Pobierz pełna wersję artykułu

Transkrypt

Pobierz pełna wersję artykułu
83
CUPRUM – Czasopismo Naukowo-Techniczne Górnictwa Rud
nr 1 (74) 2015, s. 83-94
___________________________________________________________________________
Zagrożenie stateczności zbocza stałego południowego
wyprofilowanego w skałach podłoża mezozoicznego,
w rejonie prowadzenia eksploatacji w rowie II rzędu,
w zakładzie górniczym KWB „Bełchatów”
Leopold Wiktor Czarnecki1), Barbara Organiściak1)
1)
Polska Grupa Energetyczna, Górnictwo i Energetyka Konwencjonalna S.A.,
Oddział Kopalnia Węgla Brunatnego „Bełchatów”; Rogowiec,
[email protected]; [email protected]
Streszczenie
W artykule przedstawiono charakterystykę deformacji rozwijających się w korpusie zbocza
stałego południowego, wyprofilowanego w skałach podłoża mezozoicznego w rejonie prowadzenia eksploatacji w najgłębszej części złoża węgla brunatnego Bełchatów, Pole Bełchatów,
w tzw. rowie II rzędu. Zbocze stałe południowe zbudowane jest w tej strefie z utworów kenozoicznych, zalegających w zakresie rzędnych od +200 m n.p.m. do +95 m n.p.m., oraz ze
skał marglistych, reprezentujących okres kredowy ery mezozoicznej, budujących zbocze do
rzędnej -50/-80 m n.p.m. Podstawa zbocza zbudowana jest z osadów mioceńskich, reprezentowanych przez węgle brunatne zalegające inwersyjnie w stosunku do skał mezozoicznych.
Wysokość zbocza w strefie zagrożonej waha się od 255 m do 330 m. Deformacjami nieciągłymi zbocze objęte jest na wysokości około 205 m w części zachodniej, a w części wschodniej na wysokości około 150 m. Proces, którego rozwój został zapoczątkowany w korpusie
zbocza, związany jest z występowaniem w tej części złoża struktury geologicznej, zwanej
„blokiem paleoosuwiskowym”. Jest to struktura o długości około 1,7 km, szerokości 0,65 km
2
3
i wysokości 0,26 km. Jego powierzchnia wynosi około 1,2 km , a objętość 118 mln m .
W ramach tej struktury obserwuje się nasunięcie skał mezozoicznych na osady mioceńskie
w strefie rowu II rzędu, na kierunku południe – północ, wynoszące około 200 m. Blok paleoosuwiskowy to szereg starych osuwisk, osypów, kopalnych piargów i obrywów, rozwijających
się w strefie uskoku brzeżnego południowego. Powstanie tej struktury dowodzi istnienia wyraźnego progu morfologicznego, odznaczającego się w paleomorfologii stromą skarpą, zbudowaną z wietrzejących margli kredowych. Powierzchnia zbocza objęta deformacjami wynosi
2
około 800 tys. m . W artykule przedstawiono jakościową charakterystykę skał kredowych oraz
kolejne zarejestrowane fazy rozwoju procesów deformacyjnych w formie wykresów i map
prędkości deformacji dla poszczególnych wydzielonych rejonów zbocza, wraz z ich charakterystyką ilościową (wartości maksymalnych przemieszczeń, prędkości przemieszczeń). Charakterystykę opracowano w oparciu o istniejącą powierzchniową sieć obserwacyjną, pomiary
inklinometryczne oraz obserwacje w istniejących na zboczu studniach i piezometrach, a także
obserwacje i pomiary makroskopowe, geodezyjne.
Słowa kluczowe: osuwisko, deformacje, zagrożenie
84
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
Danger of southern slope stability profiled in the mesozoic hard
rocks, in the area of coal extraction in the ditch II-row, located in
the open cast of “Bełchatów” Lignite Mine – Bełchatów field
Abstract
The article presents the characteristics of developing deformities in the body of the southern
slopes of the solid substrate profiled in Mesozoic rocks in the area of extraction in the deepest part of “Bełchatów” Lignite Mine, Bełchatów field, called ditch the second-row. Solid
southern slope is built in the area of the tracks Cenozoic defaulting in range of elevation of
+200 m above sea level to +95 m above sea level, and marl rocks representing the Cretaceous period of the Mesozoic era building slope to the elevation of -50/-80 m above sea
level. The base of the slope is made by Miocene sediments represented by lignite lying inversely in relation to the Mesozoic rocks. The height of the slope in the danger area ranges
from 255 m to 330 m. Discontinuous deformations covered slope at an altitude approx. 205
m in the western and the eastern part at about 150 m. Process whose development was
initiated in the body of the slope, is associated with the occurrence in this part of the lignite
deposit geological structure called “paleolandslides block”. It is a structure with a length of
2
approx. 1.7 km, width 0.65 km and height 0.26 km. Its area is approx 1.2 km and the volume
3
of 118 mln m . Within this structure, is observed Mesozoic rocks overlap on the Miocene
sediments in the ditch second-row, on the direction South – North, amounting to 200 m.
Paleolandslides block is a series of old landslides, sprinkle with developing in the Southern
Marginal Fault Zone. The creation of this structure suggests that there is a clear threshold for
morphological characterize in paleomorphological steep slope, built of weathered chalk marl.
