented
research installation is the division of the desorption column and
separation of additional semi-lean amine stream (MRA) and system of
(recovery) heat exchangers inside the regenerator, in analogy to the
previously described solutions.
The detailed description and operation of the Pilot Installation is
presented in [20].
Below (Tab. 1) results obtained for system operation with flow of
lean-amine (streamed to the top and middle of absorption column)
are presented, along with operating energy recovery heat exchanger
or without them – reference test. Average content of CO2 in flue
gas, for both tests, was 11.2 % v/v; while 30% aqueous solution of
monoethanolamine was used as sorbent. Most important data for
reference test are presented in Table 1.
890 •
Table 1
Parameters of the reference test (without recovery heat exchangers)
conducted on Pilot Installation in Łaziska Power Plant
Parameter
Value
Unit
217
m3/h
CO2 concentration in flue gas
11.21
% v/v
CO2 concentration in purified flue gas
2.08
% v/v
CO2 removal efficiency
84.4
%
Flow of captured CO2
37.1
kg/h
Energy consumption for solution regeneration
3.90
MJ/kg CO2
Energy supplied to regenerator
50.4
kW
Flow rate of amine solution
1,400
kg/h
Pressure in absorption column
130
kPa (abs)
Pressure in desorption column
130
kPa (abs)
Liquid to gas ratio (L/G ratio)
4.63
kg/kg
CO2 loading of lean amine
0.320
mol/mol
CO2 loading of reach amine
0.438
mol/mol
Cooling water consumption
1,402
kg/h
Flow of flue gas streamed to absorber
Results presented in Table 1 show that the efficiency of the process
is high; almost 85% of CO2 is removed from flue gas stream with
energy consumption of solution regeneration equal to 3.9 MJ/kg CO2.
This result is fully acceptable and similar to the results achieved in other
operating installations in the world [21].
Application of internal heat exchange as a modification in
regenerator allowed significant improvement of obtained parameters
as shown in the graph (Fig. 7).
Fig. 7. Impact of the heat-integrated stripper on CO2 removal
efficiency from flue gas. 1. standard process (reference) 2. heatintegrated stripper process
Experimental data show that the use of additional heat exchange
inside the regenerator allows the improvement of CO2 removal
process ­increase from 84.4% to 91.4% with simultaneous decrease in
the energy consumption by approx. 2.5%.
Hot and lean solution flowing through the recovery heat
exchangers transfers heat in desorption column, heating the column
and increasing the temperature of the liquid, especially in the upper
part of the column. It helps to achieve better regeneration of reach
solution streamed in the column, while deeper lean solution absorbs
CO2 more efficiently and thus increases the efficiency of carbon
dioxide removal.
nr 10/2014 • tom 68
Table 2
Comparison of solution carbonation levels for tests with recovery heat
exchangers and without internal heat exchange
αLA
αRA
mol CO2/mol amine
mol CO2/mol amine
Without recovery heat exchangers
0.438
0.320
With recovery heat exchangers
0.441
0.298
Test
Better desorption (decrease in saturation degree αRA by 6.9%)
means greater stream of removed CO2 – increase in the stream of
removed CO2 by 8.97%. For the same power supplied to regenerator,
more carbon dioxide is removed.
Table 3
Selected operation parameters of the Pilot Installation in 2013
Parameter
Value
Number of research campaigns
10
Number of conducted tests
118
Total plant operation time
550 hours
Amount of removed CO2
about 20,000 kg
Summary
The paper presents selected technological modifications of
installation for CO2 removal from flue gas, which aim to improve
the process. Unfortunately, many of the described options has been
tested only by means of model research. In order to verify presented
solutions, experimental studies were carried out using the Pilot
Installation, which due to its flexible technological structure allows
to verify effect of internal heat exchange in regenerator and split
streams on CO2 removal process.
Test results (Fig. 7) show that applied heat recovery in desorption
column helped to achieve better regeneration of sorbent – carbonation
degree of lean amine solution decreased by 0.022 mol CO2/mol amine.
Better regeneration of solution affected also the increase of CO2
capture efficiency by 7% and decrease in the energy consumption
by 2.6% in comparison with reference test. The obtained results
were in line with model tests.
