Badanie dynamiki wybranych indeksow gieldowych

Transkrypt

Badanie dynamiki wybranych indeksow gieldowych
Badanie dynamiki wybranych indeksów giełdowych
Marzena Kozłowska, Ryszard Kutner
Zakład Dydaktyki Fizyki
Instytut Fizyki Doświadczalnej
Wydział Fizyki, Uniwersytet Warszawski
[email protected]
XV Konferencja Naukowa Młodych Ekonomistów
Warszawa, 21-22 września 2009.
I.
Wstęp.
Pomimo tego, że między fizyką a ekonomią istnieją istotne różnice
metodologiczne, obserwuje się wiele wyraźnych analogii pomiędzy dynamiką i
probabilistyką złożonych układów fizycznych, ekonomicznych czy nawet
społecznych. Metody i algorytmy używane do opisu zjawisk fizycznych stanowią
podłoże i inspiracje dla wielu owocnych metod i algorytmów stosowanych w analizie
danych ekonomicznych.
Znalezienie modelu opisującego lokalne, chwilowe piki indeksów giełdowych,
dobrze widoczne np. w dziennych danych empirycznych, stanowi jedno z
zasadniczych, pragmatycznych i badawczych wyzwań stojących zarówno przed
inwestorami giełdowymi, jak też przed analitykami rynków finansowych a zwłaszcza
ekonofizykami. Zasadniczy charakter tego wyzwania bierze się z faktu, że piki te
zbudowane są na tzw. bańkach czy też bąblach giełdowych, których pękanie jest
bezpośrednią przyczyną ciągle powtarzających się kryzysów i krachów giełdowych, a
których natura jest wciąż zagadkowa.
W mojej pracy doktorskiej zaproponowałam, wyprowadzony w unikalny sposób,
deterministyczny Reologiczny Model Fraktalnej Dynamiki Rynku Finansowego
(RMFDRF), który bazuje na fraktalnym, liniowym, niejednorodnym równaniu
zawierającym pamięć, umożliwiającym opisanie dynamiki indeksu. Model RMFDRF
stanowi uogólnienie i zreinterpretowanie modelu fraktalnej relaksacji materiału
plastycznego (lepkosprężystego biopolimeru), jaki został stworzony w 1991 roku
przez Glöckle i Nonnenmahera (GN) do opisu relaksacji naprężenia wałeczka z ciasta
mącznego, mierzonego za pomocą dynanometru przy ustalonym wydłużeniu
wałeczka.
W niniejszej pracy koncentruję się na analizie trendu obserwowanego w dziennych
notowaniach Warszawskiego Indeksu Giełdowego (WIG), a także na analogicznej
analizie dla indeksów innych giełd, np. średniej wielkości typu Frankfurckiej GPW
(index DAX), jak też dużych takich jak np. DJIA czy NASDAQ. Celem jest opisanie
zarówno zbocza opadającego jak i narastającego, traktując je jako dwa odrębne
procesy, dla lokalnych w czasie, dobrze ukształtowanych pików za pomocą funkcji
uwzględniającej także oscylacje.
Rozważania prowadzone w pracy oparte są na dwóch wzajemnie powiązanych
procesach, są to:
–
niedebye'owskie czy też nieeksponencjalne procesy relaksacji zaobserwowane
dla wielu materiałów plastycznych, jak również dla danych tikowych dotyczących
kontraktów futures notowanych na londyńskiej LIFE oraz
–
różne rodzaje bąbli spekulacyjnych związanych z krachami giełdowymi.
Rozwiązanie znalezione w ramach zaproponowanego w pracy Reologicznego
Modelu Fraktalnej Dynamiki Rynku Finansowego, uzupełnione przykładowo o
oscylacje logarytmiczno-periodyczne, stanowi podstawę, która może być w
przyszłości użyta do budowy systemów oprogramowania monitorującego i
analizującego rynki finansowe oraz ułatwiającego przeprowadzenie prognoz
zmniejszających ryzyko inwestycji finansowych.