2
The area covered by the deformation of the slope is approx. 800 thousand m . The article
shows the qualitative characteristics of the chalk rocks and the subsequent development
phases recorded deformation processes in the form of graphs and maps, deformation rate
for each separate regions of the slope with their quantitative characteristics (maximum values of displacements, velocities movements). Characteristics have been developed based
on the existing surface observation network, based on inclinometer measurements and observations of the existing wells and piezometers and macroscopic observations and measurements land surveying.
Key words: landslide, deformation, danger
Wstęp
W styczniu 2014 r., w trakcie prowadzenia eksploatacji z p-nika B.100 w zakresie
rzędnych -35/-50 m n.p.m., w rejonie zagrożeń XV/S, stwierdzono na pięciu reperach
powierzchniowej sieci obserwacyjnej przyśpieszenia przekraczające 30 mm/dobę.
Zgodnie z obowiązującymi w Zakładzie Górniczym KWB Bełchatów kryteriami bezpieczeństwa [3], prędkości te obrazują stan ostrzegawczy deformacji górotworu.
Rejon ten monitorowany był przez siedem reperów powierzchniowej sieci obserwacyjnej. Dwa repery zainstalowane są na wychodni piasków kredowych (prawdopodobnie alb-cenoman), a pozostałe repery na wychodni margli i opok kredowych
(mastrycht – kampan). Repery, zainstalowane na marglach i opokach, wykazywały
wyraźne przyrosty tempa deformacji w stosunku do reperów zainstalowanych na
wychodnich piasków i piaskowców. W wyniku kontroli stanu deformacji w rejonach
zagrożeń X/S i XV/S, przeprowadzonej w lutym 2014 r., stwierdzono odnowienie
szczelin na poziomie +72 i +56 m n.p.m. w strefie kontaktu margli i piaskowców
85
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
kredowych oraz rozwój nowych szczelin wzdłuż skarpy +72/+90 m n.p.m., przebiegających od wychodni piaskowców kredowych w kierunku na zachód na długości ok.
120 m. Nowe szczeliny stwierdzono także na poziomie +55 m n.p.m. oraz 0 m n.p.m.
Nie zaobserwowano w tym czasie zjawisk wypierania spągu wyrobiska w tym rejonie
ani śladów wysuwania się górotworu na skarpach zbocza stałego.
1. Zarys budowy geologicznej rejonu deformacji
Rów II rzędu to podrzędna jednostka tektoniczna w granicach Rowu Kleszczowa,
zlokalizowana pomiędzy południowo-zachodnim skrzydłem antykliny Łękińska
a wysadem solnym Dębina. Granice rowu II rzędu są granicami tektonicznymi. Południową granicę rowu wyznaczają dwa w przybliżeniu równoległe uskoki o różnym
zrzucie. Są to uskoki USB nr 1 i USB nr 1a. Uskok USB nr 1 to południowy uskok
brzeżny Rowu Kleszczowa, występujący na całym obszarze złoża. Uskok USB nr 1a
jest uskokiem o zmiennej wielkości zrzutu. Jego obecność w rejonie rowu II rzędu
sprawia, że południowy brzeg rowu ma charakter „schodowy”, tzn. strop podłoża
obniża się stopniowo z rzędnych +100 m n.p.m. na południowym brzegu do -400 m
n.p.m. w rowie II rzędu. Uskok nr 1a, to uskok listryczny [2], o wielkości zrzutu od
20 m do 120 m. Północną granicę rowu II rzędu wyznacza uskok UNB nr 2. Zrzut
stropu podłoża mezozoicznego na tym uskoku wynosi ok. 200 m w centrum rowu,
a około 60-100 m w strefach brzeżnych. Granicę wschodnią wyznacza uskok zrzutowo-przesuwczy w południowo-zachodnim skrzydle antykliny Łękińska, tzw. uskok
Kleszczów-Kodrąb. Za zachodnią granicę rowu II rzędu przyjmuje się uskok zrzutowo-przesuwczy Kamień-Żłobnica.
Powyższy układ strukturalny powoduje odmienną budowę litologiczno-strukturalną obu brzegów rowu, jednakże z uwagi na temat referatu, przedstawiono
głównie charakterystykę brzegu południowego.
Głównym elementem strukturalnym, wpływającym na warunki geologiczno-inżynierskie w zboczu południowym, profilowanym w strefie rowu II rzędu, jest tzw.
blok paleoosuwiskowy (BP) [2] skał kredowych. Dotychczasowe obserwacje terenowe wskazują, że struktura BP nie stanowi monolitu. Obserwacje terenowe pozwoliły na wydzielenie 11 mniejszych bloków, zlokalizowanych w czołowej partii BP.
Granice pomiędzy blokami mają charakter natury tektonicznej. Dominują dwa zespoły uskoków normalno-grawitacyjnych, przeciwstawnych do siebie, tworzących
szereg rowów ekstensyjnych [1]. Odzwierciedlają one zarysy bloków podłoża i są
generalnie podłużne do czoła bloku paleoosuwiskowego. Ponadto obserwacje występujących w BP szczelin i spękań wskazują, że blok był poddany wielokierunkowemu oddziaływaniu sił tensji, rozpadając się na szereg bloków drugorzędnych
o typie zrębów i rowów, nie tylko na kierunku N-S, ale i W-E [1]. Cała struktura bloku
2
2
paleosuwiskowego to powierzchnia 1 242 093 m , tj. około 1,2 km (wymiary:
3
dł. 1,7 km; szer. 0,65 km; wys. 0,26 km) i objętość: 118 mln m .