The efficiency increase, as well as the decrease in regeneration
energy can be achieved by technological modifications of installations
and by using different sorbents. The complex design of Pilot Installation
allowed testing numerous technological variants of the process (i.a.
by using recovery heat exchangers, split of absorption solution
streams). Hundreds of hours of operation of the Pilot Installation
(Tab. 3) has proven efficiency of selected technology under the
conditions of real industrial facility.
Tests using new sorbents are underway, which may help
to increase CO2 capture efficiency, just as previous studies on
technological configurations.
The results presented in this paper were obtained from research work cofinanced by the National Centre of Research and Development in the framework
of Contract SP/E/1/67484/10 – Strategic Research Programme – Advanced
technologies for energy generation: Development of a technology for highly
efficient zero-emission coal-fired power units integrated with CO2 capture.
nr 10/2014 • tom 68
Literature
1. The European Commission, Commission Decision of 3.11.2010. Bruksela, 2010.
2. Dubois L., Thomas D.: Postcombustion CO2 capture by chemical absorption: screening of aqueous amines(s)-based solvents. Energy Procedia 37,
2013, 1648-1657.
3. Wilk A., Więcław-Solny L., Tatarczuk A., Śpiewak D., Krótki A.: Wpływ
zmiany składu roztworu absorpcyjnego na efektywność procesu usuwania CO2
z gazów spalinowych. Przem. Chem. 2013, 92, 1, 120.
4. Jayarathna S. A., Weerasooriya A., Dayarathna S., Eimer D. A., Melaaen
C. A.: Densities and surface tensions of CO2 loaded aqueous monoethanoloamine solutions with r = (0.2 to 0.7) at T = (303.15 to 333.15) K.
J. Chem. Eng. Data 2013, 58, 986-992.
5. Einbu A., Ciftja A. F., Grimstvedt A., Zakeri A., Svendsen H. F.: Online
analysis of amine concentration and CO2 loading in MEA solutions by ATRFTIR spectroscopy. Energy Procedia 23, 2012, 55-63.
6. Stec M., Tatarczuk A., Wilk A.: Modeling of CO2 solubility in aqueous
amine solutions using hybrid neural network. Power Engineering and
Environment, Ostravice 2012, VŠB-TU Ostrava, pp. 157–160.
7. Śpiewak D., Krótki A., Tatarczuk A., Więcław-Solny L., Wilk A.:
Badania procesu usuwania CO2 za pomocą wieloskładnikowych sorbentów aminowych. Inżynieria i Aparatura Chemiczna, 2014, 53,
3, 182-184.
8. Tatarczuk A., Więcław-Solny L., Stec M., Krótki A., Zdeb J., Janikowski J.:
Mobile Pilot Plant for CO2 capture from flue gases. Clean Coal Technologies, Thessaloniki, Greece, 05/2013.
9. Artanto Y., Jansen J., Pearson P., Puxty G., Cottrell A., Meuleman E.,
Feron P. M.: Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas
of Australian brown coal-fired power station. Int. Journal of Greenhouse
Gas Control 2014, 20, 189-195.
10. Cousins A., Wardhaugh L. T., Feron P. M.: Preliminary analysis of process
flow sheet modifications for energy efficient CO2 capture from flue gases
using chemical absorption. Chem. Eng. Research and Design, 2011, 89,
1237-1251.
11. Szczypiński T., Tatarczuk A., Grudnik K.: Optymalizacja procesu aminowego wychwytu CO2 ze spalin poprzez zmianę konfiguracji układu technologicznego. Przemysł Chemiczny 2013, 92, 1, 106-110.
12. Cousins A., Wardhaugh L. T., Feron P. M.: A survey of process flow
sheet modifications for energy efficient CO2 capture from flue gases using
chemical absorption. Int. Journal of Greenhouse Gas Control, 2011, 5,
605-619.
13. Le Moullec Y., Kanniche M.: Screening of flowsheet modifications for an
efficient monoethanoloamine (MEA) based post-combustion CO2 capture.
Int. Journal Greenhouse Gas Control, 2011, 5, 727-740.