I.
Relaksacja fraktalna
Do opisania niedebye'owskich procesów relaksacyjnych w układach złożonych
stosuje się kilka rodzajów funkcji relaksacji, są to między innymi:
–
prawo Kohlrauscha-Williamsa-Wattsa (KWW), czyli tzw. rozciągnięty
eksponens,
–
prawo Nuttinga, czyli asymptotyczne prawo potęgowe,
–
funkcja Mittag-Lefflera (ML).
Funkcja Mittag-Lefflera:
odgrywa dominującą rolę w mojej pracy. Jest ona naturalnym uogólnieniem funkcji
eksponens, którą otrzymuje się przyjmując w powyższym wyrażeniu α =1, gdzie α
jest tak zwanym parametrem kształtu. Dla 0 < α < 1 , funkcja ML charakteryzuje się
dwiema granicami, tj. wymienionym wyżej prawem KWW i prawem Nuttinga dla
krótkich i długich czasów odpowiednio.
Zanim przejdę do analizy indeksów giełdowych, chciałabym zwrócić uwagę na
rysunek 1 przedstawiający ( w skali log-log) wartości mediany cen transakcyjnych
domów i parcel (S) w Stanach Zjednoczonych w okresie styczeń 1988 - grudzień
2008 r. (czarne punkty) wraz z funkcją Mittag-Lefflera (czerwona krzywa)
dopasowaną do tych punktów.
Rysunek 1: Porównanie przebiegu funkcji Mittag-Lefflera (czerwona krzywa) z danymi
empirycznymi (czarne punkty) dotyczącymi wartości mediany cen transakcyjnych domów i parcel
(S) w Stanach Zjednoczonych.
Otrzymana zgodność jest jednym z kluczowych wyników mojej pracy, gdyż
wskazuje na przydatność funkcji ML jako narzędzia nadającego się do opisu
rynkowych danych makroekonomicznych ograniczonych do horyzontów czasowych
nie przekraczających czasu aktywności zawodowej pojedynczego pokolenia.
Maksimum funkcji Mittag-Lefflera ( tc) przypada tutaj na marzec 2007 roku,
pokrywając się z punktem określającym zmianę empirycznego trendu tMAX ( czyli
tutaj tc = tMAX ), natomiast wartości charakteryzujących ją parametrów wynoszą:
α=0.60, τ=95 miesięcy.
Widoczna zmiana trendu z wznoszącego na opadający jest tutaj bezpośrednią
pochodną załamania się rynku kredytów hipotecznych w USA oraz, związanego z
tym, spadkiem cen nieruchomości.
Na rysunku 1 znajduje się również dla porównania funkcja eksponens ( zielona
krzywa) oraz rozciągnięty eksponens ( krzywa niebieska).
Z analizy danych empirycznych dla rynku hipotecznego wynika kilka istotnych
faktów, a mianowicie:
–
punkt zwrotny trendu ( z wzrostowego na spadkowy) nigdy nie jest ulokowany
w obszarze , w którym funkcja ML pokrywa się( z dobrym przybliżeniem) z
rozciągniętym eksponensem (linia czerwona i niebieska),
–
punkt ten nigdy nie leży wcześniej od punktu przecięcia funkcji ML z funkcją
eksponens (przecięcie linii czerwonej i zielonej), stąd oszacowanie możliwego
położenia punktu zwrotnego jest natychmiastowe,
–
punkt zwrotny leży w pobliżu punktu zrównania tempa wzrostu funkcji
eksponens i ML.
I.