W obrębie bloku można wydzielić trzy litotypy skał:
− masywne margle i opoki margliste, charakteryzujące się obecnością dwukierunkowych spękań ciosowych, układających się równoleżnikowo na kierunku ENE-WSW, z odchyleniem ku NE oraz południkowo S-N, z odchyleniem
ku NNE. Ponadto intensywnie zaznacza się kierunek „laramijski” NW-SE.
Występuje w nich też cios pokładowy, podkreślający warstwowanie [5];
− brekcje, występujące w zewnętrznych partiach BP. Są to megabrekcje, zbudowane z wielkich bloków margli o wymiarach od kilku do kilkunastu me-
86
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
trów, o zaokrąglonych kształtach, tkwiących w matrix, utworzonym z mniejszych bloków margla, obtoczonych miazgą mineralną oraz brekcje drobnookruchowe, złożone z drobnych obtoczonych lub kanciastych bloczków margli
i opok, tkwiących w piaszczystym matrix lub spojonych pyłem marglistym.
Ten typ brekcji jest szczególnie bardzo rozsypliwy [5];
− brekcje drobnookruchowe, przeławicające się z osadami trzeciorzędowymi,
jak węgle brunatne, iły zawęglone, muły i iły piaszczyste, zielonkawe. Ten
typ osadów pojawia się w dolnych partiach bloków, stanowiąc często podstawę zbocza [5].
Aktualnie obszar BP można podzielić na dwie części:
− wschodnią, gdzie z dotychczasowego rozpoznania wynika, że bloki są zakorzenione poniżej rzędnej -110 m n.p.m., a ułożenie powierzchni warstwowania jest korzystne dla formowania skarp (udokumentowane w odkrywce sedymentacyjne nachylenia warstw – zarówno lamin marglistych, jak i oddzielności ławicowej – wynoszą w obrębie odsłanianych bloków podłoża mezozoicznego przeciętnie 20° na kierunku od SE do W). W tej części bloki są
zakorzenione na głębokości od 160 m w rejonie najniższego piętra zwałowiska wewnętrznego, 100 m w rejonie najgłębszej części wyrobiska (tj. -110 m
n.p.m.) do 130 m w rejonie granicznym z częścią zachodnią. Szerokość
strefy na kierunku E-W wynosi około 1300 m [6];
− zachodnią (rejony zagrożeń X/S i XV/S), gdzie bloki są zakorzenione płycej,
a z dotychczasowych pomiarów wynika, że zarówno warstwy kredowe, jak
i jurajskie zapadają ku N pod kątem do 30°. W tej części obserwuje się też
płytsze występowanie brekcji oraz widoczne są liczne odwrócone następstwa warstw. Bloki margla i mułowców w tej części są zakorzenione na głębokości od 45 m (-95 m n.p.m.) do 76 m (-126,6 m n.p.m.). Głębokość zakorzenienia zwiększa się w kierunku wschodnim. Szerokość strefy na kierunku
E-W wynosi około 470 m [6].
W oparciu o obserwacje terenowe i zgodnie z klasyfikacją RMR Bieniawskiego
należy ocenić, że skała budująca południowy brzeg rowu II rzędu mieści się w klasie
o
IV – masyw słaby (c = 125 kPa i f = 18 ) [7].
Ponadto, z punktu widzenia stateczności zbocza, istotnym elementem jest
ukształtowanie powierzchni paleoślizgu, wzdłuż której BP przemieszczał się do centrum rowu. W skrzydle wiszącym rowu ma ona generalny przebieg NW-SE i w części zachodniej obniża się od rzędnych +85 m n.p.m. do -22 m n.p.m., a w części
wschodniej od +35 m n.p.m. do -120 m n.p.m. Strefy rozdzielone są prawdopodobnie uskokiem o zawiasowym charakterze, przebiegu NNE – SSW i zrzucie ku ESE
o wartości od 100 m do 6 m.
2. Kontur zbocza oraz technologia prowadzenia robót górniczych
W związku z postępem eksploatacji w kierunku zachodnim i zmieniającym się konturem rozcięcia złoża, przedstawiono w niniejszym rozdziale dane wg stanu na grudzień 2014 r.
Zbocze stałe południowe w strefie rowu II rzędu rozciąga się na długości około
1,6 km i ma wysokość od 240 m do 320 m. Zbocze południowe zostało zwymiarowane zgodnie z następującymi założeniami geotechnicznymi [4]:
87
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
a) nachylenie generalne zbocza:
− formowanego w obrębie czwartorzędu i serii nadwęglowej trzeciorzędu:
1:3,5;
− formowanego w obrębie trzeciorzędowego kompleksu ilasto-węglowego
i węglowego, w zależności od budowy geologicznej w granicach: 1:3,21:4,0;
− formowanego w obrębie skał podłoża mezozoicznego: 1:1,0;
b) nachylenie skarp stałych:
− w rejonie występowania skał podłoża mezozoicznego: 1:0,7;
− w rejonie występowania utworów zastoiskowych, iłów kompleksu ilastopiaszczystego oraz zwietrzelin między poziomami II i IV: 1:2,0;
− pozostałe skarpy stałe: 1:1,5;
c) maksymalna wysokość skarp stałych: w skałach do 20 m, w pozostałych odmianach litologicznych do 30 m.
