wykorzystanie msc marc/mentat do symulowania spawania cienkich

Transkrypt

wykorzystanie msc marc/mentat do symulowania spawania cienkich
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ
ROK XLVII NR 2 (165) 2006
Leszek Flis
Akademia Marynarki Wojennej
WYKORZYSTANIE MSC MARC/MENTAT
DO SYMULOWANIA
SPAWANIA CIENKICH PŁYT
STRESZCZENIE
W artykule opisano nowe rozwiązania zaimplementowane w oprogramowaniu MSC
Marc/Mentat1 usprawniające realizację symulacji numerycznej procesu spawania. Przedstawiono
nowe założenia teoretyczne wykorzystywane w algorytmach obliczeniowych MSC Marc. Wyniki
symulowanego spawania cienkich płyt stalowych zilustrowano na przykładzie rozkładu temperatury i naprężeń w spawanym elemencie.
Słowa kluczowe:
spawanie, naprężenia pozostające, naprężenia własne, pole temperatury, zagadnienie
sprzężone, termosprężystość, metoda elementów skończonych.
WSTĘP
W procesach przemysłowych małe komponenty są łączone z większymi
przy użyciu różnych technik. Spawanie jest obecnie jedną z najczęściej używanych
technik łączenia elementów. Niepożądanymi efektami spawania są naprężenia pozostające i deformacje łączonych elementów. Zarówno deformacje wypadkowe struktury, jak i naprężenia pozostające mogą mieć niekorzystny wpływ na poszczególne
części lub całą konstrukcję przy ich eksploatacji. Ze względu na obecność wysokich
temperatur i utrudniony dostęp wyznaczanie naprężeń własnych w konstrukcjach
okazuje się zagadnieniem niełatwym, a niejednokrotnie niemożliwym do zrealizowania. W obliczeniach numerycznych poszukuje się coraz dokładniejszych rozwiązań i udogodnień pozwalających obliczać zarówno rozkłady temperatur, jak
i naprężeń pozostających w rozpatrywanych elementach.
1
http://www.mscsoftware.com.au/products/software/msc/marc/
23
Leszek Flis
Analiza metodą elementów skończonych procesów spawania była jak dotąd
przedmiotem wielu badań. W MSC Marc wymagało to zastosowania specjalizowanych procedur użytkownika. Procedury takie zorientowane na problem wymagały
wygenerowania skomplikowanego kodu, aby poradzić sobie z modelowaniem materiału spoiny, złożonymi ścieżkami spawania itp. Aby ułatwić symulację spawania,
w preprocesorze MSC Mentat zaimplementowano kilka udogodnień, które przedstawiono w artykule na przykładzie symulacji spawania cienkich płyt.
NOWE MOŻLIWOŚCI I UDOGODNIENIA SYMULACJI
PROCESU SPAWANIA W MSC MARC
W MSC Marc 2005 dokonano wielu udogodnień w celu prowadzenia efektywnej symulacji procesu spawania. Najważniejsze elementy wspomagające symulację to:
1. Standardowe źródło ciepła zamodelowane jako dysk (dla powierzchni) lub
podwójna elipsoida (dla objętości) bezpośrednio w opcji WELD FLUX. Użytkownik może zastosować podprogram UWELDFLUX do zamodelowania arbitralnego źródła ciepła.
2. Liczne opcje dostępne do opisania ruchu źródła ciepła. Opcja WELD PATH
służy do orientacji łuku elektrody wzdłuż ścieżki spawania. Użytkownik może
zastosować podprogram UWELDPATH do opisania arbitralnej ścieżki spawania.
3. Zautomatyzowane wypełnianie miejsca spawania materiałem spoiny. Tworzenie
adekwatnych warunków brzegowych na granicy spawania umożliwia opcja
WELD FILL. Specjalne opcje zostały zaimplementowane, aby ułatwić modelowanie spawania kilkoma przejściami.
Dodatkowo dostępne są następujące funkcje:
1. Obliczenia jedno- i wieloprocesorowe.
2. Obydwie metody obliczeń ze stałym (TRANSIENT NON AUTO) i adaptacyjnym krokiem czasowym (AUTO STEP).
3. Spawanie można modelować dla zadań płaskich 2-D, płyt, osiowej symetrii,
continuum 3-D. Mogą być prowadzone analizy cieplne i cieplno-mechaniczne.