Reologiczny Model Fraktalnej Dynamiki Rynku Finansowego
Wyprowadzenie
przeze
mnie
fenomenologicznego,
deterministycznego
Reologicznego Modelu Fraktalnej Dynamiki Rynku Finansowego składa się z dwóch
części:
1)
Pierwszej, w której zaproponowano liniowe, zwyczajne równanie różniczkowe
pierwszego rzędu, opisujące ewolucję indeksu charakteryzującego rynek
wyidealizowany w obrębie dobrze określonych lokalnych pików, na dziennych
danych empirycznych na zamknięciu.
2)
Drugiej, zawierającej fraktalne uogólnienie tego równania. W tej części został
zaproponowany sposób przejścia od równania z punktu 1) do tzw. fraktalnego
równania różniczkowego zawierającego operatory różniczkowania ułamkowego,
uwzględniając np. pamięć okresową, której wkład do rozwiązania ma charakter
niejawny. W taki sposób przejawia się tutaj dążenie rynku do degradacji
ewentualnego arbitrażu, gdyż istnienie pamięci w jawnej postaci może doprowadzić
do jego pojawienia się lub wzmocnienia. Równanie to posłuży do opisu dynamiki
wybranych indeksów giełdowych.
Powyższe podejście oparte jest w dużej mierze na strategii dotyczącej badań
prowadzonych w ramach współczesnej reologii poświęconych nieeksponencjalnej
relaksacji materiałów plastycznych (lepkosprężystych) takich jak np. biopolimery.
Strategia ta stanowi podstawę Fraktalnego Modelu Ciała Stałego (FMCS). Istnieje
wiele wersji FMCS, opartych na rożnych sposobach fraktalizacji równań, jak też na
różnego typu połączeniach elementów mechanicznych , takich jak sprężyny i
amortyzatory, stanowiących przecież podstawowe elementy mikroskopowe różnych
mechanicznych struktur makroskopowych ciał plastycznych rozpatrywanych w
ramach reologii.
Zasadnicze założenia modelu mówią, że:
1)
W obszarach narastających i pękających spekulacyjnych bąbli giełdowych,
gdzie decyzje muszą być podejmowane szybko, dominującą rolę odgrywają gracze
giełdowi bazujący na analizie technicznej (gracze techniczni), a nie na
fundamentalnej. Gracze techniczni śledzą na bieżąco notowania interesujących ich
indeksów oraz obroty na akcje tworzący dany indeks i na tej podstawie ustalają
strategię działania, składając odpowiednie oferty kupna lub sprzedaży. Można zatem
sądzić, że chwilowa wartość nadwyżki zleceń U(t) może zależeć tylko od chwilowej,
względnej wielkości danego indeksu X(t) oraz chwilowej względnej wielkości
obrotów V(t).
Jak widać wartość U(t) może być traktowana jak miara chwilowej aktywności tej
części rynku, która dotyczy danego indeksu, przy czym znak dodatni U(t) mówi o
tym, że mamy do czynienia z przewagą kupna czyli lewym zboczem lokalnego
maksimum (w przypadku braku fluktuacji i oscylacji), a ujemny, że ma miejsce
wyprzedaż akcji tworzących ten indeks, czyli z prawym zboczem (również w
przypadku braku fluktuacji i oscylacji).
2)
Założenie drugie mówi o tym, że zależność chwilowej nadwyżki zleceń od
chwilowej , względnej wielkości danego indeksu i obrotów na nim, jest biliniowa, co
jest zgodne z panującym duchem liniowości pojęć ekonomicznych i można ją
wyrazić następująco:
gdzie
jest różnicą pomiędzy chwilowym popytem D(t) ( ≥ 0) na akcje tworzące
dany indeks i ich całkowitą chwilową podażą S(t) ( ≥ 0), a a0 i b0 są
niezależnymi od czasu współczynnikami.
Wolumen obrotów na akcje tworzący dowolny indeks, będący chwilową wielkością
zrealizowanych transakcji definiuje się następująco:
Ponadto zakładamy, że zachodzi związek:
gdzie Δt oznacz tu jeden dzień transakcyjny.