Ponieważ rów II rzędu to wąska struktura o zmiennej szerokości od 700 m do
300 m zawężająca się w kierunku zachodnim, gdzie spąg węgla w centralnej części
obniża się do rzędnej -160 m n.p.m., dla potrzeb eksploatacji opracowana została
odpowiednia technologia prowadzenia robót górniczych, umożliwiająca osiągnięcie
planowanych rzędnych. Zgodnie z obowiązującym aktualnie dodatkiem nr 1 do projektu zagospodarowania złoża, eksploatacja węgla będzie prowadzona do rzędnej
-110 m n.p.m. W związku z tym, że prowadzenie eksploatacji w tak głębokim wyrobisku stwarza zagrożenie zalania dna wyrobiska w trakcie nawalnych opadów, niezbędne było zabezpieczenie technologiczne osiągnięcia nie tylko rzędnej -110 m
n.p.m., ale także umożliwienie wykonywania w dnie wyrobiska szeregu rząpi. Ich
zadaniem jest zabezpieczenie dna wyrobiska przed niekontrolowanym rozpływem
wód opadowych, wzmocnienie dna wyrobiska przed skutkami „wyboczenia” od zbocza południowego oraz zwałowiska wewnętrznego. Głównymi elementami opracowanej technologii są:
− wykorzystanie dużej maszyny SchRs 4600×30 do pracy z przenośników
B.100 i B.110, umożliwiającej wykonanie zakresu robót górniczych w przedziale rzędnych od -5 m n.p.m. do -65m n.p.m.,
− obniżenie rzędnych posadowienia przenośników B.121 i B.122, umożliwiające równomierny podział mas między poziomami,
− przeprojektowanie rzędnych prowadzenia poziomu XIII (nachylenie 1:33),
stanowiącego pochylnię pod przenośnik B.122, obniżającą się na wschód
do rzędnych -95 m n.p.m., długość przenośnika 290 m.
W styczniu 2014 r. sytuacja technologiczna wyglądała w następujący sposób:
− eksploatacja prowadzona była w części wschodniej, z przenośnika B.120 do
rzędnej -86 m n.p.m. oraz z przenośników B.121 i B.122. Rzędna dna wyrobiska wynosiła -110 m n.p.m.,
− strefa BP podparta była zwałowiskiem na szerokości ok. 350 m,
− odsłonięcie części wschodniej od rzędnej -50 m n.p.m. do -110 m n.p.m.
wynosiło około 1000 m,
− w części zachodniej eksploatacja prowadzona była z przenośników B.100
i B.110 do rzędnej -50 m n.p.m.,
− odsłonięcie części zachodniej do rzędnej -50 m n.p.m. wynosiło 325 m.
88
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
3. Rozwój deformacji w korpusie zbocza południowego
3.1. Obserwacje makroskopowe
Po stwierdzeniu w styczniu 2014 r. wzrostu prędkości deformacji dla pięciu reperów
geodezyjnych powierzchniowej sieci obserwacyjnej, w lutym 2014 r. na półkach +78,
+72, +56, +36, 0 m n.p.m. oraz na poziomie -50 m n.p.m. między przenośnikami
B.100 i B.110 (rejon otworu KT-140), zaobserwowano spękania, szczeliny oraz
szczeliny ze zrzutem. W kolejnych miesiącach następował makroskopowo zauważalny rozwój istniejących deformacji. Kolejne powstające strefy deformacji nieciągłych obserwowano w kwietniu, maju i w czerwcu, w zakresie rzędnych od +96 m
n.p.m. do -11 m n.p.m. 8 lipca 2014 r. zaobserwowano szczeliny na półce +122 m
n.p.m. (III poziom zbocza południowego), a 10 lipca kolejne szczeliny w tym rejonie,
na skarpie +122/+151 m n.p.m. oraz w koronie skarpy II poziomu (+151 m n.p.m.).
W czasie wizji terenowej 29 lipca 2014 r. stwierdzono rozwój szczelin istniejących na
poziomach +72 i +56 m n.p.m. w kierunku wschodnim. 12 września 2014 r. zaobserwowano dalszy rozwój szczelin na poziomach +72 i +56 m n.p.m. w kierunku
wschodnim na odcinku około 300 m. 17 września stwierdzono powstanie szczeliny
na półce o rzędnej -5 m n.p.m., na skarpie -38/-64 m n.p.m., na półce -64 m n.p.m.
oraz na skarpie -64/-80 m n.p.m. Długość tego zespołu szczelin wynosiła około
600 m. Ponadto stwierdzono powstanie szczeliny na półce +72 m n.p.m. w rejonie
zbiornika nr S-3 pompowni PP-1SBIS oraz rozwój zjawisk wypierania węgla na
-50 m n.p.m. na długości około 260 m. 3 listopada stwierdzono powstanie szczeliny
na półce +18 m n.p.m. w rejonie zbiornika S-2 pompowni PP1-SBIS, a 20 listopada
zaobserwowano rozwój kolejnych szczelin na poziomie +151 m n.p.m. w kierunku
na wschód. W czasie wizji terenowej 22 grudnia 2014 r., na półce +151 m n.p.m.,
stwierdzono powstanie nowej szczeliny w odległości około 40 m w kierunku na południe od istniejącego zespołu szczelin.
