GENERALIZATIONS OF OPIAL-TYPE INEQUALITIES IN SEVERAL

Transkrypt

GENERALIZATIONS OF OPIAL-TYPE INEQUALITIES IN SEVERAL
DEMONSTRATIO MATHEMATICA
Vol. 49
No 2
2016
Maja Andrić, Ana Barbir, Josip Pečarić, Gholam Roqia
CORRIGENDUM TO “GENERALIZATIONS OF
OPIAL-TYPE INEQUALITIES IN SEVERAL
INDEPENDENT VARIABLES” PUBLISHED IN
DEMONSTRATIO MATH. 4(47) (2014), 324–335
Communicated by A. Fryszkowski
Abstract. The purpose of this corrigendum is to correct an error in the earlier paper
by the authors: Generalizations of Opial-type inequalities in several independent variables,
Demonstratio Math.
In the paper “Generalizations of Opial-type inequalities in several independent variables” published in Demonstratio Mathematica ([1]), we have
considered certain multidimensional Opial-type inequalities, and for two of
them, inequalities obtained in Theorem 2.1 (page 841) and Theorem 2.3
(page 844), we give corrigendum. Namely, the error was made in a final
step of the proof of Theorem 2.1, in the equality (2.7). Here we made necessary ś
corrections, which resulted from the need to observe the inequality on
Ω“ m
j“1 raj , bj s with boundary conditions only in a “ pa1 , . . . , am q. Since
applied Theorem 2.1 was used in Theorem 2.3, we made appropriate changes
in Theorem 2.3, also.
Followingś
notation is used:
ś
Let Ω “ m
volpΩq “ m
j“1 raj , bj s and ś
j“1 pbj ´ aj q. Let t “ pt1 , . . . , tm q
be a general point in Ω, Ωt “ m
ra
,
t
s
j“1 j j and dt “ dt1 . . . dtm . Further, let
Dupxq “
d
upxq,
dx
Dk upt1 , . . . , tm q “
B
upt1 , . . . , tm q
Btk
and
Dk upt1 , . . . , tm q “ D1 ¨ ¨ ¨ Dk upt1 , . . . , tm q,
2010 Mathematics Subject Classification: Primary 26D10; Secondary 26B25.
Key words and phrases: Opial-type inequalities, Willett’s inequality, Rozanova’s
inequality, several independent variables.
DOI: 10.1515/dema-2016-0013
c Copyright by Faculty of Mathematics and Information Science, Warsaw University of Technology
150
M. Andrić, A. Barbir, J. Pečarić, G. Roqia
1 ≤ k ≤ m. Let Ω1 “
śm
j“2 raj , bj s
and dt1 “ dt2 . . . , dtm . Let
Djl upt1 , . . . , tm q “
B jl
upt1 , . . . , tm q,
Btlj . . . Btl1
1 ≤ j ≤ m, 1 ≤ l ≤ n.
Also, by C mn pΩq we denote the space of all functions u on Ω which have
continuous derivatives Djl u for j “ 1, . . . , m and l “ 1, . . . , n.
Proofs of corrected theorems follow the same step as in [1], but finish
with the inequality using boundary conditions only in a. First, we give
corrigendum to [1, Theorem 2.1]. Notice that the equation (2.2) from [1] is