W celu rozważenia wyidealizowanej dynamiki indeksu należy użyć liniowego
równania różniczkowego, wiążącego indeks z obrotami, mającego następującą
postać:
Kombinacja równania (2) i (5) pozwala wyeliminować wolumen obrotów i uzyskać
równanie opisujące wyidealizowaną dynamikę indeksu w następującej formie:
gdzie odpowiednie współczynniki zdefiniowane są następująco:
oraz mają swoją reologiczną interpretację, bowiem równanie (7) jest analogonem
podstawowego równania reologicznego Standardowego Modelu Zenera Ciała
Stałego. Typowa mechaniczna realizacja tego modelu składa się z połączonych
równolegle:
–
elementu Maxwella ( połączone w szereg dwa elementy: amortyzator i
sprężyna), odpowiedzialnego za plastyczność materiału.
–
elementu sprężystego.
W modelu tym relacja między chwilowym całkowitym naprężeniem σ(t) a
chwilowym całkowitym odkształceniem ε(t) jest podana poniższym liniowym
równaniem różniczkowym pierwszego rzędu:
gdzie τ0 jest czasem relaksacji, czyli czasem po którym nastąpi przejście od
sprężystego do plastycznego stanu materiału.
Porównując równania (7) i (9) można zauważyć analogie między rynkiem papierów
wartościowych i reologią, co przedstawia tabela nr 1.
Tabela 1. Analogie między reologią i giełdą papierów wartościowych.
Giełda papierów wartościowych
Ciało stałe
Indeks giełdowy X(t)
Odkształcenie ε(t)
Nadwyżka zleceń U(t)
Naprężenie σ(t)
Wolumen obrotów V(t)
Chwilowa temperatura T(t)
Wykorzystując mechaniczną reprezentację modelu Zenera można pokusić się o
interpretację sprężyny jako analogonu czysto emocjonalnego, irracjonalnego, niczym
nie skrępowanego postępowania inwestorów, czyli po prostu analogon euforii
wywołanej przez chciwość, podczas gdy amortyzator może być analogonem czysto
racjonalnego zachowania czyli awersji do ryzyka, strachu. Taka interpretacja może
przyczynić się do konstrukcji „mechanicznego” modelu opisującego istotne aspekty
rzeczywistego rynku papierów wartościowych wskazując np. na wpływ struktury
sprzężeń pomiędzy inwestorami na wieloskalową dynamikę indeksów giełdowych.
Pragnę zwrócić uwagę na fakt, iż równanie (7) opisuje jedynie chwilową,
tymczasową sytuację, nie uwzględniając tego, że inwestorzy dysponują bogatszą
wiedzą dotyczącą historycznych notowań indeksu oraz, że mają oni pewną opinie na
temat przyszłych wartości indeksu. Zatem w celu uogólnienia tego równania,
wyrażenia (2) i (5) powinny zostać rozszerzone do następujących postaci:
oraz
gdzie współczynniki z indeksem górnym „-” dotyczą przeszłości a z „+”
teraźniejszości. Kombinacja równań (10) i (11) pozwoli uzyskać uogólnione
równanie, które jest jednak trudne do rozwiązania ze względu na duża liczbę
niewiadomych, stąd też posługuję się analogią do fizycznego modelu materiału
lepkosprężystego co pozwala ominąć tę trudność.
Po zastosowaniu fraktalnej operacji różniczkowo - całkowej, odgrywającej bardzo
ważną rolę we współczesnej reologii, ale stosowanej również w ekonometrii (modele
ARIFMA), uzyskujemy równanie całkowe, które opisuje dwa niezależne zbocza
lokalnych pików indeksu:
gdzie niezależna zmienna:
Konkretna postać funkcji U(y) została narzucona oscylacyjnym charakterem indeksu,
stąd fraktalne zagadnienie (12) zostało rozwiązane przy założeniu, że:
W oparciu o bezpośrednią obserwację danych empirycznych, okazało się że zarówno
ω jak i Δω są znacznie mniejsze od jedności, co pozwala na uproszczenie dokładnego
rozwiązania zagadnienia do następującej formy:
gdzie wszystkie współczynniki i parametry są rzeczywiste oraz
Jak widzimy, rozwiązanie (14), w zupełności wystarczające do porównania
przewidywań modelu z danymi empirycznymi, składa się z części zawierającej
funkcję Mittag-Lefflera oraz części zawierającej iloczyn cosinusów.