Aktualnie (styczeń 2015) zbocze południowe wyrobiska górniczego Pola Bełchatów objęte jest deformacjami nieciągłymi:
− w zakresie rzędnych +150/+124 m n.p.m. na długości 250 metrów,
− w zakresie rzędnych +72/+36 m n.p.m. na długości 830 metrów,
− w zakresie rzędnych 0/-64 m n.p.m. na długości 360 metrów,
− w zakresie rzędnych -64/-80 m n.p.m. na długości 140 metrów,
− odnowienie szczelin ograniczających rejon zagrożeń VII/S (+55 m n.p.m.)
na długości 385 metrów,
− strefa wypiętrzania (max. 3 m) na poziomie -50 m n.p.m. rozciąga się na
długości 330 metrów.
3.2. Obserwacje geodezyjne sieci reperów powierzchniowych
Obserwacje geodezyjne sieci reperów powierzchniowych są ściśle związane z prowadzeniem robót górniczych i odsłanianiem kolejnych prognozowanych rejonów
zagrożeń geologiczno-inżynierskich.
89
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
W styczniu 2009 r. założono sieć obserwacyjną reperów geodezyjnych w rejonie
zagrożeń geologiczno-inżynierskich X/S na zboczu południowym w zakresie rzędnych +38/+81 m n.p.m. (16 punktów – 8 z nich jest mierzone do dzisiaj). W maju
2014 roku rozbudowano sieć o 4 punkty na poziomie -38 m n.p.m., a w lipcu i sierpniu 2014 r., po zaobserwowaniu szczeliny na półce +122, skarpie +122/+151 m
n.p.m., rozbudowano sieć reperów powierzchniowych na poziomach wyższych, do
poziomu terenu (rejon X/S i XV/S) o kolejne 34 repery. Przemieszczenia poziome
i pionowe są mierzone w tych rejonach zagrożeń na 46 reperach geodezyjnych.
Rejon VII/S jest monitorowany od lutego 2005 r. Sieć obserwacyjna została rozbudowana w sierpniu 2014 r. i obecnie składa się na nią 19 punktów pomiarowych.
Rejon jest monitorowany w zakresie rzędnych +72/0 m n.p.m.
Rejon nad najgłębszą częścią wyrobiska, poniżej rejonu zagrożeń VII/S, jest monitorowany od listopada 2007 r. Sieć była rozbudowywana wraz z postępem robót
górniczych i obecnie liczy 24 repery. Rejon jest monitorowany w zakresie rzędnych
+18/-80 m n.p.m.
Maksymalne wartości przemieszczeń poziomych, pomierzone dla najbardziej aktywnej części rejonu deformacji (rejon X/S i XV/S) zestawiono w tabeli 1.
Tabela 1. Wartości przemieszczeń wybranych reperów powierzchniowych (rejon X/S i XV/S)
Nr punktu
(rzędna )
1001 (+74,8)
1015 (+38,4)
1005 (+56,5)
1000 (+56,8)
1004 (+56,5)
1012 (+41,1)
sumaryczne
615,9
576
513,8
496,1
416,8
386,4
Przemieszczenia poziome [cm]
28.01.09-31.12.13 01.01.14-31.12.14
117,5
498,4
118,8
457,2
101,8
412
135,1
361
107,8
309
121,9
264,5
grudzień 2014
97
67
73,4
59,2
47,1
43,8
Maksymalne wartości prędkości przemieszczeń poziomych 51 mm/dobę zarejestrowano na punktach 1001 i 1015, 48 mm/dobę na punkcie 1005.
Od stycznia 2014 r. rosną wartości przemieszczeń i prędkości dla punktów zastabilizowanych w rejonach X/S i XV/S. Analizę porównawczą tempa deformacji
i wartości przemieszczeń poziomych można przeprowadzić szczegółowo dla okresu
od 1 sierpnia do 31 grudnia 2014 r., gdy obserwacje były prowadzone na rozbudowanej sieci reperów geodezyjnych (tabela 2).
Tabela 2. Wartości przemieszczeń poziomych i maksymalnych prędkości deformacji
dla poszczególnych poziomów zbocza południowego w rejonach zagrożeń X/S i XV/S
(część zachodnia) w okresie od 01.08.2014 do 31.12.2014
Poziom,
rzędna
poziom terenu (4 repery)
+204÷+207 m n.p.m.
I poziom (5 reperów)
+178 m n.p.m.
II poziom (7 reperów)
+150 m n.p.m.
III poziom (6 reperów)
+121÷+124 m n.p.m.
Maksymalne wartości
prędkości przemieszczeń
[mm/dobę]
2
Przemieszczenia poziome
[cm]
2-7
0,6-6,6
3-49
-3,8-28,4
13-25
3,9-25,7
-3,3-1,1
90
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
IV poziom (1 reper)
+98 m n.p.m.
V poziom (5 reperów)
+72÷+75 m n.p.m.
VI poziom (4 repery)
+56 m n.p.m.
VII poziom (3 repery)
+40 m n.p.m.
VIII poziom (1 reper)
+18 m n.p.m.
IX poziom (2 repery)
0 m n.p.m.
X poziom (4 repery)
-38 m n.p.m.
21
10,4
22-51
6,2-345,7
31-48
31,1-285,2
22-38
165,7-302
22
106
19-29
125,5-188,1
25-48
50,2-164,3
Dla porównania poniżej zestawiono wartości przemieszczeń w części wschodniej
zbocza, w rejonie nad najgłębszą częścią wyrobiska (tabela 3).
