Regulacja ekspresji genów w komórkach drożdży metylotroficznych

Transkrypt

Regulacja ekspresji genów w komórkach drożdży metylotroficznych
Regulacja ekspresji genów w komórkach drożdży metylotroficznych
STRESZCZENIE
D
rożdże metylotroficzne to unikalne organizmy eukariotyczne, które potrafią metabolizować toksyczny, jednowęglowy substrat, jakim jest alkohol metylowy. Znanych jest
około 50 gatunków drożdży metylotroficznych, spośród których najlepiej zbadane zostały 4
gatunki: Pichia methanolica, Hansenula polymorpha, Pichia pastoris i Сandida boidinii. Powyższe organizmy, a szczególnie P. pastoris i H. polymorpha są perspektywicznymi producentami białek heterologicznych i obecnie wykorzystuje się je do przemysłowej produkcji
niektórych z nich. W niniejszym przeglądzie przedstawiono organizację genomu, sposoby
regulacji ekspresji genów oraz zasady wykorzystania promotorów tych gatunków drożdży
do konstruowania producentów białek heterologicznych. Analizowano szczególnie prace
dotyczące genetycznej kontroli węglowej i azotowej represji katabolicznej u H. polymorpha.
Przedstawiono również prace dotyczące identyfikacji metabolitów indukujących represję
kataboliczną oraz selektywną autofagię peroksysomów u drożdży Pichia methanolica rosnących na podłożu z etanolem.
WPROWADZENIE
Drożdże, podobnie jak inne mikroorganizmy, wykorzystują do swojego
wzrostu w pierwszej kolejności fermentowalne źródła węgla, takie jak glukoza.
W przypadku ich braku lub zużycia, mogą wykorzystywać także niefermentowalne źródła węgla, takie jak glicerol, etanol czy metanol. Drożdże wykorzystujące metanol, jako jedyne źródło węgla i energii, zwane są drożdżami metylotroficznymi. Należą one między innymi do rodzajów: Candida, Pichia, Hansenula.
Obecność glukozy w podłożu powoduje u tych organizmów represję szlaku metabolizmu metanolu na drodze glukozowej represji katabolicznej. Z kolei brak
glukozy i obecność metanolu w podłożu powoduje indukcję szlaku metylotroficznego. Mechanizm tej regulacji zwany jest również derepresją lub indukcją
metanolową. Metanol jest silnym induktorem promotorów genów kodujących
enzymy niezbędne dla metabolizmu tego jednowęglowego substratu. W oparciu
o te promotory opracowano efektywne systemy ekspresji białek heterologicznych u kilku gatunków drożdży metylotroficznych, takich jak: Pichia pastoris,
Hansenula polymorpha, Pichia methanolica i Candida boidinii.
Poznanie genomu oraz mechanizmów regulacji ekspresji genów szlaku metylotroficznego jest niezwykle istotne, gdyż w pełni umożliwi wykorzystanie
ogromnego potencjału tych gatunków drożdży w różnych procesach biotechnologicznych [1].
Dorota Grabek-Lejko1
Vladimir Sibirny1
Andriy Sibirny1,2,
Uniwersytet Rzeszowski, Rzeszów
Instytut Biologii Komórki Narodowej Akademii Nauk Ukrainy, Lwów, Ukraina
1
2
Uniwersytet Rzeszowski, ul. Zelwerowicza 4,
35-601 Rzeszów, Polska, tel. (17) 785 54 40 lub
Instytut Biologii Komórki Narodowej Akademii Nauk Ukrainy, ul. Dragomanowa 14/16,
Lwów 79005 Ukraina, e-mail: sibirny@yahoo.
com

Artykuł otrzymano 28 czerwca 2012 r.
Artykuł zaakceptowano 6 grudnia 2012 r.
Słowa kluczowe: drożdże metylotroficzne,
ekspresja genów, Hansenula polymorpha, Pichia
pastoris, Pichia methanolica, Candida boidinii
Wykaz skrótów: ARS — autonomicznie replikujące się sekwencje (ang. autonomously replicating sequence); DAS — syntaza dihydroksyacetonu; DHA — dihydroksyaceton; DHAP
— fosforan dihydroksyacetonu; FAD — dinukleotyd flawinoadeninowy; GAP — aldehyd
3-fosfoglicerynowy; GSH — glutation; NAD+/
NADH — dinukleotyd nikotynamidoadeninowy utleniony/zredukowany
METABOLIZM METANOLU U DROŻDŻY
Analiza mechanizmów regulacji metabolizmu metanolu u drożdży wymaga
przedstawienia szlaku katabolizmu tego jednowęglowego substratu oraz enzymów w nim uczestniczących. Reakcje enzymatyczne zachodzące w szlaku katabolizmu metanolu są analogiczne u wszystkich dotąd zbadanych gatunków
drożdży, dlatego też opisano je bez uwzględniania gatunku.
Pierwsza część szlaku metylotroficznego przebiega w peroksysomach, natomiast druga w cytosolu. W pierwszym etapie utylizacji zachodzącym w peroksysomach, metanol, w reakcji katalizowanej przez enzym oksydazę alkoholową
(EC 1.1.3.13), utleniany jest do dwóch toksycznych związków: formaldehydu i
nadtlenku wodoru. H2O2 może być rozłożony do tlenu i wody nie tylko przez
katalazę (EC 1.11.1.6) [2,3], ale również przez białko błony peroksysomalnej,
Pmp20 (peroksyredoksynę) [4] (Ryc. 1). Formaldehyd natomiast może być utleniony w kilku kolejnych reakcjach do dwutlenku węgla (szlak dysymilacyjny)
lub zostać zasymilowany do wielowęglowych związków poprzez kondensację
z ksylulozo-5-fosforanem (szlak asymilacyjny). Oddziaływanie formaldehydu
z ksylulozo-5-fosforanem katalizowane jest przez odpowiednią transketolazę,
syntazę dihydroksyacetonu (DAS) (EC 2.2.1.3) zlokalizowaną w peroksysomach
Postępy Biochemii 59 (1) 2013
95
drogenazy mrówczanowej, co świadczy o znacznie wyższej
toksyczności formaldehydu w porównaniu do mrówczanu
[6-8]. Szlak dysymilacji metanolu odgrywa główną rolę w
metabolizmie metylowanych źródeł azotu, takich jak metyloamina czy cholina, gdzie formaldehyd jest produktem
ubocznym [9] (Ryc. 1).
Hansenula polymorpha
Rycina 1. Schemat metabolizmu metanolu u drożdży [64]. 1 — oksydaza alkoholowa, 2 — katalaza, 3 — dehydrogenaza formaldehydu, 4 — dehydrogenaza
mrówczanowa, 5- syntaza dihydroksyacetonu, 6- kinaza dihydroksyacetonu, 7aldolaza fruktozo-1,6-bifosforanu, 8 — fruktozo-1,6-bifosfataza, 9 — reduktaza
formaldehydu; rekacje przegrupowania szkieletu węglowego w szlaku pentozofosforanowym.
[3]. DAS przekształca formaldehyd i ksylulozo-5-fosforan
do dwóch trójwęglowych związków: dihydroksyacetonu
(DHA) oraz aldehydu 3-fosfoglicerynowego (GAP), które w
kolejnych reakcjach metabolizowane są w cytosolu (Ryc. 1).
DHA ulega fosforylacji pod wpływem kinazy dihydroksyacetonu (EC 2.7.1.29), tworząc fosforan dihydroksyacetonu
(DHAP). DHAP oraz GAP metabolizowane są w szlakach
pentozofosforanowym i glikolizy, w których z trzech cząsteczek formaldehydu powstaje netto jedna cząsteczka
związku trójwęglowego oraz odtwarzany jest ksylulozo-5-fosforan. Jedna trzecia powstałych cząsteczek DHAP wykorzystana zostaje natomiast w procesie glukoneogenezy
[2,5].
Formaldehyd powstający w peroksysomach w reakcji
oksydazy alkoholowej, może być w tych organellach zasymilowany do związków wielowęglowych lub wydzielony do cytosolu, gdzie ulega dysymilacji do CO2 i H2O. W
szlaku dysymilacyjnym nie bierze udziału wolny formaldehyd, tylko produkt jego spontanicznej reakcji z glutationem (GSH). Powstały S-hydroksymetyloglutation zostaje
utleniony w kolejnych dwóch reakcjach katalizowanych
przez zależną od GSH i NAD+ dehydrogenazę formaldehydu (EC 1.2.1.1) oraz zależną od NAD+ dehydrogenazę
mrówczanową (EC 1.2.1.2). Produktem reakcji katalizowanej przez pierwszą z dehydrogenaz jest S-formyloglutation, natomiast substratem dla drugiej dehydrogenazy jest
mrówczan. Przemiana formyloglutationu do mrówczanu
zachodzi w dodatkowej reakcji enzymatycznej katalizowanej przez hydrolazę S-formyloglutationu (EC 3.1.2.12).
U drożdży H. polymorpha hydrolaza S-formyloglutationu
związana jest z dehydrogenazą formaldehydu [3]. Przyjmuje się, że NADH, powstały w dwóch kolejnych reakcjach
odwodorowania, wykorzystywany jest do produkcji energii w postaci ATP podczas wzrostu drożdży na metanolu
[6]. Istnieje również alternatywna hipoteza, według której
głównym celem utleniania formaldehydu w cytoplazmie
jest jego detoksykacja [7]. Częściowa detoksykacja może
zachodzić również w reakcji katalizowanej przez reduktazę
formaldehydu, będącej odwrotnością reakcji katalizowanej
przez dehydrogenazę alkoholową [2]. Mutanty z defektem
dehydrogenazy formaldehydu są znacznie bardziej wrażliwe na egzogenny metanol, niż mutanty z defektem dehy-
96
Hansenula polymorpha to gatunek drożdży o niezwyle wysokiej termotolerancji rosnący w rekordowo wysokich temperaturach, do 50оС [10]. Maksymalna temperatura wzrostu
tego organizmu jest najwyższa spośród wszystkich znanych
gatunków drożdży oraz tylko o 10 оС niższa od najwyższej
temperatury, w jakiej mogą rosnąć znane organizmy eukariotyczne. Gatunek ten jest wykorzystywany na szeroką
skalę w badaniach biotechnologicznych oraz w przemyśle i
spośród drożdży metylotroficznych ustępuje jedynie drożdżom Pichia pastoris. H. polymorpha, wspólnie z P. pastoris,
jest najlepszym obiektem dla badań w zakresie biologii komórki, zwłaszcza biogenezy i degradacji peroksysomów.