explained in more detail here.
Theorem 1. Let m, n, p P N. Let f be a nonnegative and differentiable
function on r0, 8qp , with f p0, . . . , 0q “ 0. Further, for i “ 1, . . . , p let
xi P C mn pΩq be such that Djl xi ptq|tj “aj “ 0, where j “ 1, . . . , m and l “
0, . . . , n ´ 1. Also, let Di f , i “ 1, . . . , p, be nonnegative, continuous and
nondecreasing on r0, 8qp . Then the following inequality holds
˙
ż ˆÿ
p
(1)
Di f p|x1 ptq| , . . . , |xp ptq|q |Dmn xi ptq| dt
Ω
i“1
ˆ
ż
pn ´ 1q!m
pvolpΩqqn´1
|Dmn x1 ptq| dt, . . . ,
≤
f
pn ´ 1q!m
pvolpΩqqn´1
Ω
˙
ż
pvolpΩqqn´1
mn
|D xp ptq| dt .
pn ´ 1q!m
Ω
Proof. We extend technique used in [2, Theorem 2.1] on a multidimensional
case. For continuous function g : Ω Ñ R, we should define y : Ω Ñ R such
that
B mn y
(2)
Dmn ypx1 , . . . , xm q “ n
“ gpx1 , . . . , xm q
Bxm ¨ ¨ ¨ Bxn1
and
ż ź
m
1
(3) ypx1 , . . . , xm q “
pxj ´ tj qn´1 gpt1 , . . . , tm q dt1 ¨ ¨ ¨ dtm ,
pn ´ 1q!m j“1
Ωx
where Ωx “
Define
śm
(4)
ypxq “
j“1 raj , xj s.
ż t1
żx
dt1
a
ż tn´2
dt2 ¨ ¨ ¨
a
ż tn´1
dtn´1
a
gptn q dtn
a
Corrigendum to “Generalizations of Opial-type inequalities”
or, in different notations
ż
ż
ż
2
1
dt ¨ ¨ ¨
(5)
ypxq “ dt
Ωt1
Ωx
151
ż
gptn q dtn ,
n´1
dt
Ωtn´2
Ωtn´1
where
a “ pa1 , . . . , am q,
x “ px1 , . . . , xm q,
ti “ pti1 , . . . , tim q,
dti “ dti1 ¨ ¨ ¨ dtim ,
i “ 1, . . . , n and
Ωti “
m
ź
raj , tij s,
Ωti Ď Ωti´1 ,
i “ 1, . . . , n ´ 1.
j“1
Since g is a continuous function, (2) obviously follows.
Obviously, integrals on the right-hand side of (4) or (5), can be written
as iterations of the integrals of the form
ż xj
ż t1
ż tn´2
ż tn´1
j
j
j
n´1
1
2
dtj
dtj ¨ ¨ ¨
dtj
grptnj q dtnj ,
aj
aj
aj
aj
which are known (and easy to deduce by interchanging the order of integration)
to be equal to
ż xj
1
pxj ´ tnj qn´1 grptnj q dtnj ,
pn ´ 1q! aj
j “ 1, . . . , m, from which (3) easily follows.
Let
ż ź
m
1
(6)
yi ptq “
ptj ´ sj qn´1 |Dmn xi psq| ds,
pn ´ 1q!m j“1
Ωt
for t P Ω, i “ 1, . . . , p. Hence
Dmn yi ptq “ |Dmn xi ptq| and yi ptq ≥ |xi ptq|.
It is easy to conclude that for each l “ 0, . . . , n ´ 1 we have Djl yi ptq ≥ 0 and
nondecreasing on Ω (i “ 1, . . . , p and j “ 1, . . . , m). From Djl yi ptq|tj “aj “ 0
follows
pvolpΩqqn´1 mpn´1q
yi ptq ≤
D
yi ptq, t P Ω.
pn ´ 1q!m
Define
pvolpΩqqn´1 mpn´1q
ui ptq “
D
yi ptq
pn ´ 1q!m
for t P Ω and i “ 1, . . . , p. Since Di f are nonnegative, continuous and
152
M. Andrić, A. Barbir, J. Pečarić, G. Roqia
nondecreasing on r0, 8qp , it follows