14. Shoeld M.: Purification and separation of gaseous mixtures. Patent No.US
1971798, The Koppers Co. 1934.
15. Krótki A., Śpiewak D., Więcław-Solny L., Spietz T., Tatarczuk A.: Badanie procesu usuwania CO2 metodą absorpcji aminowej w skali półtechnicznej. Inżynieria i Aparatura Chemiczna, 2014, 53, 4.
16. Lajnert R., Latkowska B.: Potencjał badawczy instalacji technologicznych
Centrum Czystych Technologii Węglowych (CCTW) w Zabrzu. Przemysł
Chemiczny 2013, 92, 215-221.
17. Towler G.P, Shethna H.K, Cole B., Hajdik B.: Improved absorberstripper technology of gas sweetening to ultra-low H 2S concentrations. Proceedings of the 76th GPA Annual Convention, 1997,Tulsa,
OK, 93-100.
18. Oyenekan B. A., Rochelle G. T.: Alternative stripper configurations to minimize energy for CO2 capture. Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies. Trondheim, 2006,
Norwegia.
19. Tatarczuk A., Ściążko M., Stec M., Tokarski S.: Zastosowanie absorpcji
aminowej do usuwania CO2 ze spalin w skali pilotowej. Chemik 2013, 67,
407-414
• 891
XV Conference Environmental
This is confirmed By values of CO2 loading of solution: reach and
lean amine obtained in tests (Tab.2): reach amine (αLA) and deeply
regenerated amine (αRA) solutions for the conducted tests (Tab. 2).
XV Conference Environmental
20. Tatarczuk A., Ściążko M., Stec M., Tokarski S., Janikowski J.: Carbon
capture, wiedzieć jak najwięcej – nasz wspólny cel. CHEMIK 2013, 67,
10, 897-902.
21. Moser P., Schmidt S., Sieder G., Garcia H., Stoffregen T.: Performance
of MEA in a long-term test at the post-combustion capture pilot plant
in Niederaussem. Int. Journal of Greenhouse Gas Control, 2011, 5,
620-627.
Lucyna WIĘCŁAW-SOLNY – Ph.D., Eng., has graduated from the Faculty
of Chemistry at Silesian University of Technology (1998). She has defended
her doctoral thesis “Preparation of catalytic coatings on metallic substrates”
in 2004. She specializes in the field of chemical and process engineering. She
serves as the Deputy Director of the Centre for Process Research, Institute
for Chemical Processing of Coal (IChPW).
Adam TATARCZUK – M.Sc., has graduated from the Faculty of Chemistry
Marcin STEC – M.Sc., has graduated from the Faculty of Automatic Control, Electronics and Computer Science at Silesian University of Technology
in Gliwice (2003). He works at the Centre for Process Research, Institute for
Chemical Processing of Coal (IChPW). Specialization – computerized control
systems.
*Tomasz SPIETZ – MSc., has graduated from the Faculty of Chemistry at
Silesian University of Technology in Gliwice (chemical and process engineering) (2012). He works as an Engineer at the Centre for Process Research,
Institute for Chemical Processing of Coal (IChPW).
e-mail: [email protected], phone: +48 32 6216410
Aleksander KRÓTKI – M.Sc., has graduated from the Faculty of Chemistry
at Silesian University of Technology in Gliwice (2010). Currently he works
at Silesian University of Technology in Gliwice (2002). He is a Senior Expert
as an Engineering and Technical Expert at the Centre for Process Research,
at the Centre for Process Research, Institute for Chemical Processing of Coal
Institute for Chemical Processing of Coal (IChPW). Specialization – techno-
(IChPW). Specialization – chemical and process engineering.
logies for CO2 removal from flue gas, chemical industry and environmental
protection instruments.
Z prasy światowej – innowacje: odkrycia, produkty
i technologie
From the world press - innovation: discoveries, products and technologies
Dokończenie ze strony 883
Bezpieczne tworzywa antybakteryjne w masowej produkcji
Spółka Parx Plastics uruchamia produkcję materiału Saniconcentrate, który posłuży do wytwarzania bezpiecznych wyrobów samoodkażających się o dobowej skuteczności zwalczania bakterii wynoszącej 99%.