Tabela 3. Wartości przemieszczeń wybranych reperów powierzchniowych nad najgłębszą
częścią wyrobiska
Nr punktu
(rzędna)
429
+72
427
+73
412
+56.1
404
+56.2
401
+55.7
430
+37.5
410
+36
413
+36
809
-2.7
817
-27.9
815
-28
830
-79.4
sumaryczne
21,2
od 01.08.14
7,5
od 01.08.14
253,4
od 19.12.05
107,7
od 02.02.05
142,0
od 02.02.05
23,0
od 01.08.14
184,3
od 02.02.05
165,5
od 19.12.05
157,2
od 29.12.08
164,3
od 29.12.08
143.0
od 29.12.08
79,8
od 07.11.13
Przemieszczenia poziome [cm]
do 31.12.2013
01.01.14-31.07.14
-
01.08.14-31.12.14
21,2
-
-
7,5
119,9
68,4
65,1
64,4
26,1
17,2
92,9
30,5
18,6
-
-
23,0
105,7
45,9
32,7
102,0
40,5
23,0
81,4
46,7
29,1
75,3
46,9
28,4
60,6
40,5
20,1
-
37,7
39,3
Zmniejszenie wartości przemieszczeń dla większości reperów obserwowanych
nad najgłębszą częścią wyrobiska w okresie od sierpnia 2014, jest spowodowane
podparciem tej części zbocza do wysokości -50 m n.p.m. Aktualnie zbocze w rejonie
bloku paleoosuwiskowego jest podparte zwałowiskiem na długości ok. 520 m (według stanu na grudzień 2014 r.).
91
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
3.3. Deformacje wgłębne
Obserwacje deformacji wgłębnych prowadzone są w inklinometrach. W omawianym
rejonie zbocza południowego, w części wschodniej, przemieszczenia w głębi górotworu mierzone są od marca 2011 r. w inklinometrze IN-13S (linia przekroju geologicznego 62SN), który monitoruje zbocze w zakresie rzędnych -4/-122 m n.p.m.
Sumaryczne przemieszczenie na wlocie otworu wynosi 18,5 cm w kierunku NNE.
W IV kwartale 2014 r. nastąpił przyrost przemieszczeń o 9,1 cm. W krzywej przemieszczeń widoczny jest przyrost w zakresie rzędnych -45/-120 m n.p.m.
W październiku 2014 r., na półce +72 m n.p.m. został wykonany inklinometr
IN-41S (linia przekroju geologicznego 60.5 SN), o głębokości 160 m. W krzywej
przemieszczeń trudno wydzielić powierzchnie przyrostu przemieszczeń. Przyrost
odbywa się na całej długości otworu. Aktualnie, według pomiaru z 29.12.2014,
przemieszczenie sumaryczne na wlocie otworu wynosi 14,2 cm w kierunku na NE.
Zachodnią część zbocza (rejony X/S i XV/S) monitorują dwa inklinometry, wykonane w linii przekroju geologicznego 59SN: IN-43S o głębokości 124 m – na półce
+10 0m n.p.m. oraz IN-42S o głębokości 161 m – na półce +18,5 m n.p.m.
Inklinometr IN-42S monitoruje górotwór w zakresie rzędnych +18/-143 m n.p.m.
Pierwszy pomiar wykonano 14.11.2014 r. Zgodnie z pomiarem z 4.12.2014 r. przemieszczenie sumaryczne na wlocie otworu wynosi 5,8 cm ku N. Należy zaznaczyć, że
przyrost przemieszczeń pomiędzy I pomiarem a pomiarem z 19.11.2014 r. wyniósł 1,6
cm (5 dni) a pomiędzy II pomiarem i III (15 dni) wyniósł 4,4 cm. W krzywej przemieszczeń rysuje się wyraźna powierzchnia poślizgu na rzędnej -68/-70 m n.p.m.
Inklinometr IN-43S monitoruje górotwór w zakresie rzędnych +100/-24 m n.p.m.
Pierwszy pomiar wykonano 18.10.2014 r. Zgodnie z pomiarem z 7.01.2015 r. sumaryczne przemieszczenie na wlocie otworu wynosi 2,9 cm ku NW. Początkowe pomiary wykazywały sumaryczne przemieszczenie ku S i SE. Ostatni pomiar
z 7.01.2015 r. wykazał zwrot przemieszczeń ku N/NW. W krzywej przemieszczeń
widoczne są trzy strefy przyrostu przemieszczeń:
− w zakresie rzędnych od -2 do 5 m n.p.m. (wapień pelityczny z laminami iłów
marglistych),
− w zakresie rzędnych od +20 do +23 m n.p.m. (mułowce margliste),
− w zakresie rzędnych od +42 do +49 m n.p.m. (mułowiec marglisty).
Dodatkowo informacje o deformacjach w głębi górotworu są uzyskiwane na podstawie uszkodzeń w studniach i piezometrach. Obserwowane w przykładowo wybranych obiektach zjawiska przedstawiono w tabeli 4.
Tabela 4. Deformacje obserwowane w studniach i piezometrach
Nazwa obiektu i rzędna półki na
zboczu południowym
PW-324-1 (+124 m n.p.m.)
KT-117-1 (+18 m n.p.m.)
KT-129 (-2 m n.p.m.)
PP383 (-50 m n.p.m.)
113K-1P-PW (+72 m n.p.m.)
KT-141 (+38 m n.p.m.)
PW-323-2 (+74 m n.p.m.)
PP388 (+56 m n.p.m.)
PP377 (-2 m n.p.m.)