Ponadto H. polymorpha jest jedynym gatunkiem drożdży
metylotroficznych wykorzystywanym do konstruowania
producentów bioetanolu z surowców roślinnych oraz gliceryny [11,12]. H. polymorpha jest również konkurencyjnym
producentem glutationu w stosunku do innych drożdżowych i bakteryjnych producentów [13].
DOSTĘPNE SZCZEPY
Obecnie w badaniach wykorzystywane są trzy szczepy
H. polymorpha o różnym pochodzeniu: DL-1, CBS4732 oraz
NCYC495. Szczepy CBS4732 i NCYC495 wykazują wysoką homologię w sekwencji nukleotydowej genów. Szczep
DL-1 nie krzyżuje się ze szczepami CBS4732 i NCYC495,
natomiast te dwa ostatnie można ze sobą krzyżować [14].
W systematyce drożdży miejsce dla szczepów podanych
jako H. polymorpha nie jest do końca określone. Rodzaj
Hansenula H. i P. Sydow zawiera askosporogenne gatunki
o komórkach kształtu kulistego, owalnego, wydłużonego
lub cylindrycznego. Worki tych gatunków zawierają od 1
do 4 zarodników. Większość gatunków z rodzaju Hansenula
jest heterotallicznych, natomiast H. polymorpha jest również
gatunkiem homotallicznym, zdolnym do przejścia z formy
haploidalnej do diploidalnej [15].
Komórki drożdży H. polymorpha akumulują trehalozę,
jako czynnik ochronny podczas wzrostu w wysokich temperaturach. Termotolerancyjność może być dodatkowo
zwiększona poprzez delecję genu ATH1, kodującego enzym
kwaśną trehalazę lub poprzez nadekspresję genów HSP16
oraz HSP104 kodujących białka szoku cieplnego [10].
Po analizie reasocjacji DNA/DNA zaproponowano likwidację rodzaju Hansenula i zmianę nazwy H. polymorpha
na Pichia angusta, gdyż rodzaj Hansenula różni się od Pichia
tylko zdolnością do asymilacji azotanów jako źródła azotu
[16]. Wielu czołowych ekspertów w dziedzinie taksonomii
drożdży zaakceptowało tę zmianę. Proponowane były również inne nazwy dla tego gatunku: Torulopsis methanothermo,
Hansenula angusta i Ogataea polymorpha [17]. Według ostatnich danych, szczepy H. polymorpha CBS4732 i NCYC495
należą do gatunku Ogataea polymorpha a szczep H. polymorwww.postepybiochemii.pl
pha DL-1 do gatunku Ogataea parapolymorpha (G.I. Naumov,
informacja ustna). W niniejszym przeglądzie używana jest
ogólnie przyjęta nazwa H. polymorpha.
METODY GENETYCZNE
W doświadczeniach genetycznych wykorzystuje się
szczepy CBS4732 i NCYC495 oraz ich pochodne. Szczep
NCYC495 okazał się najlepszym pod względem zdolności
do koniugacji i sporulacji, jednak wykazuje on słaby wzrost
w podłożu z metanolem. Ze szczepu CBS4732 o nieefektywnej sporulacji i koniugacji skonstruowano i wyizolowano
szczepy charakteryzujące się efektywną koniugacją i sporulacją oraz zwiększoną zdolnością do tworzenia czterozarodnikowych worków, umożliwiając tym samym analizę
tetrad. Spośród tych mutantów wyizolowano następnie 30
mutantów auksotroficznych oraz mutanty innych typów
(m.in. o zmienionej morfologii czy też z niezdolnością do
asymilacji różnych źródeł węgla). Większość analizowanych w tych szczepach markerów wykazywała typową
mendlowską segregację podczas mejozy. Częstotliwość
formowania się worków zawierających po 4 spory była w
tym przypadku niższa aniżeli u Saccharomyces cerevisiae, co
świadczy o niższej częstości rekombinacji w trakcie drugiego podziału mejotycznego [14].
Trzeci z przedstawionych szczepów tj. DL-1 okazał się
doskonałym obiektem do prowadzenia badań molekularno-genetycznych. Zalety tego szczepu to najwyższa
szybkość wzrostu oraz wysoka częstość rekombinacji homologicznej [18]. Opracowano i adaptowano wiele metod
badawczych umożliwiających prowadzenie badań molekularnych u drożdży H. polymorpha. Skonstruowano tzw.
kasetę „pop-out”, z genem HpURA3 jako markerem selekcyjnym, wykorzystywaną do pozytywnej selekcji transformantów z użyciem wektorów ekspresyjnych. Pierwotnie
metoda transformacji z wykorzystaniem mutantów ura3 i
genu URA3, jako markera selekcyjnego, opracowana została dla szczepu CBS4732 [19]. Do transformacji wykorzystuje
się także mutanty leu2 i heterologiczny gen LEU2 z S. cerevisiae jako marker selekcyjny [20]. Dostosowano również
metody z wykorzystaniem kilku dominujących markerów
oporności do antybiotyków, takich jak genetycyna (G418)
oraz zeocyna [11]. Transformację prowadzono różnymi
metodami: z wykorzystaniem chlorku litu (LiCl), użyciem
protoplastów w obecności glikolu polietylenowego [21] lub
elektroporacji [22]. Opracowano również metody dysrupcji
genów u H. polymorpha, w tym z wykorzystaniem zmodyfikowanego systemu Cre-loxP [18].
GENOM H. polymorpha
Obecnie znane są sekwencje genów omówionych powyżej 3 szczepów H. polymoprha. Całkowity genom szczepu
CBS4732 został zbadany [23], ale dostęp do tej informacji
nie jest w tej chwili możliwy, ponieważ firma Rhein Biotech GmbH, właściciel sekwencji, utraciła do niej dostęp (M.
Piontek, informacja ustna). Z kolei opis genomu szczepu
DL-1 jest własnością Koreańskiego Instytutu Badawczego
Nauk Biologicznych i Biotechnologii KRIBB (H.A. Kang,
informacja ustna). Dane na temat sekwencji nukleotydów
w genomie szczepu NCYC495 są efektem niedawno zakończonego projektu badawczego jednego z autorów tego przeglądu (A Sibirny), dotyczącego opracowania kompletnej sePostępy Biochemii 59 (1) 2013
kwencji genomu w Joint Genome Institute, US Department
of Energy i są to informacje ogólnodostępne (patrz: http://
genome.jgi-psf.org/Hanpo1/Hanpo1.home.html).
Elektroforeza pulsacyjna DNA 9 różnych szczepów H.
polymorpha wykazała znaczne różnice w ilości chromosomów u poszczególnych szczepów — od 2 do 6. Jednakże na
podstawie otrzymanych wyników nie można wnioskować
o dokładnej ilości chromosomów u badanych drożdży [24].
Elektroforeza pulsacyjna materiału genetycznego H. polymorpha CBS4732 i DL-1 wykazała, że oba szczepy posiadają
po 6 chromosomów o rozmiarach od 0,9 do 1,9 Mb, chociaż
obraz elektroforetyczny tych chromosomów u obu szczepów jest zupełnie inny. Identyczność sekwencji otwartych
ramek odczytu wybranych genów wahała się od 94,5 do
97,2%, ze średnią 96,6%. Świadczy to o bliskim pokrewieństwie obu szczepów. Różnice w sekwencjach są znacznie
bardziej istotne dla 5’ i 3’ sekwencji nietranslacyjnych, które
mogą brać udział w regulacji ekspresji genów.
Sekwencjonowanie materiału genetycznego szczepu
CBS4732 pozwoliło scharakteryzować 8,733 Mb połączonych w 48 kontigów. Sekwencja ta obejmuje około 90%
całego genomu o rozmiarze 9,5 Mb, rozmieszczonego na 6
chromosomach o wielkości od 0,9 do 2,2 Mb. W sekwencjonowanym fragmencie o rozmiarze 8,73 Mb wykazano
obecność 5848 otwartych ramek odczytu dla białek o rozmiarach większych niż 80 aminokwasów. Zidentyfikowano 389 otwartych ramek odczytu dla białek zawierających
mniej niż 100 aminokwasów. 4771 otwartych ramek odczytu (81,6%) wykazuje homologię w stosunku do znanych
białek. Wykazano, że średnia gęstość rozmieszczenia genu
w obrębie genomu, to 1 gen na 1,5 Kb, natomiast białko zawiera średnio 440 aminokwasów. Wykorzystując program
GeneWise wykazano obecność 91 intronów w genomie.
Zidentyfikowano ponadto 80 różnych tRNA odpowiadających wszystkim 20 aminokwasom.
Analiza funkcjonalna genomu (anotacja) umożliwiła podział genów w zależności od prawdopodobnie pełnionych
funkcji: 4% — metabolizm energetyczny, 3% — przekazywanie sygnałów, komunikacja komórkowa, 6% — synteza
białek, 4% — odpowiedź na stres, obrona komórkowa, 9%
— transport, 9% — cykl komórkowy, 17% — obróbka białek, 13% — transkrypcja, 19% — metabolizm [15].
Genom H. polymorpha (NCYC495 leu1.1) ma rozmiar około 8,97 Mb i zawiera 5162 otwartych ramek odczytu (http://
genome.jgi-psf.org/Hanpo1/Hanpo1.home.html). Na podstawie danych sekwencjonowania opracowano system
analizy ekspresji RNA. System ten wykorzystywany jest
obecnie do analizy regulacji transkrypcji u H. polymorpha, a
w szczególności regulacji ekspresji genów w zależności od
źródeł węgla [25].
MECHANIZMY INDUKCJI SYNTEZY
BIAŁEK U H. polymorpha
U H. polymorpha, podobnie jak u innych drożdży metylotroficznych, metanol indukuje syntezę enzymów szlaku metylotroficznego, zlokalizowanych zarówno w cytosolu (dehydrogenaza formaldehydu, dehydrogenaza mrówczanu,
kinaza dihydroksyacetonu, fruktozo-1,6-bisfosfataza), jak i
w peroksysomach (oksydaza alkoholowa, katalaza, syntaza
97
dihydroksyacetonu), a także indukuje wzrost i proliferację
peroksysomów [26]. Przeniesienie komórek z podłoża z
metanolem na podłoże z glukozą lub etanolem powoduje
represję syntezy tych enzymów oraz jednocześnie autofagiczną degradację peroksysomalnych enzymów katabolizmu metanolu [26,27].
Analiza transkrypcyjna genomu H. polymorpha wykazała, że po 2 godzinach od przeniesienia komórek z podłoża
zawierającego glukozę na podłoże z metanolem, 1184 geny
z około 6000 znanych (około 20%) wykazywało co najmniej
dwukrotnie zwiększony poziom ekpresji, z kolei ekspresja
innych 20% genów (1246) uległa dwukrotnemu zmniejszeniu. Najwyższą indukcję ekspresji zaobserwowano dla
genów głównego regulatora metabolizmu metanolu MPP1
(394 razy) i FMD, kodującego dehydrogenazę mrówczanową (347 razy). Indukcja ekspresji pozostałych genów metabolizmu metanolu była znacznie słabsza (do 40 razy). Metanol nieznacznie aktywował ekspresję genów PEX, kodujących białka peroksysomalne (do 5 razy), a także niektórych
genów ATG uczestniczących w peksofagii (także do 5 razy).