We wzorze (14) parametr α jest parametrem odpowiedzialnym za kształt funkcji
relaksacji.
I.
Porównanie z giełdowymi danymi empirycznymi i wnioski
W tym podrozdziale zaprezentuję wyniki uzyskane z dopasowania krzywej, która
wyraża się za pomocą formuły (14) do danych empirycznych wybranych indeksów
giełdowych. Jak zwykle czarne punkty na wykresach dotyczą notowań indeksu
giełdowego ( na zamknięciu sesji). Na rysunku 2 przedstawione zostało lewe zbocze
największego a zarazem najlepiej ukształtowanego piku indeksu WIG,związanego z
obecnie panującym światowym kryzysem gospodarczym. Zamieszczona na tym
rysunku czerwona krzywa ciągła pochodzi z dopasowania wyrażenia (14) do danych
empirycznych przy braku dudnień, czyli przy założeniu, że Δω=0. Oprócz tego, dla
porównania naniesiony został również tzw. rozciągnięty eksponens (ciągła krzywa
niebieska), w który przechodzi funkcja Mittag-Lefflera, gdy y → 0.
Rysunek 2
Lewe zbocze lokalnego, ostatniego piku indeksu WIG, ewolucja dziennych notowań datowanych
od 2750 dnia transakcyjnego (subiektywnie wybrany początek lokalnego piku traktowany tutaj dla
prostoty jako punkt 0) do 3609 sesji uznawanej za empiryczny koniec tego zbocza a zarazem
wyznaczającej położenie maksimum piku ( t = tMAX). Notowania składają się z 860 punktów
empirycznych o horyzoncie czasowym od 06.02.2004 do 06.07.2007. Końcowy punkt obu
krzywych teoretycznych (dla t = tc) przypada na 22.08.2007, czyli 892 dzień transakcyjny.
Wydaje się, że dopasowanie krzywej jest zadowalające, jednakże jak się okazało
parametry τ1 oraz X1 są obarczone dużymi niepewnościami (odpowiednie dane
przedstawione są w tabelach 2 i 3). Sugeruje to istnienie zasady nieoznaczoności
parametrów modelu, którą można traktować jako finansowy analogon zasady
nieoznaczoności Heisenberga w fizyce kwantowej. W taki sposób może przejawiać
się dążenie giełdy do uniemożliwienia zaistnienia arbitrażu. A zatem na rynkach
finansowych istnieje swoista reguła przekory przypominająca regułę Lenza w fizyce.
Rynek na którym inwestorzy poszukują zysku przeciwstawia się temu w taki sposób,
aby zysk nie był możliwy bez ryzykownego zainwestowania kapitału.
Zwróćmy uwagę, że nachylenie wykresu w punkcie tc jest pionowe, czyli pochodna
dX(t)/dt rozbiega się przy t → tc od lewej strony. W tym sensie można traktować
przejście od fazy wznoszącego trendu do opadającego jak analogon przemiany
fazowej pierwszego rodzaju, czyli nieciągłej.
Pragnę podkreślić, że wspomniana analogia do przemiany fazowej pierwszego
rodzaju ma miejsce wtedy i tylko wtedy, gdy 0 < α <1, a dla α > 2 można mówić o
przemianach fazowych wyższych rzędów.