4. Dostępna jest lokalna adaptacja siatki elementów skończonych w obszarze spawania. Zdolność zgrubnego wykańczania siatki MES po ustaniu źródła ciepła
także jest dostępna.
24
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
ZAŁOŻENIA TEORETYCZNE
Spawanie jest procesem cieplnym, w którym uwzględnia się szczególne warunki graniczne. Warunki brzegowo-początkowe można zadawać, wykorzystując
opcję WELD FLUX w połączeniu z procedurami WELD PATH i WELD FILL.
Użycie powyższych opcji umożliwia zastosowanie dwóch różnych technik do symulowania przebiegu spawania:
1. Modelowanie źródła ciepła spawania poprzez podanie jego mocy przy wykorzystaniu opcji WELD FLUX. Temperatury topnienia lub inne temperatury
w punktach kontrolnych nie są wyszczególniane w opcji WELD FILL dla materiału spoiny ani dla żadnego innego materiału.
2. Modelowanie źródła ciepła poprzez podanie temperatury topnienia materiału
spoiny w opcji WELD FILL lub innych temperatur kontrolnych. Moc źródła
ciepła nie występuje.
Możliwa jest również kombinacja powyższych przypadków. Dla obu metod
ścieżka źródła ciepła jest określana opcją WELD PATH.
Moc źródła ciepła
Rozkład źródła ciepła w postaci dysku w zadaniach i dla „modeli płaskich”
oraz w formie podwójnej elipsoidy w zadaniach i dla „modeli przestrzennych” można określić w opcji WELD FLUX. Dla bardziej złożonych rozkładów źródeł ciepła
można użyć procedury użytkownika UWELDFLUX. Kształt dysku proponowanego
przez V. Pavelica dla rozkładu źródła ciepła i adekwatnego do obszaru działania
tzw. „jeziorka” ciekłego metalu jest wyrażony zgodnie z (1) (rys. 1.) [3]:
q( x, y , z ) =
gdzie: q
 − 3x 2 
 − 3z 2 
3Q


 2 ,
exp
exp
 r2 
 r 
πr 2




(1)
– ciepło spawania dostarczane na jednostkę powierzchni [J/(sm2)];
Q = ηUI – wytwarzana moc łuku elektrycznego w [J/s] przy sprawności łuku elektrycznego η , napięciu U [V] i natężeniu prądu I [A];
r
z
x
2 (165) 2006
– promień dysku;
– współrzędna lokalna określona wzdłuż ścieżki spawania;
– współrzędna lokalna określona wzdłuż prostopadłej do ścieżki
spawania.
25
Leszek Flis
Rozkład źródła ciepła modelowany jako dysk może być użyty w zadaniach
2-D i 3-D, gdzie głębokość penetracji ciepła spawania jest pomijana.
Rys. 1. Rozkład źródła ciepła i kształt „jeziorka” ciekłego metalu wg V. Pavelica [5]
Podwójna elipsoida stosowana szczególnie przy określaniu rozkładu źródła
ciepła w rozpatrywanej objętości jest wyrażona zgodnie z (2a i 2b) [3]:
gdzie:
q f ( x, y , z ) =
 − 3z 2 
 − 3x 2 
 − 3y2 
 ; (2a)
exp 2  exp 2  exp
2 

a
b
c
abc f π π




 f 
qr ( x, y, z ) =
 − 3z 2 
 − 3x 2 
 − 3y2 
6 3 f rQ
exp 2  exp 2  exp 2  ,
abcrπ π
 a 
 b 
 cr 
6 3ffQ
(2b)
q f i q f – moc źródła ciepła na jednostkę objętości odpowiednio przed i za
osią elektrody;
Q = ηUI – wytwarzana moc łuku elektrycznego;
b
– szerokość spoiny określona na kierunku prostopadłym (kierunek
x ) do osi spoiny;
– wielkość penetracji źródła ciepła w głąb materiału (kierunek y );
c f i cr
– przednia i tylna głębokość penetracji wzdłuż osi spoiny (kieru-
f f i fr
nek z ),
– bezwymiarowe współczynniki dane jako (3a i 3b) [3]:
a
26
ff =
2
(1 + cr / c f );
(3a)
fr =
2
(1 + c f / cr ).