Silnie aktywowana była natomiast ekspresja genów kodujących enzymy β-oksydacji kwasów tłuszczowych, szlaku
glioksylowego oraz w szczególnym stopniu (111 razy) mitochondrialnego transportera kreatyniny [28].
Produkt genu MPP1 należy do rodziny białek Zn(II)2Cys6
regulatorów transkrypcji. Mutant mрр1 nie wykazywał
wzrostu na podłożu z metanolem jako jedynym źródle węgla
i energii oraz charakteryzował się silnie obniżonym poziomem białek peroksysomalnych oraz enzymów katabolizmu
metanolu, a jednego z nich, syntazy dihydroksyacetonu, nie
posiadał w ogóle. Dla mutanta mрр1 obecność metanolu w
podłożu nie prowadziła do proliferacji peroksysomów, komórki posiadały tylko po jednym peroksysomie, który nie
ulegał degradacji po przeniesieniu tych komórek na podłoże z glukozą. Mechanizm aktywacji trakskrypcji produktem
genu MPP1 pozostaje jednak niewyjaśniony [29]. Gen MPP1
u H. polymorpha przypomina odkryte w późniejszym terminie czynniki traksrypcyjne innych gatunków drożdży jak
MXR1 P. pastoris [30] i TRM1 C. boidinii [31], które także są
niezbędne dla ekspresji genów metabolizmu metanolu oraz
biogenezy peroksysomów.
KONTROLA GENETYCZNA WĘGLOWEJ
REPRESJI KATABOLICZNEJ U H. polymorpha
Węglowa represja kataboliczna to proces polegający na
tym, że obecność łatwo przyswajalnego substratu węglowego, np. glukozy wywołuje represję syntezy enzymów
potrzebnych do wykorzystania innych potencjalnych substratów [32]. Zarysy mechanizmów represji katabolicznej
poznane są dla drożdży z gatunku S. cerevisiae, jednak praktycznie nie są wyjaśnione dla drożdży metylotroficznych.
U S. cerevisiae represja kataboliczna kontrolowana jest na
poziomie transkrypcji poprzez represory transkrypcyjne
MIG1 oraz MIG2, aktywatory trakskrypcji oraz różne kinazy białkowe [32,33]. Znana jest także istotna rola genu
HXK2 (kodującego heksokinazę 2) w represji katabolicznej
u S. cerevisiae [32].
U H. polymorpha represja kataboliczna indukowana jest
zarówno przez glukozę jak i etanol, przy czym etanol wy-
98
biórczo hamuje wyłącznie syntezę enzymów metabolizmu
metanolu, podczas gdy glukoza dodatkowo hamuje także
syntezę enzymów niezbędnych dla metabolizmu innych alternatywnych substratów węglowych, np. maltozy [34,35].
W przeciwieństwie do H. polymorpha, etanol nie powoduje
represji katabolicznej u S. cerevisiae. Mechanizm represji katabolicznej indukowany etanolem nie został zbadany u H.
polymorpha, w przeciwieństwie do innego gatunku drożdży
metylotroficznych P. methanolica (patrz niżej). U H. polymorpha badano wpływ glukozy na syntezę enzymów katabolizmu metanolu i maltozy. Istnieje wiele doniesień o mutantach H. polymorpha zdolnych do syntezy peroksysomów i
enzymów metabolizmu metanolu w podłożu z glukozą, bez
metanolu [36-39].
Jednakże właściwości niektórych mutantów nie były do
końca zbadane, stąd też nie zostały zidentyfikowane uszkodzone geny [36,38]. U jednego z mutantów z uszkodzoną
represją pokazano, że mutacja ta jest recesywna, monogenowa i oznaczono ją jako glr1. Mutacja ta prowadziła do
syntezy enzymów metabolizmu metanolu, ekspresji mRNA
oksydazy alkoholowej oraz syntezy peroksysomów na podłożu z glukozą, ale bez metanolu. Mutacja ta nie wpływała
na zmiany w represji enzymów szlaku metylotroficznego
przez etanol, co świadczy o istnieniu u H. polymorpha dwóch
odrębnych mechanizmów represji katabolicznej indukowanych glukozą i etanolem [37]. W innej pracy dowiedziono, że glukozowa represja kataboliczna enzymów szlaku
metylotroficznego (oksydazy alkoholowej i katalazy) była
zniesiona u podwójnego mutanta H. polymorpha z defektem
heksokinazy i glukokinazy (dwóch enzymów katalizujących fosforylację glukozy). U pojedynczych mutantów, z
defektem glukokinazy lub heksokinazy glukoza w dalszym
ciągu powodowała represję enzymów metabolizmu metanolu. Dla zniesienia represji katabolicznej indukowanej
przez fruktozę wystarczył tylko defekt heksokinazy (enzymu katalizującego fosforylację fruktozy). Można wnioskować, że glukozowa czy fruktozowa represja kataboliczna u
H. polymorpha wymaga obecności odpowiednich enzymów
katalizujących fosforylację tych cukrów [40]. Wprowadzenie natywnego genu glukokinazy do podwójnego mutanta
z blokiem glukokinazy i heksokinazy przywracało zdolność
do fosforylacji glukozy i represję kataboliczną w podłożu
z tym cukrem [41], a genu heksokinazy, represję w podłożach z glukozą lub fruktozą [42]. Z kolei wprowadzenie
genu glukokinazy H. polymorpha do potrójnego mutanta S.
cerevisiae z defektem trzech enzymów, dwóch heksokinaz
i glukokinazy, nie przywracało represji katabolicznej, co
świadczy o różnych rolach enzymów fosforylujących glukozę w represji katabolicznej drożdży metylotroficznych i
piekarskich [41].
Otrzymano również mutanta H. polymorpha gcr1 ze zniesioną represją kataboliczną. Mutant ten charakteryzował
się plejotropowym uszkodzeniem metabolizmu, zwłaszcza
konstytutywną syntezą enzymów peroksysomalnych (oksydazy alkoholowej i katalazy) i konstytutywną proliferacją
peroksysomów na podłożu z glukozą (ale nie etanolem);
zmniejszeniem puli intermediatów glikolizy przy niezmienionym poziomie enzymów glikolitycznych; naruszeniem
represji katabolicznej enzymów cytosolowych tj. dehydrogenaz: formaldehydu i mrówczanu oraz α-glukozydazy. Inwww.postepybiochemii.pl
teresującym jest, że u mutanta gcr1 transport glukozy został
uszkodzony, szczególnie przy niskim stężeniu tego cukru,
dlatego nie można wykluczyć, ze białko Gcr1 jest transporterem glukozy. Można wywnioskować również, że do
represji katabolicznej wymagany jest efektywny transport
i fosforylacja cukru. U mutanta gcr1 wykazano zaburzenie
represji katabolicznej również przy wysokim stężeniu glukozy w podłożu, chociaż pobieranie tego cukru z podłoża
zachodziło porównywalnie do dzikiego szczepu. Sugerowano więc, że białko Gcr1, oprócz funkcji transportowych,
uczestniczy w przekazywaniu sygnału regulatorowego w
procesie represji katabolicznej. Ponadto mutacja gcr1 nie
uszkadzała inicjowanej przez glukozę autofagicznej degradacji peroksysomów (peksofagii). Można wnioskować zatem, że rozpoznawanie glukozy w procesach inicjowanych
przez glukozę może odbywać się różnymi sposobami [39].
Zidentyfikowano również dwa nowe geny H. polymorpha HXS1 i HXT1, kodujące receptor heksoz i transporter
glukozy. Podobnie do innych sensorów, sensor Hxs1 okazał
się niezbędnym do indukcji przez glukozę syntezy transportera glukozy Hxt1. U mutanta z delecją genu HXS1 nie
zaobserwowano zaburzeń represji katabolicznej czy autofagicznej degradacji peroksysomów w podłożu z glukozą,
natomiast zaburzona była represja w podłożu z fruktozą.
Zamiana jednej konserwatywnej reszty aminokwasu w białku Hxs1 (R203K) przekształcała białko do konstytutywnie
aktywnej formy. Prowadziło to do zwiększenia oporności
wobec antymicyny A, przypuszczalnie jako konsekwencja
nadprodukcji transporterów heksoz, w tym łącznie ze zidentyfikowanym Hxt1 [43].
Reasumując, można stwierdzić, że H. polymorpha posiada
kilka receptorów i transporterów heksoz. Zidentyfikowane
receptory uczestniczą w represji katabolicznej, jednocześnie
nie biorą udziału w glukozowej autofagicznej degradacji
peroksysomów (peksofagii). Przypuszczalnie rozpoznawanie glukozy w procesach represji katabolicznej i peksofagii
zachodzi z udziałem różnych białek.
W celu wyjaśnienia innych elementów mechanizmu represji katabolicznej u H. polymorpha, zidentyfikowano homologi represorów transkrypcyjnych S. cerevisiae MIG1, MIG2
i TUP1, które u drożdży piekarskich pełnią istotną funkcję
w regulacji represji katabolicznej, oraz wyizolowano odpowiednie mutanty delecyjne. Niespodziewanie okazało się,
że u pojedynczego mutanta mig1 oraz podwójnego mutanta
mig1 mig2, a także tup1 represja kataboliczna syntezy oksydazy alkoholowej i katalazy w podłożu z glukozą była tylko nieznacznie zaburzona. Jednocześnie powyższe mutacje
prowadziły do silnego uszkodzenia peksofagii inicjowanej
zarówno glukozą, jak i etanolem. Uzyskane dane wskazują
na istotne różnice w mechanizmach represji katabolicznej
między drożdżami piekarskimi i metylotroficznymi. U H.
polymorpha dla represji katabolicznej ważnym wydaje się
prawidłowe funkcjonowanie transporterów, receptorów i
enzymów fosforylujących heksozy. Mechanizmy uczestniczące w przenoszeniu sygnału od fosforylowanych heksoz
do promotorów genów wrażliwych na kataboliczną represję pozostają niewyjaśnione. Prawdopodobnie represja nie
zachodzi z udziałem homologów represorów transkrypcyjnych S. cerevisiae MIG1, MIG2 i TUP1 [44]. Tym sposobem
Postępy Biochemii 59 (1) 2013
wyjaśnienie molekularnych mechanizmów represji katabolicznej u drożdży metylotroficznych pozostaje wciąż aktualnym wyzwaniem dla naukowców.