Tabela 2. Charakterystyczne parametry otrzymane z dopasowania wyrażenia (14), opisujące
ostatnie piki dla indeksów z giełd małych, średnich i dużych. Indeksy L i R oznaczają
wartość parametru dla lewego i prawego zbocza odpowiednio.
Tabela 3. Parametry kalibrujące, uzyskane z dofitowania formuły (14), opisujące indeksy pokazane
w tabeli 2
Podobnej analizy dokonałam również dla zbocza prawego ostatniego maksimum
lokalnego Warszawskiego Indeksu Giełdowego (WIG), co zostało przedstawione na
rysunku 3.
Rysunek 3.Prawe i lewe zbocze ostatniego piku indeksu WIG. Dane empiryczne rozciągają się od
06.02.2004 (2750 sesja) do 18.05.2009 (4073 sesja). Teoretyczny początek bessy to 24.04.2007
(3559 sesja). Odpowiednie parametry umieszczone są w tabelach 2 i 3.
Wyniki analizy ostatnich pików indeksów DAX, DJIA, Shanghai Composite
widoczne są na poniższych wykresach:
Rysunek 4. Ostatni, związany z aktualnie panującym kryzysem , pik indeksu DAX z naniesionymi
dopasowaniami otrzymanymi z ze wzoru (14). Dane empiryczne rozciągają się od 04.09.2003 do
01.07.2009 roku. Lewe zbocze kończy się 13.07.2007 roku, zaś prawe rozpoczyna datą 12.07.2007
roku.
Rysunek 5. Ostatni, związany z aktualnie panującym kryzysem , pik indeksu DJIA z naniesionymi
dopasowaniami otrzymanymi z ze wzoru (14). Dane empiryczne rozciągają się od 16.03.2005 do
09.06.2009 roku. Lewe zbocze kończy się 12.09.2007 roku, zaś prawe rozpoczyna datą 01.10.2007
roku.
Rysunek 6. Ostatni, związany z aktualnie panującym kryzysem , pik indeksu Shanghai Composite
(SCI) z naniesionymi dopasowaniami otrzymanymi ze wzoru (14) dla obu zboczy. Dane
empiryczne rozciągają się od 15.08.2006 do 05.02.2009 roku. Lewe zbocze kończy się 18.10.2007
roku, zaś prawe rozpoczyna datą 16.10.2007 roku.
Widoczne na wszystkich wykresach nieciągłości lub zazębianie się krzywych w
kolorze czerwonym wynika z niepewności związanej z ustaleniem punktu zwrotnego
hossa-bessa oraz traktowaniem obu zboczy jako niezależnych ścieżek.
Warto również wspomnieć o dobroci wykonywanych przeze mnie fitów. Okazało się
tak jak to pokazują dane w tabeli 4, że wszystkie wartości R 2 mieszczą się w
przedziale [0.9967, 0.9996].
Tabela 4. Dokładność z jaką wykonywane były dopasowania wyrażenia (14) do danych
empirycznych. Uzyskane parametry znajdują się w tabelach 2 i 3.
Wydaje mi się, że Reologiczny Model Fraktalnej Dynamiki Rynku Finansowego
mógłby być włączony do bazy modeli wykorzystywanych przez różne instytucje do
prowadzenia analiz rynkowych a w tym przynajmniej prognoz krótkoterminowych,
typu ekstrapolacyjnego.
Bibliografia
M. Kozłowska, A. Kasprzak and R. Kutner, Fractional Market Model and its
verification on the Warsaw Stock Exchange, Int. J. Mod. Phys. C 19,453-469 (2008)
wraz z zawartymi tam odnośnikami.
M. Kozłowska, Uogólniony i zreinterpretowany model materiałów lepkosprężystych
jako narzędzie do badania dynamiki indeksów giełdowych, praca doktorska
wykonana w ramach Studiów Doktoranckich Wydziału Fizyki Uniwersytetu
Warszawskiego- w recenzji.