(3b)
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
Ideę podwójnej elipsoidy stosowanej do modelowania „jeziorka” ciekłego
metalu przedstawia rysunek 2.
cr
cf
a
x
b
y
Rys. 2. Podwójna elipsoida reprezentująca rozkład źródła ciepła spawania
wraz z lokalnymi współrzędnymi [3, 5]
Wielkości wymiarowe określone w równaniach (1) i (2) muszą być szacowane i dostarczone przez użytkownika. Szerokość i głębokość penetracji przed i za
elektrodą są potrzebne tylko przy określaniu oddziaływania źródła ciepła w objętości spawanego materiału. Promień r z równania (1) potrzebny jest z kolei tylko
wówczas, gdy rozpatrujemy oddziaływanie źródła ciepła na krawędzi lub powierzchni z pominięciem oddziaływania ciepła spawania po grubości spawanego materiału.
Wymiary „jeziorka” ciekłego metalu są obowiązkowe, gdy używany jest standardowy model (dysk lub elipsoida) dla określenia rozkładu źródła ciepła, natomiast są
opcjonalne, gdy stosowana jest procedura użytkownika UWELDFLUX. Wymiary
opisujące „jeziorko” ciekłego metalu można podawać na trzy różne sposoby:
−
−
−
przez zdefiniowanie mocy źródła ciepła i podanie konkretnych wymiarów;
przez zdefiniowanie obszaru, w którym mają być wykrywane elementy kontaktowe materiału spoiny z materiałem rodzimym;
przez zdefiniowanie wymiarów określanych w kryteriach opisujących siatki
adaptacyjne.
Wymiary „jeziorka” ciekłego metalu mogą się zmieniać dzięki zdefiniowaniu tabelarycznemu. Definicja tabelaryczna może stanowić funkcję w czasie lub po
współrzędnej wzdłuż osi spoiny opisującą zmianę „jeziorka” ciekłego metalu. Wymiar względem osi spoiny jest identyfikowany zgodnie z przebiegiem zadanym
przez ścieżkę spawania od jej początku do pozycji punktu aktualnego położenia osi
elektrody.
2 (165) 2006
27
Leszek Flis
Jednostkowa moc źródła ciepła określona równaniami (1) i (2) może być
później skalowana przez współczynnik. Dany współczynnik może być automatycznie obliczany przez program lub opcjonalnie ustawiany przez użytkownika. Dla
zadań 3-D współczynnik jest automatycznie ustawiany do wartości 1. Dla zadań 2-D
(płaskich i osiowosymetrycznych) automatycznie wyliczany współczynnik s jest
obliczany poprzez przyrównanie całki po powierzchni w płaszczyźnie x-y i po grubości materiału h do zastosowanej mocy źródła ciepła Q [3]:
∫∫ q( x, y,0) h dxdy = Q .
s
(4)
Dla równań (1) i (2) współczynnik skali może być przedstawiony jako [3]:
s
π r
;
3h
(5a)
s
π ( cr + c f )
.
3
2h
(5b)
Można zauważyć, że współczynnik skali umacnia użytkownika jedynie
w przekonaniu, że zastosowana moc źródła ciepła w zadaniu 2-D odpowiada mocy
źródła ciepła stosowanej w przypadku 3-D. Generalnie temperatura obliczana i porównywana między zadaniami 2-D i 3-D zależy także od prędkości źródła ciepła,
własności cieplnych materiałów spawanych i pozostałych cieplnych i wytrzymałościowych warunków przed i po oddziaływaniu źródła ciepła, które przecina powierzchnię spawania.
Ścieżka spawania
Ścieżka spawania, którą przebywa źródło ciepła podczas spawania, jest
określana w opcji WELD PATH. W tej samej opcji określa się położenie współrzędnych lokalnych dla poruszającego się źródła ciepła, jak to pokazuje rysunek 3.