Rzędna i rodzaj deformacji
+40.5 – przerwanie piezometru
-22 m n.p.m. – przerwanie piezometru
-60 m n.p.m. – przerwanie piezometru
-80 m n.p.m. – przerwana kolumna filtrowa w studni
-26 m n.p.m. – przerwanie piezometru
-37 m n.p.m. – przerwanie piezometru
+61 i +43 m n.p.m. – uszkodzenie piezometru
+34 i +7 m n.p.m. – kolumna filtrowa zagnieciona
-120 m n.p.m. – zakleszczony kolektor tłoczny
92
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
Na podstawie analizy budowy geologicznej, wartości przemieszczeń powierzchniowych, w głębi górotworu oraz obserwacji makroskopowych należy stwierdzić, że
zagrożeniem objęte jest zbocze południowe wyrobiska górniczego P/Bełchatów na
obszarze linii przekrojowych od 62SN do 56SN. Największe przemieszczenia rejestrowane są w zachodniej części tego obszaru na V (+72 m n.p.m.), VI (+56 m
n.p.m.) i VII (+40 m n.p.m.) półce zbocza. Zdecydowanie wolniej odkształca się zbocze na VIII (+18 m n.p.m.), IX (0 m n.p.m.) i X (-38 m n.p.m.) poziomie zbocza południowego (tabela 2). Wzrost wartości i prędkości przemieszczeń następuje wraz
z postępem robót górniczych w zakresie rzędnych -50/-67 m n.p.m. Do września
2014 r. przyrost przemieszczeń rejestrowano do II półki zbocza południowego
włącznie, tj. do rzędnej +150 m n.p.m. Od września 2014 r. odnotowano przyrosty
przemieszczeń dla reperów na I półce zbocza (+178 m n.p.m.), co spowodowało
uszkodzenie rurociągu podskarpowego na tym poziomie 28 września 2014 r. Na
koniec grudnia maksymalna sumaryczna wartość przemieszczeń wynosiła 6,6 cm.
Bezpośrednim zagrożeniem osuwiskowym obecnie objęty jest obszar o po2
wierzchni około 200 tys. m , średniej miąższości około 55 m, co daje kubaturę pro3
gnozowanego osuwiska 10,5 mln m .
4. Procesy deformacyjne w skałach w innych kopalniach
Procesy o podobnej lub nawet większej skali znane są z literatury światowej. Zachodzą one głównie w głębokich kopalniach złóż polimetalicznych, np. miedzi, molibdenu, złota czy azbestu. W tabeli 1 zestawiono kilka przykładów podobnych procesów, które rozwinęły się na zboczach wyrobisk. Cechą charakterystyczną jest, że
o wytrzymałości zbocza decyduje najsłabszy element budowy geologicznej, mimo
często wysokich parametrów wytrzymałościowych otrzymanych z badań laboratoryjnych. Ponadto z danych autorów wynika, że procesy deformacyjne często mają
charakter typu „toppling”, tzn., że górna część zbocza odkształca się szybciej niż
dolna, a prędkości inicjacyjne wahają się od 30 mm/dobę do 200 mm/dobę. Ponadto
okres rozwoju procesu osuwiskowego może wynosić do kilku lat, ale zdarzają się
sytuacje, gdy proces rozwija się w sposób gwałtowny w ciągu kilku dni. Brakuje
danych dotyczących wartości przemieszczeń poziomych stanu dopuszczalnego
i krytycznego.
Tabela 5. Charakterystyka podobnych procesów w głębokich kopalniach na świecie
Lp.
Nazwa
złoża
1.
Afton
(Cu)
2.
Brenda
(Mo, Cu)
Parametry zbocza
Wysokość
Nachylenie
[m]
[o]
310 całkowita,
45
170 objęta
deformacjami.
335
45
Kubatura
osuwiska
[mln Mg]
0,3
15
Budowa geologiczna, parametry
wytrzymałościowe gruntów
silnie zuskokowany masyw diorytowy,
uskoki z wypełnieniem mineralnym,
ciągłe, Rc = 20-110 MPa
Masyw kwarcowych diorytów, partiami
złupkowany, wtrącenia gliniaste. Główny
system spękań W-E, upad ku S 70-80o,
rozstaw 15-27 m, dodatkowo dwa podrzędne systemy.
Rc – 150 MPa
93
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
3
Cassiar
(azbest)
370 całkowita,
180 objęta
deformacjami.
40.5
17,6
4
Highmont
(Cu, Mo)
110
40
1-2
5
Bingham
(Cu)
850
37
?
6
Carlin
Trend
(Cu)
210
35
8
7
Robinson/Ely/
Ruth
(Au)
Bełchatów
(węgiel
brunatny)
220
33
30
320 całkowita,
objęte deformacjami 230
45
?
8
Masyw w górnej części ok. 250 m –
wulkanity, dolna część serpentynity.
Masyw pocięty kilkoma strefami zwietrzenia i uskokami oraz spękaniami,
wulkanity Rc – 80 MPa;
serpentynity Rc – 50 MPa
Masyw granodiorytowy i diorytów kwarcowych, w różnym stopniu zwietrzałych.
