GEOMETRIA PRZESTRZENNA Lista zadań nr 6 10.1

Komentarze

Transkrypt

GEOMETRIA PRZESTRZENNA Lista zadań nr 6 10.1
GEOMETRIA PRZESTRZENNA
Lista zadań nr 6
10.1. Wyprowadź wzór na odległość (sferyczną) dwóch punktów o danych współrzędnych geograficznych.
10.2. Sprawdź w atlasie, czy najkrótsza droga z Warszawy do Honolulu prowadzi przez Biegun
Północny.
10.3. Pokaż, że na każdym trójkącie sferycznym można opisać okrąg.
11.1. Oblicz pole koła oraz długość okręgu o promieniu r na sferze jednostkowej (tzn. pole
czaszy kulistej wyciętej przez stożek o kącie rozwarcia 2r oraz długość okręgu będącego
jej brzegiem). Podobnie jak w przypadku płaszczyzny, jedna z tych funkcji jest pochodną
drugiej. Która której i dlaczego?
11.2. (Zadanie dla posiadaczy kalkulatorków.) Sprawdź, która z następujących stref zajmuje
największą powierzchnię na Ziemi: strefa międzyzwrotnikowa (szerokości geograficzne od
−23◦ 27′ do 23◦ 27′ , okołobiegunowa (szerokości geograficzne poniżej −66◦ 33′ lub powyżej
66o 33′ ) czy umiarkowana (pozostała część powierzchni Ziemi: dwa pasy zawarte między
zwrotnikiem a kołem podbiegunowym).
11.3. Oblicz objętość i pole powierzchni najmniejszego walca zawierającego sześcian o krawędzi
długości 3.
11.4. Oblicz objętość i pole powierzchni stożka, którego przekrój osiowy jest trójkątem równobocznym o boku 5.
13.2. Mikołajek robi z papieru zabawki choinkowe w formie sześciu stożków o wspólnym wierzchołku sklejonych wzdłuż tworzących, w ten sposób, że podstawy stożków są kołami
wpisanymi w ściany sześcianu o boku 10 cm. Ile papieru potrzebuje na jedną zabawkę?
(Ile kartek A4?)

Podobne dokumenty