Ścieżka źródła ciepła we współrzędnych lokalnych określona jest osią współrzędnych z. Orientacja łuku określona jest osią y . Wektor styczny prostopadły do z i y
reprezentuje oś x . Możliwe jest podanie osi dla ścieżki spawania innej niż bezpośrednio w programie MSC Marc – jako dane z pliku tekstowego lub przy zastosowaniu podprogramu UWELDPATH.
28
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
a)
b)
Rys. 3. Współrzędne lokalne w systemie: b) dla poruszającego się źródła ciepła
otrzymane przez translację i rotację współrzędnych globalnych a) [3]
Materiał spoiny
Dynamiczne modelowanie materiału wypełniającego spoinę i generowanie
odpowiednich warunków brzegowych definiowane jest w opcji WELD FILL. Możliwe do zastosowania są dwie metody modelowania materiału spoiny:
−
−
metoda zmiany własności materiałowych dla elementów;
metoda „dezaktywacji” elementów.
W pierwszej metodzie materiał wypełniający miejsce spawania początkowo
ma „obniżone” własności materiałowe. Domyślnie własności materiału spoiny są
przeliczane ze współczynnikiem 10-5. Kiedy materiał spoiny jest tworzony wraz
z przesuwającym się źródłem ciepła naprężenia i odkształcenia, w elementach materiału spoiny są redukowane do zera tak jak dla materiału rodzimego niepoddanego
obciążeniu. Metoda ta pozwala elementom „przemieszczać” się z modelem. Jest to
szczególnie użyteczne przy metodzie dużych przemieszczeń, jakkolwiek metoda ta
może źle wpływać na uwarunkowanie zadania, jeśli chodzi o sztywność elementów
przy dużych przemieszczeniach.
W drugiej metodzie elementy są początkowo „dezaktywowane” i nieuwzględniane w analizie. Kiedy elementy materiału spoiny są fizycznie kreowane
podczas przesuwania się źródła ciepła, wówczas są one aktywowane i uwzględniane
w analizie. Może to powodować skręcanie elementów, gdy rozpatrywana jest analiza dużych przemieszczeń.
2 (165) 2006
29
Leszek Flis
Temperatura początkowa materiału spoiny może być bezpośrednio zadawana w opcji WELD FILL. Odpowiednio ciepło dostarczane z łuku elektrycznego
może być modelowane opcją WELD FLUX jako ciepło doprowadzane zarówno
do materiału rodzimego, jak i do materiału spoiny. Kiedy użyta zostaje opcja ustalania temperatury, odpowiednie warunki brzegowe ustawiane są dla materiału spoiny.
Temperatura topnienia jest automatycznie przypisywana do węzłów, które wchodzą
w skład elementów materiałów spoiny tak długo, jak długo pozostają one w zasięgu
działania jeziorka ciekłego metalu. Wraz z przemieszczaniem się źródła ciepła
warunki brzegowe dla węzłów będących pod działaniem ciekłego metalu są usuwane i pozwala się na chłodzenie elementów materiału spoiny. Domyślna wartość
temperatury topnienia materiału spoiny jest dla odpowiednich elementów w odpowiedniej chwili zadawana natychmiastowo. Może to być powodem problemów
zbieżności obliczeń, szczególnie przy użytej opcji AUTO STEP, która bazuje na
dopuszczalnej temperaturze do określania kroku czasowego. Dlatego też opcjonalnie
można podawać czas, w jakim temperatura materiału osiąga temperaturę topnienia,
aby złagodzić problem niestabilności obliczeń. Jeśli czas ten wynosi zero, temperatura topnienia dla materiału spoiny zadawana jest natychmiast ze wszelkimi skutkami.
Własności materiałowe
Nieliniowa zależność własności cieplnych i mechanicznych od temperatury
jest brana automatycznie pod uwagę podczas obliczeń. Ciepło ukryte przemiany
fazowej może być uwzględniane przez specyfikację temperatur solidusu i likwidusu
lub wybraną specyfikację rozkładu ciepła, zazwyczaj nieliniowego, jako funkcji
temperatury. Przemiana fazowa faza stała – faza stała w obecnej wersji programu
nie jest dostępna. Pozostałe, mniej istotne udogodnienia symulacji procesu spawania
można znaleźć w [5].