Rc od 1 do 140 MPa.
z odwrotnych obliczeń:
c = 0.1-0.4 MPa; φ=33o
Kwarcyty i wapienie, cztery zespoły
skalne od kompetentnych do bardzo
słabych. Rc od 1 do 140 MPa
Drobnoziarniste piaskowce, iłołupki,
brekcje – skały przeobrażone zwietrzałe,
słabe oraz skały głębinowe. Masyw
zuskokowany, rozstaw do 30 m, wypełnienie ilaste. Głębinowe skały ≥ 200 MPa
Masyw riolitowo-zuskokowany wielokierunkowo, uskoki z wypełnieniem ilastym
Margle i opoki kredowe, trójkierunkowy
system spękań, rumosze i brekcje sedymentacyjne, strefy kopalnych osypów,
piargów i osuwisk (obrywów), strefa
kopalnego poślizgu wzdłuż stropu piasków alb-cenoman. Jej bieg to NW-SE
przy rozciągłości zbocza E-W. Rc = 3,345,6M Pa. z kartowań:c = 0,125 MPa;
φ = 18o
Podsumowanie
1)
2)
3)
4)
5)
6)
Aktualnie (stan na 31.12.2014) deformacjami nieciągłymi objęte jest zbocze
południowe wyrobiska górniczego Pola Bełchatów na długości około 1500 m,
w zakresie rzędnych +150/-80 m n.p.m. (230 m).
Spękania i szczeliny tworzące się na zboczu południowym wykazują związek
z systemem uskoków rozdzielających BP na mniejsze elementy.
Obecnie obserwuje się większą gęstość szczelin w górnej części zbocza (przedział rzędnych +96/+55 m n.p.m.) niż w części dolnej (półki stałe poniżej rzędnej +40 m n.p.m.).
Głębokość zakorzenienia BP do 40 m jest prawdopodobnie wartością graniczną, utrzymującą zbocze w stanie równowagi granicznej.
Przyrosty przemieszczeń oraz prędkości korelują się z okresami prowadzenia
eksploatacji w strefie zbocza południowego.
Przemieszczenia reperów w górnej części zbocza (półki +74 i +56 m n.p.m.) są
większe niż przemieszczenia mierzone na reperach w stopie zbocza. Jest to
efekt silniejszego odprężenia się bloków leżących na istniejącej powierzchni
paleoślizgu niż w podstawie zbocza, gdzie proces inicjacji powierzchni poślizgu
jest w początkowej fazie. Powyższe potwierdza większa gęstość spękań
i szczelin na poz. +72 i +55 m n.p.m.
94
L.W. Czarnecki, B. Organiściak, Zagrożenie stateczności zbocza stałego…
___________________________________________________________________________
7)
8)
9)
Szczeliny na poziomach +120 i +150 m n.p.m. są efektem rozsuwania się bloków podłoża mezozoicznego zalegających w podstawie warstw nadkładu.
Z obserwacji w inklinometrach oraz w zniszczonych studniach i otworach piezometrycznych wynika, że powierzchnia poślizgu inicjuje się na zmiennych
rzędnych od +61 m n.p.m. przez +34 m n.p.m., -26 m n.p.m. w części zachodniej do -70/-60 m n.p.m. w części wschodniej.
Bezpośrednim zagrożeniem osuwiskowym aktualnie objęty jest obszar o po2
wierzchni około 200 tys. m , średniej miąższości około 55 m, co daje kubaturę
3
prognozowanego osuwiska ok. 10,5 mln m .
Bibliografia
[1] Czarnecki L., Felisiak I., 2003, Ruchy masowe generowane uskokami zrzutowymi
w Rowie II rzędu w KWB Bełchatów, V Ogólnopolska Konferencja „Neotektonika Polski”:
Neotektonika a morfo tektonika, Metody Badań s. 38-42.
[2] Kossowski L., Olszewski B., Sowiński L., Wojturska M., Sowa J., 1992, Reinterpretacja
budowy geologicznej złoża Bełchatów w rejonie linii przekrojowych 42-70NS. Zakład
Geologii Stosowanej Uniwersytetu Wrocławskiego, Wrocław.
[3] Praca zbiorowa pod kierownictwem prof. S. Rybickiego, 2007, Dokumentacja geologiczno-inżynierska procesów osuwiskowych 22S i 24S wraz z weryfikacją przyjętych kryteriów bezpieczeństwa – Stowarzyszenie Naukowe im. Stanisława Staszica, Kraków.
[4] Kuliński M., Misiorek E., 2009, Dodatek nr 1 do Projektu Zagospodarowania Złoża Węgla Brunatnego Bełchatów – Pole Bełchatów, PG PROXIMA S.A. Wrocław.
[5] Sędor A., Czarnecki L., 2011, Zagrożenia osuwiskowe w Zakładzie Górniczym KWB
Bełchatów w trakcie prowadzenia eksploatacji w najgłębszej części złoża, w rowie II
rzędu, XXXIV Zimowa Szkoła Mechaniki Górotworu i Geoinżynierii, Kudowa-Zdrój.
[6] Czarnecki L., Jurczuk M., 2013, Eksploatacja w rowie II rzędu – dobór technologii prowadzenia robót górniczych dla zabezpieczenia eksploatacji do rzędnej -110 m n.p.m.,
XXXVI Zimowa Szkoła Mechaniki Górotworu i Geoinżynierii, Kudowa-Zdrój.
[7] Sowiński L., Wcisło A., Kurpiewska I., Ocena stopnia zagrożenia oraz wytyczne prowadzenia skarp stałych zbocza południowego 0/-110 m n.p.m. pomiędzy liniami 63SN-55SN, etap VI, VII i VIII. 2010-2013, Biuro Projektów Górniczych i Geologicznych
PROGiG Sp. z o.o., Wrocław.

Podobne dokumenty