METABOLIZM AZOTANÓW ORAZ
AZOTOWA REPRESJA KATABOLICZNA
Asymilacyjna redukcja azotanów jest główną drogą przemiany azotowych związków nieorganicznych do związków
organicznych. Tradycyjnie, genetyczne, biochemiczne i molekularne badania asymilacji azotanów prowadzone są na
roślinach wyższych, grzybach nitkowatych oraz bakteriach.
Asymilacja azotanów u grzybów zachodzi dwuetapowo:
azotany redukowane są do azotynów w reakcji katalizowanej przez reduktazę azotanową, następnie azotyny do
jonów amonowych w reakcji katalizowanej przez reduktazę
azotynową. Reduktaza azotanowa to złożony enzym katalizujący dwuelektronowe przekształcenie azotanów do azotynów, wykorzystujący NAD(P)H jako donor elektronów
oraz zawierający FAD, żelazo hemowe i molibdenopterynę
jako grupy prostetyczne. Reduktaza azotanowa jest czynnikiem limitującym wzrost wszystkich organizmów asymilujących azotany. Reduktaza azotynowa katalizuje sześcioelektronową redukcję azotynów do jonów amonowych i u
grzybów w tym procesie uczestniczy NAD(P)H. Reduktaza
azotynowa zawiera dwie grupy prostetyczne: centrum żelazowo-siarkowe, sirohem i dodatkowo u grzybów i bakterii
FAD [45].
Wiadomo, że wiele gatunków drożdży potrafi asymilować azotany, jednak do niedawna nie były to organizmy
wykorzystywane do badania tego procesu. Jedynym gatunkiem drożdży, który w ostatnich latach stał się obiektem badań molekularnych mechanizmów asymilacyjnej redukcji
azotanów jest H. polymorpha. Wykazano, że sposób asymilacji azotanów u H. polymorpha jest taki sam, jak u grzybów
nitkowatych Aspergillus nidulans i Neurospora crassa. Wymienione mikroorganizmy potrzebują do tego procesu syntezy
transporterów azotanów, reduktazy azotanowej i azotynowej. Do tego czasu zidentyfikowano u H. polymorpha tylko
jeden gen YNT1, kodujący białko transporterowe o wysokim powinowactwie do azotanów [45]. Białko Ynt1 jest
transporterem azotanów i odgrywa główną rolę w regulacji
asymilacji azotanów z udziałem mechanizmu potranslacyjnego. W przypadku braku azotanów powstają koniugaty
Ynt1 z ubikwityną, które szybko ulegają degradacji w wakuolach. Ostatnio wykazano, że delecja centralnej domeny
hydrofilowej białka Ynt1 (zawierającej sekwencję podobną
do PEST) prowadzi do defektu w procesie wchłaniania białka Ynt1 przez wakuole i jego późniejszej degradacji. Degradacja Ynt1 odbywa się w obecności glutaminy i proces ten
zachodzi niezależnie od represji białka Ynt1, także wywoływanej glutaminą [46].W warunkach deficytu azotu amonowego zachodzi fosforylacja białka Ynt1, transportera azotanów, która jest niezbędna do indukcji genów metabolizmu
azotanów. Fosforylacja chroni białko Ynt1 przed degradacją
i umożliwia jego włączenie do błony cytoplazmatycznej komórki. Mechanizmy transportu azotynów, które również
mogą być źródłem azotu u H. polymorpha, nie są do końca
poznane [47].
Pierwszy etap asymilacji azotanów to ich redukcja do
azotynów, katalizowana przez reduktazę azotanową, kodo-
99
waną u H. polymorpha przez gen YNR1. Białko Ynr1 H. polymorpha wykazuje wysoką homologię do reduktazy azotanowej u roślin i innych gatunków grzybów. Reduktaza azotanowa H. polymorpha potrzebuje kilku kofaktorów, m.in.
molibdenopteryny, hemu i FAD. W przeciwieństwie do
transporterów azotanów Ynt1, reduktaza azotynowa Ynr1
H. polymorpha nie jest inaktywowana przez zredukowane
źródła azotu (jony amonu, glutamina). Reduktaza azotynowa u H. polymorpha kodowana jest przez gen YNI1 [48]. Geny
H. polymorpha YNR1, YNI1, YNT1, kodujące odpowiednio
reduktazę azotanową, reduktazę azotynową i białko transporterowe azotanów, tworzą klaster, ale ich transkrypcja
zachodzi niezależnie. Zidentyfikowano również dwa geny
regulatorowe YNA1 i YNA2, kodujące białka należące do
rodziny Zn(II)2Cys6. Mutacje w genach regulatorowych prowadzą do niezdolności do asymilacji azotanów i indukcji
ekspresji genów strukturalnych. Białko Yna1 jest potrzebne
do indukcji białka Yna2, podczas gdy Yna2 nie bierze udziału w aktywacji transkrypcji Yna1 [49]. Ostatnie badania
wykazały, że u H. polymorpha również Ure2 bierze udział
w azotowej represji katabolicznej, podobnie jak u S.cerevisiae. Białko to ulega fosforylacji w obecności preferowanego
źródła azotu oraz defosforylacji w przypadku jego braku.
Ponadto zidentyfikowano również u H. polymorpha czynniki HpGat1, HpGat2 oraz HpGzf3 o znacznym podobieństwie do czynników GATA u S. cerevisiae. Prawdopodobnie
HpUre2 funkcjonuje tak jak u S. cerevisiae, pozostawiając
czynniki GATA na zewnątrz jądra komórkowego podczas
wzrostu na podłożu zawierającym preferowane źródła azotu i blokując tym samym ekspresję genów związanych z metabolizmem gorszych źródeł azotu, np. azotanów. Wyniki te
świadczą o tym, że system regulacji metabolizmu azotanów
u drożdży H. polymorpha jest bliższy do S. cerevisiae niż do
grzybów nitkowatych A. nidulans i N. crassa [48].
Prawdopodobnie, przypadkowa integracja nie zachodzi wskutek częstej rekombinacji sekwencji genetycznych
wektora i genomowego DNA. Przykładowo w przypadku
wykorzystania wektorów z promotorami FMD, MOX, TPS1
(odpowiednio genów dehydrogenazy mrówczanowej, oksydazy alkoholowej i syntazy 6-fosfotrehalozy) rekombinacja
zachodziła w odpowiednich genach chromosomalnych [50].
Jednakże wysokokopijność włączonego wektora nie zawsze
prowadzi do nadprodukcji docelowego białka, zwłaszcza
w przypadku białek sekrecyjnych. Na przykład dla osiągnięcia maksymalnej produkcji glukoamylazy Schwanniomyces occidentalis wystarczającym okazało się wstawienie
tylko czterech kopii odpowiedniego genu wchodzącego w
skład wektora HARS [3]. Maksymalna produkcja urokinazowego aktywatora plazminogenu człowieka (u-PA) i albuminy surowicy człowieka HSA w szczepie DL-1 osiągnięta
została przez włączenie jednej lub dwóch kopii wektora
ekspresyjnego do genomu [18]. Ukierunkowana integracja
u H. polymorpha wymaga znacznie dłuższych homologicznych sekwencji, niż to opisano dla S. cerevisiae [3]. Wektory,
które niosą zestaw składający się z kilku subtelomerowych
sekwencji ARS okazały się zdolnymi do homologicznej integracji do genomu, co prowadzi do włączenia pojedynczych
lub wielokrotnych powtórzeń tandemowych do odpowiednich telomerowych miejsc genomu [51]. Skonstruowano
zestaw wektorów do włączania heterologicznych sekwencji
do locus rybosomalnego DNA H. polymorpha. Zidentyfikowano również sekwencje rybosomalnego DNA odpowiedzialne za optymalną integrację i ekspresję. Sekwencje te
zawarte są w integracyjnych wektorach ekspresji i wchodzą
w skład systemu zwanego Co-MedTM [50].
Na podstawie obecnych danych nie można jednak stworzyć modelu mechanizmu regulacji ekspresji genów asymilacji azotanów w zależności od czynników środowiskowych. Z punktu widzenia fizjologii, regulacja syntezy enzymów szlaku asymilacji azotanów przedstawia się bardzo
prosto. W celu syntezy białek biorących udział w asymilacji
azotanów, niezbędny jest induktor — azotan. Azotany są
wtórnymi źródłami azotu, podczas gdy jony amonu i glutamina pierwotnymi. W obecności pierwotnych źródeł azotu, enzymy asymilacji azotanów nie powstają, a te istniejące
ulegają degradacji.
P. pastoris to jeden z najbardziej popularnych organizmów wykorzystywanych do produkcji białek heterologicznych. Efekty ostatnich badań wskazują na możliwość
zastosowania drożdżowego systemu ekspresji do syntezy
biofarmaceutyków, jako alternatywy dla bakteryjnych systemów ekspresji z wykorzystaniem E. coli. Spośród różnych
gatunków drożdży metylotroficznych, P. pastoris jest najczęściej używana jako platforma ekspresji [52]. Do 2007 roku u
P. pastoris sklonowano i eksprymowano ponad 600 genów
[53]. W bazie PubMed dla hasła P. pastoris pojawia się 3800
odniesień, podczas gdy dla hasła H. polymopha ukazuje się
zaledwie 600 źródeł. Dla porównania dla S. cerevisiae istnieje ponad 98000 odniesień. Jednak zarówno w przypadku P.
pastoris, jak i H. polymorpha większość publikacji dotyczy
heterologicznej produkcji białek, natomiast w przypadku
drożdży piekarskich prac takich jest niewiele. W niedawno
opublikowanych pracach przeglądowych można odnaleźć
metody zarówno genetyki klasycznej jak i molekularnej dla
P. pastoris, niezbędne dla otrzymania mutantów, hybrydyzacji, analizy segregacji, konstruowania kaset ekspresyjnych i efektywnej produkcji białek heterologicznych [54,55].
Popularność P. pastoris bazuje na kilku zaletach tego
organizmu: prostota manipulacji genetycznych, obecność
efektywnego systemu wektor-gospodarz, w tym, ściśle
regulowanego i silnie indukowanego promotora AOX1
oksydazy alkoholowej, zdolność do tworzenia białek o prawidłowej strukturze przestrzennej, w tym tworzenie wiązań
H. polymorpha JAKO SYSTEM produkcji
WŁASNYCH I HETEROLOGICZNYCH BIAŁEK
H. polymorpha, jak przedstawiono wyżej, jest jednym z
dwóch gatunków drożdży metylotroficznych (oprócz P. pastoris) wykorzystywanych jako systemy do syntezy białek
heterologicznych (obcych), ale także własnych białek o znaczeniu przemysłowym. Do ekspresji używane są stabilne
wektory zdolne do integracji z genomem [3]. Tradycyjnie
do transformacji wykorzystywano koliste plazmidy, zawierające autonomicznie replikujące się sekwencje S. cerevisiae
(ARS) lub H. polymorpha (HARS), które z reguły włączają
się do genomu. Taka integracja może występować w ciągu
wielu generacji, w rezultacie czego mogą powstawać transformanty posiadające nawet do 100 kopii plazmidu integracyjnego w postaci powtórzeń tandemowych [3,18].