Technologia opracowana przez Parx Plastics, to pierwsze rozwiązanie
biobójcze, które nie opiera się na stosowaniu toksycznych chemikaliów,
jak np. triklosan, metale ciężkie (np. srebro), biocydy, nanocząstki czy
inne substancje o potencjalnie negatywnym wpływie na zdrowie człowieka. Właściwości antybakteryjne uzyskuje się w tym przypadku dzięki
użyciu jednego z najważniejszych pierwiastków śladowych w organizmie
ludzkim – cynku. Jest on obecny w pożywieniu i jest niezbędny do utrzymania poprawnego funkcjonowania systemu immunologicznego oraz
utrzymywania włosów, paznokci i skóry człowieka we właściwej kondycji. Bezpieczeństwo technologii nie polega tylko na zgodności biologicznej, lecz także na tym, iż nie zachodzi tu zjawisko migracji substancji.
Właściwości antybakteryjne uzyskuje się poprzez zmiany wewnętrzne,
a nie poprzez ługowanie nałożonej na powierzchnię substancji.
Pierwszymi materiałami wykorzystującymi nową technologię,
które weszły do masowej produkcji we włoskiej fabryce w Bolonii, są Sani-ABS oraz Saniconcentrate oparty na kopolimerze Tritan
produkowanym przez firmę Eastman. Uzyskany produkt końcowy
w 3% zawierający nowe rozwiązanie Parx Plastics charakteryzuje się
99% skutecznością w zwalczaniu bakterii Staphylococcus Aurus oraz
Escherichia Coli wg standardu ISO22196. (kk)
(http://www.plastech.pl/, 12.09.2014)
Pszczeli antybiotyk
Szwedzcy naukowcy z Uniwersytetu w Lund wykryli bakterie kwasu
mlekowego, które mogą stać się alternatywą dla antybiotyków. Zbadali
892 •
oni żołądki pszczół miodnych, w których przechowują one miód i odkryli
13 bakterii kwasu mlekowego, które wytwarzają ogromną ilość związków przeciwbakteryjnych. W laboratoriach przeprowadzane są już badania nad działaniem tych bakterii wobec gronkowca złocistego odpornego na metycylinę (MRSA). Oprócz MRSA, badania dotyczą również
pałeczki ropy błękitnej i szczepy bakterii typu VRE (odporne na jeden
z antybiotyków, wankomycynę). Wyniki badań już teraz są obiecujące
– bakterie pochodzące od pszczół wykazują bowiem właściwości zwalczające ludzkie patogeny. O ile badania nad wpływem na ludzki organizm
wciąż są prowadzone w laboratoriach, o tyle działanie na zwierzętach już
zostało sprawdzone. Bakterie kwasu mlekowego podano, wraz z miodem, dziesięciu koniom, które posiadały trwałe, trudno gojące się rany.
W każdym przypadku zmiany zostały wyleczone. (kk)
(http://biotechnologia.pl, 11.09.2014)
Nowa odmiana PE do produkcji rur w sieciach gazowych
Koncern LyondellBasell wprowadził do swojej oferty nową odmianę polietylenu wysokiej gęstości Hostalen CRP 100 Resist CR
Orange. Tworzywo przeznaczone jest do produkcji rur w sieciach
gazowych instalowanych w nietypowy sposób – w technologii bezwykopowej lub rozwiązaniach bez obsypki piaskowej. Hostalen CRP
100 Resist CR Orange zapewnia długotrwałą wytrzymałość hydrostatyczną, potwierdzoną przez badania laboratoryjne. Rury wykonane z tworzywa posiadają wysoką odporność na zjawisko powolnego
wzrostu pęknięcia (Slow Crack Growth). W teście NPT (Notched Pipe
Pressure Test) uzyskano wynik 9,5 tys. godz., zaś w teście FNCT (Full
Notch Creep Test) – 8760 godz. Tworzywo odznacza się wysoką lepkością i może być z powodzeniem przetwarzane w procesie ekstruzji, wtryskiwania oraz formowania tłocznego. (kk)
(http://www.plastech.pl/, 3.09.2014)
nr 10/2014 • tom 68

Podobne dokumenty