ż „ÿ
p
mn
(7)
Di f p|x1 ptq| , . . . , |xp ptq|q |D xi ptq| dt
i“1
Ω
≤
ż „ÿ
p
Ω
and
ż «ÿ
p
Ω
Di f py1 ptq, . . . , yp ptqq D
mn

yi ptq dt,
i“1
ff
Di f py1 ptq, . . . , yp ptqq Dmn yi ptq dt
i“1
ż „ÿ
p
pvolpΩqqn´1 mpn´1q
D
y1 ptq, . . . ,
pn ´ 1q!m
i“1
˙

Ω
pvolpΩqqn´1 mpn´1q
mn
D
yp ptq D yi ptq dt
pn ´ 1q!m

ż b1 „ ÿ
ż
p
mn
1
≤
Di f pu1 pt1 , b2 , . . . , bm q, . . . , up pt1 , b2 , . . . , bm qq ˆ D yi ptq dt dt1
≤
a1
≤
ˆ
Di f
i“1
ż b1 „ ÿ
p
a1
Ω1
Di f pu1 pt1 , b2 , . . . , bm q, . . . , up pt1 , b2 , . . . , bm qq
i“1

pn ´ 1q!m
D1 ui pt1 , b2 . . . , bm q dt1
ˆ
pvolpΩqqn´1
ż b1
pn ´ 1q!m
d
rf pu1 pt1 , b2 , . . . , bm q, . . . , up pt1 , b2 , . . . , bm qqs dt1
“
pvolpΩqqn´1 a1 dt1
pn ´ 1q!m
f pu1 pb1 , b2 , . . . , bm q, . . . , up pb1 , b2 , . . . , bm qq
“
pvolpΩqqn´1
pn ´ 1q!m
f
“
pvolpΩqqn´1
ˆ
˙
ż
ż
pvolpΩqqn´1
pvolpΩqqn´1
mn
mn
ˆ
|D x1 ptq| dt, . . . ,
|D xp ptq| dt .
pn ´ 1q!m
pn ´ 1q!m
Ω
Ω
Next comes a result for a convex function f . The proof follows the
same steps as in [1, Theorem 2.3], again with the difference of observing
the inequality on Ω with boundary conditions only in a. We will use the
following lemma about convex function of several variables ([3, page 11]).
Lemma 1. Suppose that f is defined on the open convex set U Ă Rn . If f
is pstrictlyq convex on U and the gradient vector f 1 pxq exists throughout U ,
then f 1 is pstrictlyq increasing on U .
Corrigendum to “Generalizations of Opial-type inequalities”
153
Theorem 2. Let m, n, p P N. Let f be a convex and differentiable function
on r0, 8qp with f p0, . . . , 0q “ 0. Further, for i “ 1, . . . , p let xi P C mn pΩq be
such that Djl xi ptq|tj “aj “ 0, where j “ 1, . . . , m and l “ 0, . . . , n ´ 1. Then
the following inequality holds
ż ´ÿ
p
¯
(8)
Di f p|x1 ptq| , . . . , |xp ptq|q |Dmn xi ptq| dt
Ω
i“1
≤
pn ´ 1q!m
pvolpΩqqn
ˆ
ż
f
pvolpΩqqn mn
|D x1 ptq| , . . . ,
pn ´ 1q!m
Ω
˙
pvolpΩqqn mn
|D xp ptq| dt.
pn ´ 1q!m
Proof. As in the proof of the previous theorem, we obtain p1q with the
difference of applying Lemma 1 in p7q since f is a convex function. Then,
from
Jensen’s inequality for integrals (see for
ff example [3, page 51]), we have
ˆ
˙
ż «ÿ
p
Di f |x1 ptq| , . . . , |xp ptq| |Dmn xi ptq| dt
Ω
i“1
ˆ
ż
pn ´ 1q!m
pvolpΩqqn´1
≤
|Dmn x1 ptq| dt, . . . ,
n´1 f
m
pn
´
1q!
pvolpΩqq
Ω
pvolpΩqqn´1
pn ´ 1q!m
ż
|D
mn
˙
xp ptq| dt
Ω
ˆ
ż
1
pvolpΩqqn mn
pn ´ 1q!m
|D x1 ptq| dt, . . . ,
f
“
pvolpΩqq pn ´ 1q!m
pvolpΩqqn´1
Ω
˙
ż
1
pvolpΩqqn mn
|D xp ptq| dt
pvolpΩqq pn ´ 1q!m
Ω
˙
ż ˆ
n
m
pn ´ 1q!
pvolpΩqq
pvolpΩqqn mn
mn
≤
f
|D x1 ptq| , . . . ,
|D xp ptq| dt.
pvolpΩqqn
pn ´ 1q!m
pn ´ 1q!m
Ω
References
[1] M. Andrić, A. Barbir, J. Pečarić, G. Roqia, Generalizations of Opial-type inequalities
in several independent variables, Demonstratio Math. 4(47) (2014), 324–335.
[2] M. Andrić, A. Barbir, J. Pečarić, On Willett’s, Godunova-Levin’s and Rozanova’s
Opial-type inequalities with related Stolarsky type means, Math. Notes 96(6) (2014),
841–854.
154
M. Andrić, A. Barbir, J. Pečarić, G. Roqia
[3] J. E. Pečarić, F. Proschan, Y. C. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, Inc., 1992.
M. Andrić, A. Barbir
FACULTY OF CIVIL ENGINEERING, ARCHITECTURE AND GEODESY
UNIVERSITY OF SPLIT
MATICE HRVATSKE 15
21000 SPLIT, CROATIA
E-mail: [email protected], [email protected]
J. Pečarić
FACULTY OF TEXTILE TECHNOLOGY
UNIVERSITY OF ZAGREB
PRILAZ BARUNA FILIPOVIĆA 28A
10000 ZAGREB, CROATIA
E-mail: [email protected]
G. Roqia
ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES
68-B
NEW MUSLIM TOWN
LAHORE 54000, PAKISTAN
E-mail: [email protected]
Received July 20, 2015.

Podobne dokumenty