100
Pichia pastoris JAKO NAJBARDZIEJ POPULARNY
PRODUCENT BIAŁEK HETEROLOGICZNYCH
www.postepybiochemii.pl
dwusiarczkowych, a także inne potranslacyjne modyfikacje
charakterystyczne dla eukariontów. Wykorzystanie promotora AOX1 do syntezy obcych białek u P. pastoris umożliwia
osiągnięcie wysokiej biomasy (ponad 130 g suchej masy na
litr), prawdopodobnie na skutek niskiego zapotrzebowania
energetycznego podczas wzrostu na metanolu [56]. Zdolność do efektywnej sekrecji białek heterologicznych oraz
niski poziom wydzielania białek endogennych do podłoża
to jeszcze jedna zaleta P. pastoris istotnie ułatwiająca oczyszczanie zrekombinowanego produktu [57]. Na drodze inżynierii genetycznej skonstruowano także szczepy P. pastoris
ze „zhumanizowanym” sposobem glikozylacji heterologicznych białek sekrecyjnych, co zwiększa możliwość wykorzystania P. pastoris do produkcji biofarmaceutyków [58].
Genom P. pastoris został zsekwencjonowany (http://ergo.
integratadgenomics.com/ERGO/) [57,59], dzięki czemu
możliwe są dalsze udoskonalenia w otrzymywaniu producentów białek z wykorzystaniem metod inżynierii metabolicznej i biologii systemowej. Genom P. pastoris o wielkości 9,43 Mb, zawiera 41,1% par zasad GC, a łączna liczba
otwartych ramek odczytu to 5313 [59]. U P. pastoris, po raz
pierwszy u drożdży metylotroficznych, zbadano całkowitą
sekwencję mitochondrialnego DNA. Kolista cząsteczka mitochondrialnego DNA o wielkości 35,7 kbp zawiera 15 genów kodujących białka, 2 rRNA i 25 tRNA loci [60].
Ze względu na liczne podobieństwa systemów ekspresji
P. pastoris i H. polymorpha porównano ich efektywność badając syntezę dwóch heterologicznych białek: fragmentu NK1
(22 kDa) czynnika wzrostu hepatocytów człowieka i domeny zewnątrzkomórkowej (28 kDa) czynnika tkankowego
myszy (MTF). Wykazano istotną przewagę P. pastoris, związaną z wyższą biomasą, większą ilością produktu końcowego, oraz mniejszą degradacją eksprymowanych białek heterologicznych [61]. Ostatnio eksprymowano również gen
((L1/L2 (ChiΔH-L2) syntezujący białko ludzkiego wirusa
HPV i w tym przypadku także zaobserwowano wyższe stężenie produktu końcowego przy wykorzystaniu systemu
ekspresji P. pastoris w porównaniu do H. polymorpha [62].
Oczywistym jest, że na przykładzie trzech białek nie
można wysuwać dalekosiężnych wniosków, można jednak
stwierdzić, że z użyciem P. pastoris łatwiej i szybciej udaje
się uzyskać efektywnych nadproducentów białek heterologicznych. Ponadto, firma Invitrogen dostarcza zestawy
szczepów tzw. „biorców” (komórek zdolnych do pobrania
egzogennego materiału genetycznego) oraz wektory potrzebne do heterologicznej ekspresji u P. pastoris, podczas
gdy nie są one dostępne dla H. polymorpha. Niemniej jednak H. polymorpha ma również swoje zalety. Jak przedstawiono powyżej, drożdże te są bardziej termotolerancyjne,
co pozwala zwiększyć ekonomiczność procesów, wskutek
zmniejszenia kosztów chłodzenia bioreaktorów, a także
produkować białka o bardziej stabilnej strukturze [55,61].
Poza tym, heterologiczną ekspresję u dzikiego szczepu H.
polymorpha i mutanta gcr1 pod kontrolą promotora MOX
można indukować glicerolem, glukozą lub ksylozą, substratami, które w przeciwieństwie do metanolu, nie są toksyczne ani łatwopalne [63].
Pichia methanolica
P. methanolica MH4 jest szczepem haploidalnym, zdolnym do diploidyzacji. Diploidalne komórki mogą rozmnażać się wegetatywnie przez dłuższy czas na podłożu
minimalnym. Po przeniesieniu komórek do podłoża Rg
ułatwiającego sporulację zachodzi obfita sporulacja, w wyniku której powstaje do 90% worków ze sporami, z których
większość zawiera po 4 zarodniki. Wegetatywne komórki diploidalne mogą segregować chromosomy w wyniku
spontanicznej haploidyzacji. Proces ten indukowany jest
promieniowaniem γ i w optymalnych warunkach, do 10%
komórek przekształca się w aneuploidy. Powstałe aneuploidy tworzą wolno rosnące kolonie. Cecha ta ułatwia identyfikację aneuploidów i może być wykorzystywana do lokalizacji markerów na chromosomach [54].
CHROMOSOMY, GENY I MARKERY GENETYCZNE
Elektroforeza pulsacyjna w systemie CHEF (CountourСlamped Homogenous Electrophoresis Field) umożliwiła u
szczepów P. methanolica MH4 i NRRL Y-7685 identyfikację 4
fragmentów DNA o rozmiarach 6; 4,2; 3,6 i 3,1 Mb. Mutanty
auksotroficzne izolowane ze szczepów MH4 i NRRL Y-7685
łatwo się krzyżują, a powstające diploidy obficie sporulują
na podłożu Rg tworząc worki zawierające przeważnie po 4
spory. Grupy genów sprzężonych u P. methanolica zidentyfikowano za pomocą analizy tetrad i indukowanej haploidyzacji. Mapowanie za pomocą analizy tetrad wykonano dla
około 30 markerów (mutacje auksotroficzne, mutacje locus,
mutacje uszkadzające utylizację związków jedno i dwuwęglowych). W rezultacie zidentyfikowano 4 centromery, co
odpowiada czterem chromosomom i jednemu fragmentowi
chromosomowemu, prawdopodobnie dystalnej części jednego z chromosomów [64]. Uzyskane tym sposobem dane
mapowania genetycznego dobrze korelują z wynikami
elektroforezy pulsacyjnej [54]. Mapę genetyczną P. methanolica przedstawiono na Ryc. 2.
GENETYCZNA KONTROLA METABOLIZMU METANOLU
U P. methanolica występują takie same enzymy metabolizmu metanolu, jak i u innych drożdży metylotroficznych
Rycina 2. Mapa genetyczna drożdży Pichia methanolica MH4. Linie ciągłe — położenie genów określone na podstawie analizy tetrad; linie przerywane — określone na podstawie haploidyzacji indukowanej; koła — oznaczają centromery.
Postępy Biochemii 59 (1) 2013
101
[2,65,66]. Istnieje ogólny pogląd, że energia potrzebna do
wzrostu metylotroficznego powstaje wyłącznie w szlaku utleniania formaldehydu do CO2 w rekacjach katalizowanych przez dehydrogenazę formaldehydu zależną od
NAD i GSH oraz dehydrogenazę mrówczanową zależną od
NAD [6]. Dane te nie są zgodne z szeregiem spostrzeżeń
dokonanych u P. methanolica i H. polymorpha. Wykazano, że
2-fluorooctan hamuje wzrost dzikiego szczepu P. methanolica, a malonian (inhibitor dehydrogenazy bursztynianowej)
blokuje wzrost mutanta P. methanolica icl1 z defektem liazy izocytrynianowej na podłożu agarowym z metanolem,
etanolem i glicerolem, ale nie z glukozą. Stwierdzono, że
zdolność malonianu do hamowania wzrostu na podłożu
z metanolem zależy od obecności markera icl1. Uzyskano również mutanty H. polymorpha z całkowitym brakiem
aktywności dehydrogenaz formaldehydu i mrówczanu i
wykazano, że mutanty te są zdolne do wzrostu w hodowli
ciągłej z metanolem jako jedynym źródłem węgla i energii.
Powyższe obserwacje pozwalają na wysnucie hipotezy, że
energia potrzebna do wzrostu drożdży metylotroficznych
pochodzi głównie z asymilacji formaldehydu w szlaku ksylulozomonofosforanowym oraz w cyklu kwasów trójkarboksylowych [64].
Wiadomo, że metanol silnie indukuje syntezę enzymów
katabolizmu metanolu, a glukoza i etanol to korepresory
tego procesu, powodujące również kataboliczną inaktywację białek peroksysomalnych metabolizmu metanolu wskutek autofagicznej degradacji peroksysomów (peksofagii)
[27]. Drożdże P. methanolica stały się obiektem badań niektórych aspektów regulacji metabolizmu metylotroficznego. Analizowano następujące problemy:
• identyfikację intermediatów katabolizmu etanolu, powodujących represję kataboliczną oraz autofagiczną degradację enzymów metabolizmu metanolu,
• identyfikację genów kontrolujących represję kataboliczną.
IDENTYFIKACJA INTERMEDIATÓW
KATABOLIZMU ETANOLU POWODUJĄCYCH
REPRESJĘ KATABOLICZNĄ I INAKTYWACJĘ
ENZYMÓW SZLAKU METYLOTROFICZNEGO
W celu identyfikacji intermediatów metabolizmu etanolu
uzyskano mutanty P. methanolica z defektem poszczególnych etapów katabolizmu tego dwuwęglowego substratu.
Izolowano mutanty P. methanolica niezdolne do wzrostu na
podłożu z etanolem jako jedynym źródłem węgla. Wszystkie 24 mutanty okazały się także niezdolne do wzrostu na
podłożu z octanem, a jednocześnie wzrost na podłożu z metanolem i substratami wielowęglowymi zachodził normalnie. Mutacje te były recesywne i podzielono je na 4 grupy
komplementacji. U przedstawicieli poszczególnych grup
komplementacji zaobserwowano brak aktywności specyficznych enzymów metabolizmu związków dwuwęglowych: liazy izocytrynianowej, syntazy jabłczanowej, karboksykinazy fosfoenolopirogronianowej i dehydrogenazy
jabłczanowej. Otrzymane mutacje opisano odpowiednio
jako: icl1, mls1, pck1, mdd1 [64].