ZAŁOŻENIA SYMULACJI NUMERYCZNEJ PROCESU SPAWANIA
I WYNIKI OBLICZEŃ
Przeprowadzono symulację numeryczną spawania cienkich płyt stalowych
ze stali St4S o grubości 2 mm i wymiarach przedstawionych na rysunku 4.
30
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
oś spoiny
KIERUNEK SPAWANIA
600 mm
4,167 mm
Siatka elementów
skończonych
zawiera 124
elementy i 1180
węzłów
300 mm
POCZĄTEK SPAWANIA
a)
b)
Rys. 4. Wymiary spawanych płyt: a) widok ogólny płyt po spawaniu;
b) zdyskretyzowana połowa spawanych płyt z siatką elementów skończonych
Dwie płyty zespawano spoiną czołową wzdłuż dłuższej krawędzi. Spoinę
wykonano jednym przejściem, uzyskując przetop materiału na całej grubości płyty.
Parametry spawania płyt przedstawiono w tabeli 1.
Tabela 1. Parametry spawania [4]
Parametry spawania
Natężenia prądu spawania I [A]
Napięcie prądu spawania U [V]
Prędkość spawania Vs [mm/s]
Współczynnik sprawności η
Pozycja spawania
Liczba przejść
Metoda spawania
Płyta o grubości 2 [mm]
129,0
18,9
7,89
0,63
podolna
1
MIG
Założono, że oś spoiny stanowi oś symetrii i w obliczeniach rozważano tylko
połowę płyty. Obliczenia wykonano, zakładając, że w spawanych płytach występuje
płaski stan naprężenia, co stanowi kompromis pomiędzy koniecznością uchwycenia
najistotniejszych zjawisk występujących w analizowanym zadaniu a stopniem komplikacji modelu, czyli wynikającymi stąd czasami obliczeń i wymaganiami sprzętowymi.
2 (165) 2006
31
Leszek Flis
Po wykonaniu siatki elementów skończonych dla połowy spawanych płyt
wprowadzono do preprocesora MSC Mentat parametry spawania przedstawione
w tabeli 1. Następnie wskazano oś spoiny i zadano warunki brzegowo-początkowe.
Dane materiałowe uzyskano z bazy materiałowej MSC Mentat. Szczegółowe, dość
obszerne założenia do obliczeń zamieszczono w pracy [4].
Celem przeprowadzonej symulacji było uzyskanie wyników jakościowo
i ilościowo zgodnych z wynikami przedstawionymi w pracy [4], które wykonane
były z wykorzystaniem algorytmów zaprogramowanych w języku Fortran. Zgodność wyników w obu przypadkach świadczyłaby, że nowe udogodnienia wprowadzone w MSC Mentat dają praktycznie nieograniczone możliwości symulowania
ogólnie procesów cieplnych przy nieporównywalnie mniejszych nakładach pracy,
lecz przy założeniu dostępności narzędzia MSC Marc Mentat.
WYNIKI OBLICZEŃ ROZKŁADU TEMPERATURY
Przesuwający się wraz z elektrodą obraz rozkładu temperatury w postaci
planu warstwicowego przedstawiono na rysunku 5. Jeżeli przyjąć, że temperatura
topnienia materiału spawanego wynosi 1600 ˚C, to na podstawie tejże izotermy
można określić kształt i wielkość jeziorka spawalniczego (rys. 5b).
[s]
a)
b)
[°C]
Rys. 5. Rozkład temperatury po czasie t = 158 [s]: a) plan warstwicowy,
b) powiększony obraz plamki cieplnej
32
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
WYNIKI OBLICZEŃ NAPRĘŻEŃ POZOSTAJĄCYCH
Obydwie płyty miały punktowe spoiny szczepne na początku i końcu osi
spawania. Uzyskane z obliczeń rozkłady naprężeń pozostających w płytach przedstawiono na rysunku 6. Naprężenia przedstawiono za pomocą izolinii wartości składowej normalnej σ x w kierunku x i składowej normalnej σ y w kierunku y,
składowej stycznej τ xy w płaszczyźnie xy oraz naprężenia zredukowanego σ red według hipotezy Hubera. Obliczenia naprężeń i temperatury prowadzone były przy
parametrach materiałowych zmiennych z temperaturą.