W innej serii badań wyizolowano z kolei 106 mutantów
opornych na 2-fluorooctan, niezdolnych do utylizacji etano-
102
lu i octanu jako jedynych źródeł węgla. Mutacje te okazały
się recesywnymi i podzielono je na 3 grupy komplementacji. U przedstawicieli każdej z grup wykazano brak aktywności syntazy acetylo-CoA. Mutacje oznaczono jako: acs1,
acs2, acs3. Nie znaleziono jednak żadnego sprzężenia między mutacjami tych grup komplementacji [67].
Spośród mutantów P. methanolica opornych na alkohol
allilowy zidentyfikowano szczepy z obniżoną 30-40-krotnie
aktywnością dehydrogenazy alkoholowej. Mutacja ta była
recesywna, monogenowa i oznaczono ją jako adh1. Z tego
szczepu izolowano podwójnego mutanta oznakowanego
jako adh1 adh2 z całkowitym brakiem aktywności dehydrogenazy alkoholowej [7]. Ponadto wyizolowano mutanta
aldX zdolnego do wzrostu na podłożu z octanem, ale nie
etanolem jako jedynym źródłem węgla [64].
Badania nad wpływem etanolu i octanu na represję i inaktywację oksydazy alkoholowej i katalazy u mutantów i
dzikich szczepów P. methanolica wykazały, że octan jest
bezpośrednim efektorem (korepresorem) wywołującym
represję kataboliczną enzymów metabolizmu związków
jednowęglowych w podłożu z etanolem, natomiast bezpośrednim efektorem katabolicznej inaktywacji enzymów peroksysomalnych indukowanych etanolem jest kwas glioksalowy [7].
IDENTYFIKACJA GENÓW BIORĄCYCH
UDZIAŁ W REPRESJI KATABOLICZNEJ
Hodowla na podożu z metanolem pozwoliła na wyizolowanie mutantów P. methanolica opornych na 2-deoksyglukozę (niemetabolizowany analog glukozy), u których została uszkodzona represja kataboliczna. Analiza genetyczna
umożliwiła ich podział na 4 grupy: gcr1, gcr2 (mutacje recesywne), GCR3c i GCR4c (mutacje dominujące). Zakłada się,
że geny GCR1 i GCR2 działają jako negatywne, natomiast
geny GCR3 i GCR4, jak pozytywne regulatory syntezy enzymów metabolizmu metanolu. Część zidentyfikowanych
mutacji prowadziła do uszkodzenia tylko represji katabolicznej, dlatego do syntezy enzymów szlaku metylotroficznego potrzebny był induktor (metanol), podczas gdy inne
mutacje powodowały konstytutywną syntezę enzymów
metabolizmu metanolu w podłożu z glukozą bez induktora.
Etanol i glukoza powodowały represję syntezy tych enzymów u wszystkich zbadanych mutantów [64,66,68].
W celu izolacji mutantów P. methanolica z defektem represji katabolicznej indukowanej etanolem wykorzystano
następujące podejście: etanol powoduje represję syntezy
oksydazy alkoholowej u mutanta icl1 pozbawionego liazy
izocytrynianowej, dlatego mutant ten nie rośnie na podłożu z mieszaniną metanolu i etanolu. Wyizolowano mutanty
icl1 zdolne do wzrostu na mieszaninie tych dwóch alkoholi.
Zidentyfikowano u nich recesywną, monogenową mutację
oznaczoną jako ecr1. Glukozowa represja kataboliczna u
tych mutantów nie była uszkodzona. Inaktywacja kataboliczna oksydazy alkoholowej i katalazy w podłożu z etanolem także nie była zaburzona [64,66]. Represja etanolowa
była naruszona także u mutantów adh1 charakteryzująych
się 30-40 –krotnie obniżoną aktywnością dehydrogenazy alkoholowej. Represja glukozowa u tych mutantów działała
prawidłowo [7].
www.postepybiochemii.pl
Wpływ różnych źródeł węgla na syntezę oksydazy alkoholowej badano u dzikiego szczepu oraz u mutantów gcr1
(defekt glukozowej represji katabolicznej), oraz ecr1 (defekt
etanolowej represji katabolicznej). Substraty węglowe powodujące represję syntezy oksydazy alkoholowej podzielono na 4 grupy. Heksozy i ksyloza tworzą pierwszą grupę, w
której represujące działanie tych cukrów naruszone jest tylko u mutanta gcr1. Represja przez substraty (etanol, octan,
2-oksoglutaran) należące do drugiej grupy naruszona była
tylko u mutanta ecr1. Represja przez trzecią grupę, do których należy malonian i dihydroksyaceton nie została osłabiona u obu mutantów gcr1 i ecr1. Do czwartej grupy należą
związki (L-arabinoza, sorbitol, xylitol, celobioza), których
działanie represyjne było częściowo osłabione u mutantów
obu grup. Wyciągnięto wniosek o istnieniu u P. methanolica
niezależnych mechanizmów represji katabolicznej zależnych od natury korepresora (substratu węglowego) [64].
Na podstawie analizy biochemicznej mutantów gcr1,
gcr2, GCR2c, GCR4c i ecr1 wykazano, że fosfofruktokinaza i
dehydrogenaza 2-oksoglutaranu uczestniczą odpowiednio
w glukozowej i etanolowej represji katabolicznej. Otrzymane dane świadczą także o różnicach genetycznych pomiędzy mechanizmami represji katabolicznej i inaktywacji katabolicznej (peksofagia) enzymów metabolizmu metanolu
[66].
Szczegółowe badania właściwości mutanta ecr1 z zaburzoną etanolową represją kataboliczną, nieoczekiwanie wykazały, że u tego mutanta, w przeciwieństwie do szczepu
dzikiego, metanol powoduje prawie całkowity blok syntezy
indukowanych etanolem glioksysomowych enzymów metabolizmu dwuwęglowego, liazy izocytrynianowej i syntazy jabłczanowej. Podczas hodowli mutanta ecr1 i dzikiego
szczepu na podłożu z mieszaniną metanolu i etanolu zaobserwowano wzrost diauksyczny. Szczep dziki najpierw metabolizował etanol i syntetyzował enzymy glioksysomalne
biorące udział w metabolizmie substratów dwuwęglowych,
podczas gdy mutant ecr1 najpierw metabolizował metanol
i syntetyzował peroksysomalne enzymy biorące udział w
metabolizmie związków jednowęglowych. Przypuszczono,
że kolejność metabolizmu metanolu i etanolu w mieszaninie
tych związków i syntezy odpowiednich enzymów zależy
od allelicznego stanu genu regulatorowego ECR1. Obecność
dzikiego allelu warunkuje w pierwszej kolejności biogenezę
mikrociał glioksysomów, podczas gdy u mutanta ecr1 peroksysomów. Mechanizm działania genu ECR1 pozostaje
niewyjaśniony. W przeciwieństwie do ecr1, mutacja adh1
(obniżona aktywność dehydrogenazy alkoholowej) umożliwia jednoczesną obecność w komórkach enzymów metabolizmu substratów jedno i dwuwęglowych, dlatego też
wzrost mutanta adh1 na podłożu zawierajacym mieszaninę
etanolu i metanolu zachodzi bez diauksji. Komórki mutanta, rosnące na podłożu z etanolem, posiadały hybrydowe
mikrociała, glioksyperoksysomy, zawierające jednocześnie
oksydazę alkoholową i syntazę jabłczanową, co umożliwiało jednoczesną utylizację etanolu i metanolu [67].
Jak widać, P. methanolica posiada skomplikowany system
regulacji represji katabolicznej podczas wzrostu na podłożach zawierających różne substraty węglowe, w której
Postępy Biochemii 59 (1) 2013
uczestniczy kilka genów regulatorowych o zróżnicowanych
funkcjach.
U P. methanolica odkryto nowe zjawisko metanolowej
katabolicznej inaktywacji enzymów metabolizmu substratów dwuwęglowych (liazy izocytrynianowej, syntazy
bursztynianowej, dehydrogenazy alkoholowej, dehydrogenazy aldehydu octowego). Dodanie metanolu do hodowli
komórek w podłożu z etanolem powodowało gwałtowny
spadek aktywności powyższych enzymów. Pełna inaktywacja następowała po 5-7 godzinach po dodaniu metanolu.
Formaldehyd i mrówczan także powodował inaktywację
enzymów katabolizmu etanolu. Mieszanina etanolu i metanolu nie powodowała inaktywacji liazy izocytrynianowej i
dehydrogenazy alkoholowej u dzikiego szczepu, natomiast
efektywnie inaktywowała te enzymy u mutanta ecr1 z defektem etanolowej represji katabolicznej. Prawdopodobnie
rozpoczęcie procesu rozkładu metanolu jest niezbędne do
zainicjowania inaktywacji enzymów metabolizmu dwuwęglowych substratów[64].
KONTROLA GENETYCZNA SYNTEZY
ENZYMÓW METABOLIZMU METANOLU
P. methanolica posiada dwa geny kodujące oksydazę
alkoholową, MOD1 i MOD2. Oba produkty tych genów
przypadkowo ze sobą asocjują tworząc aktywny oktamer,
co prowadzi do powstania 9 różnych izozymów oksydazy
alkoholowej [69]. Na podstawie ekspresji heterologicznego
genu kwaśnej fosfatazy drożdży piekarskich S. cerevisiae
badano właściwości regulacji ekspresji promotorów genów
MOD1 i MOD2. Promotor MOD1 indukowany był nie tylko w podłożu z metanolem ale także z glicerolem, podczas
gdy promotor MOD2 indukowany był tylko przez metanol,
natomiast dodanie glicerolu do podłoża z metanolem nie
powodowało jego represji. Promotor MOD1 najefektywniej był indukowany przy niskim stężeniu metanolu, a promotor MOD2, przy wysokich stężeniach metanolu i tlenu.
Świadczy to o tym, że ekspresja obu promotorów oksydazy
alkoholowej regulowana jest w zupełnie inny sposób. Wykazane różnice pozwalają na wykorzystanie promotorów
genów MOD1 i MOD2 do kontroli ekspresji genów heterologicznych u P. methanolica, a nawet do jednoczesnej regulacji syntezy dwóch różnych białek heterologicznych [70].
Katalaza, zlokalizowana w peroksysomach, kodowana jest
przez gen CTA1 [71]. Niedawno odkryto dwa geny DAS1
i DLP1 o wysokim podobieństwie do syntazy dihydroksyacetonu (DAS), peroksysomalnego enzymu metabolizmu
metanolu. Heterologiczna ekspresja genu DAS1 u mutanta
Candida boidinii das1 przywracała zdolność do utylizacji metanolu, podczas gdy ekspresja genu DLP1 nie. Na tej podstawie stwierdzono, że gen DAS1 koduje syntazę dihydroksyacetonu u P. methanolica, natomiast funkcje genu DLP1 nie
są jeszcze poznane [72]. P. methanolica posiada tylko po jednym genie strukturalnym dehydrogenazy formaldehydu i
mrówczanu [8].
Candida boidinii
Candida boidinii to asporogenny gatunek drożdży metylotroficznych. Podobnie do innych gatunków drożdży
metylotroficznych, C. boidinii wykorzystywana jest do konstruowania producentów białek heterologicznych. Sposób
103
regulacji promotora oksydazy alkoholowej C. boidinii AOD1
różni się od H. polymorpha i przypomina P. pastoris: maksymalna ekspresja genu AOD1 wymaga jednoczesnej derepresji glukozowej (braku glukozy lub obecności glicerolu, oleinianu w podłożu) oraz indukcji metanolem (występowania
metanolu w podłożu). Oprócz promotora AOD1, sklonowano i scharakteryzowano 5 innych promotorów regulowanych metanolem, wśród których najbardziej silnym okazał
się promotor genu syntazy dihydroksyacetonu DAS1. W
odróżnieniu od promotora AOD1, który częściowo ulega
derepresji w podłożu z glicerolem lub oleinianem, promotor syntazy dihydroksyacetonu DAS1 nie wykazuje wcale
derepresji w podłożu z alternatywnymi źródłami węgla bez
metanolu i jego ekspresja zachodzi tylko i wyłącznie w podłożu z metanolem, jako induktorem [31]. Jak już wspominano wyżej, u H. polymorpha i P. pastoris, w indukcji ekspresji
genów kodujących enzymy metabolizmu metanolu uczestniczą czynniki transkrypcyjne Mpp1p i Mxr1p [29,30].
Metodę mutagenezy insercyjnej wykorzystano do poszukiwania odpowiednich genów regulatorowych u C. boidinii. W wyniku tego zidentyfikowano i scharakteryzowano
nowy czynnik transkrypcyjny Trm1p. Białko to należy do
klasteru Zn(II)2 Cys6, do którego należy wiele regulatorów
transkrypcyjnych różnych grzybów. Delecja TRM1 całkowicie blokuje wzrost na metanolu, ale nie wpływa na wzrost
na substratach poliwęglowych (glukoza, glicerol, etanol,
oleinian), co świadczy o specyficznej roli białka Trm1p w
regulacji indukcji przez metanol, a nie derepresji glukozą.
Ponadto aktywność transkrypcyjna wszystkich indukowanych przez promotor genów u szczepu trm1 jest całkowicie zahamowana, co świadczy o decydującej roli Trm1p w
regulacji ekspresji genów metabolizmu metanolu u C. boidinii. W promotorze DAS1 odkryto dwa elementy MRE1 i
MRE2 (methanol response elements). Przypuszczalnie czynnik
transkrypcyjny Trm1p jest niezbędny dla zależnej od MRE1
indukcji DAS1 przez metanol. Analiza immunoprecypitacji
chromatyny wykazała, że Trm1p wiąże się z pięcioma indukowanymi przez metanol promotorami prawdopodobnie
przy pomocy dodatkowego, na razie nie zidentyfikowanego, białka. Takim białkiem może być homolog H. polymorpha Mpp1p, którego do tej pory nie zidentyfikowano u C.
boidinii [31].
U C. boidinii zidentyfikowano jeszcze jeden gen regulatorowy, oznaczony jako TRM2. Białko Trm2p zawiera dwa
motywy cynkowych palców typu C2H2 na N końcu i wykazuje wysoką homologię z wcześniej zidentyfikowanymi
czynnikami traksrypcyjnymi Mxr1p u P. pastoris i Adr1p u
S. cerevisiae. Trm2p specyficznie wiąże się z promotorami
genów AOD1 i DAS1 w komórkach rosnących na podłożu
z metanolem lub oleinianem, ale nie przyłącza się do tych
promotorów w komórkach rosnących na podłożu z glukozą. W komórkach rosnących na podłożu z metanolem białko to zlokalizowane jest w jądrze komórkowym, natomiast
na podłożu z glukozą w cytoplazmie. Mutant trm2 nie rósł
na podłożu z metanolem i oleinianem, natomiast rósł na
podłożu z glukozą i etanolem. Białko Trm2 jest niezbędne
do aktywacji genów indukowanych metanolem [1]. Zidentyfikowano również gen MIG1 kodujący białko homologiczne do represora glukozy Mig1p u S. cerevisiae i wykazano,
że białko to uczestniczy w negatywnej regulacji ekspresji
genów indukowanych metanolem [73].
104
Na podstawie badań C. boidinii, skonstruowano wielu
producentów heterologicznych i własnych białek cytosolowych (aktynaza adenylowa, α-аntytrypsyna), peroksysomowych (oksydaza kwasów tłuszczowych, oksydaza spermidyny, oksydaza D-aminokwasów) i sekrecyjnych (glukoamylaza, fitaza, katepsyna C i transglutaminaza) [74].
PODSUMOWANIE
Reasumując, można stwierdzić, że w ciągu ostatnich
dziesięcioleci udało się zbadać główne aspekty regulacji metabolizmu metanolu u drożdży metylotroficznych,
szczególnie na poziomie molekularno-genetycznym. Organizmy te stały się również ulubionym obiektem badań
biologii komórki, zwłaszcza procesów biogenezy i degradacji peroksysomów. Drożdże te posłużyły do sklonowania
silnych regulatorowych i konstytutywnych promotorów,
jak również do skonstruowania efektywnych producentów
zrekombinowanych białek. Drożdże metylotroficzne pozostaną więc organizmami o dużym znaczeniu w badaniach z
zakresu biologii komórki oraz biotechnologii.
PIŚMIENNICTWO
1. Sasano Y, Yurimoto H, Kuriyama M, Sakai Y (2010) Trm2p-dependent
derepression is essential for methanol-specific gene activation in the
methylotrophic yeast Candida boidinii. FEMS Yeast Res 10: 535-544
2. Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP (1988) Genetic control of methanol utilization in yeasts. J Basic Microbiol 28: 293-319
3. Gellissen G (2002) Hansenula polymorpha — biology and applications.
Wiley — VCH, Weinheim
4. Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system
within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol
Chem 276: 14279-14288
5. Yurimoto H, Sakai Y, Kato N (2002) Methanol metabolism. W: Gellissen G (red) Hansenula polymorpha — biology and applications. WileyVCH, Weinheim, Germany, str. 61-75
6. Lee B, Yurimoto H, Sakai Y, Kato N (2002) Physiological role of the
glutathione-dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii. Microbiol 148: 2697-2704
7. Sibirny AA, Ubiyvovk VM, Gonchar MV, Titorenko VI, Voronovsky
AY, Kapultsevich YG, Bliznik KM (1990) Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast
methylotrophic growth. Arch Microbiol 154: 566-575
8. Nakagawa T, Ito T, Fujimura S, Chikui M, Mizumura T, Miyaji T,
Yurimoto H, Kato N, Sakai Y, Tomizuka N (2004) Molecular characterization of the glutathione-dependent formaldehyde dehydrogenase
gene FLD1 from the methylotrophic yeast Pichia methanolica. Yeast 21:
445-453
9. Veenhuis M, van Dijken JP, Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv
Microb Physiol 24: 1-82
10.Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance.
Biotechnol Bioeng 104: 911-919
11.Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA
(2008) Engineering of xylose reductase and overexpression of xylitol
dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell
Fact 7: 21
12.Hong WK, Kim CH, Heo SY, Luo LH, Oh BR, Seo JW (2010) Enhanced
production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase
genes from Zymomonas mobilis. Biotechnol Lett 32: 1077-1082
www.postepybiochemii.pl
13.Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA
(2011) Optimization of glutathione production in batch and fed-batch
cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11: 8
14.Lahtchev KL, Semenova VD, Tolstorukov II, van der Klei I, Veenhuis
M (2002) Isolation and properties of genetically defined strains of the
methylotrophic yeast Hansenula polymorpha CBS4732. Arch Microbiol
177: 150-158
15.Kunze G, Kang HA, Gellissen G (2009) Hansenula polymorpha (Pichia
angusta) Biology and Applications, W: Satyanarayana T, Kunze G (red)
Yeast Biotechnology: Diversity and Applications, Springer, str. 47-64
16.Kurtzman CP, Fell JW (1998) The Yeasts, a Taxonomic Study, 4th edn.
Elsevier Science, Amsterdam
17.Suh SO, Zhou JJ (2010) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida
parapolymorpha sp. nov. FEMS Yeast Res 10: 631-638
18.Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, Choi ES,
Choe KB, Rhee SK (2001) Development of expression systems for the
production of recombinant human serum albumin using the MOX
promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76: 175-185
19.Merckelbach A, Gödecke S, Janowicz ZA, Hollenberg CP (1993) Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene
replacement. Appl Microbiol Biotechnol 40: 361-364
20.Voronovsky AY, Ryabova OB, Verba OV, Ishchuk OP, Dmytruk KV,
Sibirny AA (2005) Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic
yeast Hansenula polymorpha. FEMS Yeast Res 5: 1055-1062
21.Tikhomirova LP, Ikonomova RN, Kuznetsova EN (1986) Evidence for
autonomous replication and stabilization of recombinant plasmids in
the transformants of yeast Hansenula polymorpha. Curr Genet 10: 741747
22.Faber KN, Haima P, Harder W, Veenhuis M, AB G (1994) Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr
Genet 25: 305-310
23.Ramezani-Rad M, Hollenberg CP, Lauber J, Wedler H, Griess E, Wagner C, Albermann K, Hani J, Piontek M, Dahlems U, Gellissen G (2003)
The Hansenula polymorpha (strain CBS4732) genome sequencing and
analysis. FEMS Yeast Res 4: 207-215
24.Marri L, Rossolini GM, Satta G (1993) Chromosome polymorphisms
among іtrains of Hansenula polymorpha (syn. Pichia angusta). Appl Environ Microbiol 59: 939-941
25.Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and
its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73: 5990-6000
26.van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic
yeast. Biochim Biophys Acta 1763: 1453-1462
27.Dunn WA Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1: 75-83
28.van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP,
Veenhuis M, van der Klei IJ (2010) Adaptation of Hansenula polymorpha
to methanol: a transcriptome analysis. BMC Genomics 11: 1
29.Leao-Helder AN, Krikken AM, van der Klei IJ, Kiel JA, Veenhuis M
(2003) Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J Biol
Chem 278: 40749-40756
30.Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani
S, Cregg JM (2006) Mxr1p, a key regulator of the methanol utilization
pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 26:
883-897
31.Yurimoto H (2009) Molecular basis of methanol-inducible gene expression and its applications in the methylotrophic yeast Candida boidinii. Biosci Biotechnol Biochem 73: 793-800
Postępy Biochemii 59 (1) 2013
32.Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS
Microbiol Rev 32: 673-704
33.Turcotte B, Liang XB, Robert F, Soontorngun N (2010) Transcriptional
regulation of nonfermentable carbon utilization in budding yeast.