[MPa]
σx
[MPa]
σy
Rys. 6. Naprężenia pozostające w płycie spawanej
przy parametrach materiałowych zmiennych
z temperaturą:
składowa normalna σ x ,
składowa normalna σ y ,
składowa styczna τ xy ,
[MPa]
τx
naprężenia zredukowane
[MPa]
σred
σ red
y
x
2 (165) 2006
33
Leszek Flis
WNIOSKI
Wyniki przeprowadzonych obliczeń odpowiadają charakterowi zmian poszukiwanych naprężeń w obszarze płyt, co potwierdza zasadność modelu obliczeniowego i przydatność symulacji komputerowej do oceny naprężeń pozostających.
Zgodność jakościowa uzyskanych wyników z wynikami uzyskanymi w pracy [4]
powoduje, że narzędzie MSC Marc Mentat znajduje się w czołówce systemów
CAE przeznaczonych między innymi do obliczeń związanych z symulowanym procesem spawania. Ze względu na możliwość modyfikowania algorytmów solvera
poprzez wprowadzanie procedur użytkownika MSC Marc Mentat stanowi narzędzie
praktycznie o nieograniczonych możliwościach obliczeniowych. Wprowadzone
ułatwienia systemowe pozwalają na wykonywanie obliczeń sprawdzających (przed
spawaniem rzeczywistym) użytkownikom nieznającym zasad złożonego i czasochłonnego programowania w językach wysokiego poziomu.
Symulacja komputerowa złożonych zagadnień nieliniowych, np. wielokrotna spoina pachwinowa, wymaga komputerów o dużej mocy, dostępnych w nielicznych ośrodkach obliczeniowych, przy jednoczesnej możliwości weryfikowania
wyników przynajmniej kilkoma metodami numerycznymi oraz eksperymentem.
Dalsze prace należałoby rozszerzyć o obliczenia naprężeń dla innych modeli
obliczeniowych, od płyty począwszy, a na modelach przestrzennych skończywszy.
Uzyskane obliczenia dotyczące naprężeń własnych należałoby porównywać z wynikami otrzymanymi na przykład w eksperymentach metodami magnetycznymi, rentgenowskimi i ultradźwiękowymi, zwłaszcza dla materiałów niemagnetycznych.
BIBLIOGRAFIA
[1]
Burczy J., O możliwości obliczeniowego wyznaczania cykli cieplnych przy spawaniu
metodą TIG stopuAlMg5, IV Krajowa Naukowo-Techniczna Konferencja Spawalnicza, Międzyzdroje – Szczecin, 20 – 22 kwietnia 1999.
[2]
Dobrociński S., Modelowanie zagadnień obliczania naprężeń cieplnych, AMW,
Gdynia 2001.
[3]
Dokumentacja MSC MARC 2005, Theory and user information, MSC Software
Corporation, Santa Anna 2005.
[4]
Flis L., Określanie naprężeń pozostających w elementach maszyn poddanych procesom cieplnym, rozprawa doktorska, AMW, Gdynia 2002.
34
Zeszyty Naukowe AMW
Wykorzystanie MSC Marc/Mentat do symulowania spawania cienkich płyt
[5]
Goldak J., Chakravarti A., Bibby M., A New Finite Element Model for Welding Heat
Sources, „Metallurgical Transactions” B, June 1984, pp. 299 – 305.
[6]
Lindgren L. E., Finite element modeling and simulation of welding, Part 3,
Efficiency and Integration, „Journal of Thermal Stresses”, 2001, No 24,
pp. 305 – 334.
ABSTRACT
The paper describes new solutions applied in the MSC Mentat software that improve the
numerical simulation of welding. It presents a new theoretical assumption used in the MSC Marc
computation algorithms. The simulation results of the welding of thin plates are given in the form
of temperature and stress distribution.
Recenzent prof. dr hab. inż. Janusz Kolenda
2 (165) 2006
35

Podobne dokumenty