FEMS Yeast Res 10: 2-13
34.Liiv L, Pärn P, Alamäe T (2001) Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha. Gene 265: 77-85
35.Alamae T, Pärn P, Viigand K, Karp H (2003) Regulation of the Hansenula polymorpha maltase gene promoter in H. polymorpha and Saccharomyces cerevisiae1. FEMS Yeast Res 4: 165-173
36.Hodgkins M, Mead D, Ballance DJ, Goodey A, Sudbery P (1993) Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory
mutations. Yeast 9: 625-635
37.Parpinello Parpinello G, Berardi E, Strabbioli R (1998) A regulatory
mutant of Hansenula polymorpha exhibiting methanol utilization metabolism and peroxisome proliferation in glucose. J Bacteriol 180: 29582967
38.Alamae T, Liiv L (1998) Glucose repression of maltase and methanoloxidizing enzymes in the methylotrophic yeast Hansenula polymorpha:
isolation and study of regulatory mutants. Folia Microbiol 43: 443-452
39.Stasyk OV, Stasyk OG, Komduur J, Veenhuis M, Cregg JM, Sibirny
AA (2004) A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J Biol Chem
279: 8116-8125
40.Kramarenko T, Karp H, Järviste A, Alamäe T (2000) Sugar repression
in the methylotrophic yeast Hansenula polymorpha studied by using
hexokinase-negative, glucokinase-negative and double kinase-negative mutants. Folia Microbiol 45: 521-529
41.Laht S, Karp H, Kotka P, Järviste A, Alamäe T (2002) Cloning and
characterization of glucokinase from a methylotrophic yeast Hansenula polymorpha: different effects on glucose repression in H. polymorpha
and Saccharomyces cerevisiae. Gene 296: 195-203
42.Karp H, Järviste A, Kriegel TM, Alamäe T (2003) Cloning and biochemical characterization of hexokinase from the methylotrophic
yeast Hansenula polymorpha. Curr Genet 44: 268-276
43.Stasyk OG, Maidan MM, Stasyk OV, Van Dijck P, Thevelein JM, Sibirny AA (2008) Identification of hexose transporter-like sensor HXS1
and functional hexose transporter HXT1 in the methylotrophic yeast
Hansenula polymorpha. Eukaryot Cell 7: 735-746
44.Stasyk OG, van Zutphen T, Kang HA, Stasyk OV, Veenhuis M, Sibirny
AA (2007) The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. FEMS Yeast Res 7: 1103-1113
45.Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol
Rev 26: 277-284
46.Navarro FJ, Machín F, Martín Y, Siverio JM (2006) Down-regulation
of eukaryotic nitrate transporter by nitrogen-dependent ubiquitinylation. J Biol Chem 281: 13268-13274
47.Navarro FJ, Martín Y, Siverio JM (2008) Phosphorylation of the yeast
nitrate transporter Ynt1 is essential for delivery to the plasma membrane during nitrogen limitation. J Biol Chem 283: 31208-31217
48.Rodriguez C, Tejera P, Medina B, Guillen R, Dominguez A, Ramos
J, Siverio JM (2010) Ure2 is involved in nitrogen catabolite repression
and salt tolerance via Ca2+ homeostasis and calcineurin activation in
the yeast Hansenula polymorpha. J Biol Chem 285: 37551-37560
49.Avila J, González C, Brito N, Machín F, Pérez MD, Siverio JM (2002)
A second Zn(II)(2)Cys(6) transcriptional factor encoded by the YNA2
gene is indispensable for the transcriptional activation of the genes involved in nitrate assimilation in the yeast Hansenula polymorpha. Yeast
19: 537-544
50.Steinborn G, Kunze G, Gellissen G (2009) A wide-range integrative
expression vector (CoMed) system for yeasts, W: Satyanarayana T,
Kunze G (red) Yeast Biotechnology: Diversity and Applications. Springer, str. 357-368
51.Kim SY, Sohn JH, Bae JH, Pyun YR, Agaphonov MO, Ter-Avanesyan
MD, Choi ES (2003) Eficient library construction by in vivo recombina-
105
tion with a telomere-originated autonomously replicating sequence of
Hansenula polymorpha. Appl Environ Microbiol 69: 4448-4454
52.Bollok M, Resina D, Valero F, Ferrer P (2009) Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant
protein production. Recent Pat Biotechnol 3: 192-201
53.Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009)
Recent advances on the GAP promoter derived expression system of
Pichia pastoris. Mol Biol Rep 36: 1611-1619
54.Tolstorukov I, Cregg JM (2007) Classical Genetics, W: Cregg JM (red)
Methods in Molecular Biology, Humana Press, Totowa NJ, 389: str.
189-201
55.Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T
(2008) Expression in the yeast Pichia pastoris. Methods Enzymol 463:
169-189
56.Jahic M, Veide A, Charoenrat T, Teeri T, Enfors SO (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol Prog 22: 1465-1473
57.De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat
Biotechnol 27: 561-566
58.Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast:
the advent of fully humanized yeast. Curr Opin Biotechnol 18: 387-392
59.Mattanovich D, Callewaert N, Rouzé P, Lin YC, Graf A, Redl A, Tiels
P, Gasser B, De Schutter K (2009) Open access to sequence: browsing
the Pichia pastoris genome. Microb Cell Fact 8: 53
60.Küberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T,
Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Pühler A,
Schwab H, Glieder A, Pichler H (2011) High-quality genome sequence
of Pichia pastoris CBS7435. J Biotechnol 154: 312-320
61.Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee
DY (2010) Genome-scale metabolic reconstruction and in silico analysis
of methylotrophic yeast Pichia pastoris for strain improvement. Microb
Cell Fact 9: 50
62.Smith JJ, Burke A, Bredell H, van Zyl WH, Görgens JF (2012) Comparing cytosolic expression to peroxisomal targeting of the chimeric
L1/L2 (ChiΔH-L2) gene from human papillomavirus type 16 in the
methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Yeast
29: 385-393
63.Mack M, Wannemacher M, Hobl B, Pietschmann P, Hock B (2009)
Comparison of two expression platforms in respect to protein yield
and quality: Pichia pastoris versus Pichia angusta. Protein Expr Purif 66:
165-171
64.Sibirny AA (1996) Pichia methanolica (Pichia pinus MH4), W: Wolf K
(red) Nonconventional Yeasts in Biotechnology. Springer-Verlag, Heidelberg, str. 277-291
65.Zimmermann M, Fournier P (1996) Electrophoretic karyotyping of
yeasts, W: Wolf K (red) Nonconventional Yeasts in Biotechnology.
Springer-Verlag, Heidelberg, str. 101-116
66.Sibirny AA, Titorenko VI, Efremov BD, Tolstorukov II (1987) Multiplicity of mechanisms of carbon catabolite repression involved in the
synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus.
Yeast 3: 233-241
67.Sibirny AA, Titorenko VI, Teslyar GE, Petrushko VI, Kucher MM
(1991) Methanol and ethanol utilization in methylotrophic yeast Pichia
pinus wild-type and mutant strains. Arch Microbiol 156: 455-462
68.Titorenko VI, Khodursky AB, Teslyar GE, Sibirny AA (1991) Identification of new genes controlling catabolite repression of alcohol oxidase
and catalase synthesis in methylotrophic yeasts Pichia pinus. Genetica
27: 625-635 (w j. rosyjskim)
69.Nakagawa T, Sakai Y, Mukaiyama H, Mizumura T, Miyaji T, Yurimoto H, Kato N, Tomizuka N (2001) Analysis of alcohol oxidase isozymes
in gene-disrupted strains of methylotrophic yeast Pichia methanolica. J
Biosci Bioeng 91: 225-227
70.Nakagawa T, Inagaki A, Ito T, Fujimura S, Miyaji T, Yurimoto H, Kato
N, Sakai Y, Tomizuka N (2006) Regulation of two distinct alcohol oxidase promoters in the methylotrophic yeast Pichia methanolica. Yeast
23: 15-22
71.Nakagawa T, Yoshida K, Takeuchi A, Ito T, Fujimura S, Matsufuji Y,
Tomizuka N, Yurimoto H, Sakai Y, Hayakawa T (2010) The peroxisomal catalase gene in the methylotrophic yeast Pichia methanolica.
Biosci Biotechnol Biochem 74: 1733-1735
72.Nakagawa T, Fujimura S, Ito T, Matsufuji Y, Ozawa S, Miyaji T, Nakagawa J, Tomizuka N, Yurimoto H, Sakai Y, Hayakawa T (2010)
Molecular characterization of two genes with high similarity to the
dihydroxyacetone synthase gene in the methylotrophic yeast Pichia
methanolica. Biosci Biotechnol Biochem 74: 1491-1493
73.Zhai Z, Yurimoto H, Sakai Y (2012) Molecular characterization of Candida boidinii MIG1 and its role in the regulation of methanol-inducible
gene expression. Yeast 29: 293-301
74.Yurimoto H, Sakai Y (2009) Methanol-inducible gene expression and
heterologous protein production in the methylotrophic yeast Candida
boidinii. Biotechnol Appl Biochem 53: 85–92
Bazy danych
http://genome.jgi-psf.org/Hanpo1/Hanpo1.home.html).
http://ergo.integratadgenomics.com/ERGO/
Regulation of gene expression in methylotrophic yeasts
Dorota Grabek-Lejko1, Vladimir Sibirny1, Andriy Sibirny1,2,
University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Dragomanowa St., Lviv 79005 Ukraine
1
2

e-mail: [email protected]
Key words: methylotrophic yeasts, Hansenula polymorpha, Pichia pastoris, Pichia methanolica, Candida boidinii, gene expression
Abstract
Methylotrophic yeasts are unique eukaryotic organisms, that can metabolize toxic one-carbon substrate, methyl alcohol or methanol. About
50 species of methylotrophic yeasts is known, among them 4 species are the best studied: Pichia methanolica, Hansenula polymorpha, Pichia
pastoris i Сandida boidinii. These organisms, especially P. pastoris i H. polymorpha appeared to be very perspective overproducers of heterologous proteins and nowadays are used for industrial production of some of them.
In this review, we provide information on the organization of the genome, mechanisms of regulation of gene expression and the use of strong
promoters of these yeast species to construct the producers of heterologous proteins. In more details, we analyze genetic control of carbon
and nitrogen catabolic repression in H. polymorpha and also the identification of metabolites inducing catabolite repression or peroxisome
selective autophagy in the medium with ethanol in the Pichia methanolica yeast.
106
www.postepybiochemii.pl

Podobne dokumenty