pobierz

Transkrypt

pobierz
Acta Haematologica Polonica 2011, 42, Nr 1, str. 5–15
PRACA POGLĄDOWA – Review Article
ALEKSANDRA GOŁOS, AGNIESZKA WIERZBOWSKA
Znaczenie aberracji cytogenetycznych i molekularnych w biologii ostrej
białaczki szpikowej
The role of cytogenetic and molecular abnormalities in the biology of acute
myeloid leukemia
Katedra i Klinika Hematologii UM w Łodzi
Kierownik Katedry i Kliniki: Prof. dr hab. n. med. Tadeusz Robak
STRESZCZENIE
Ostra białaczka szpikowa jest najczęstszą postacią białaczek u dorosłych i drugim co do częstości nowotworem układu krwiotwórczego. Zaburzenia chromosomalne i molekularne są najważniejszymi czynnikami określającymi rokowanie chorych na ostrą białaczkę szpikową. W ciągu ostatnich kilku lat odkryto szereg aberracji cytogenetycznych
i molekularnych, które nie tylko potwierdzają heterogenność AML, lecz także mają istotne znaczenie prognostyczne.
Celem pracy jest przegląd najważniejszych zmian molekularnych i ich znaczenia prognostycznego.
SŁOWA KLUCZOWE: Ostra białaczka szpikowa – Aberracje molekularne – Rokowanie
SUMMARY
Acute myeloid leukemia is the most common of leukemias in adults and the second frequent among the hematooncological disorders. Chromosomal and molecular aberrations are the most important factors predicting outcome in patients with acute myelogenous leukemia. For the last few years many cytogenetic and molecular alterations have been
found which have shown the heterogeneity of the disease and have a major impact on the clinical outcome. This article provides an overview on the most relevant cytogenetic findings and their prognostic significance.
KEY WORDS: Acute myeloid leukemia – Molecular aberrations – Clinical outcome
WSTĘP
Ostra białaczka szpikowa (AML; acute myeloid leukemia) jest chorobą, w której dochodzi do klonalnej proliferacji i kumulacji niedojrzałych morfologicznie i czynnościowo komórek blastycznych,
wywodzących się z prekursorowej, stransformowanej nowotworowo komórki hematopoetycznej. AML
nie jest chorobą jednorodną. Heterogenność ostrej białaczki szpikowej wynika ze skomplikowanej sieci
zaburzeń cytogenetycznych i molekularnych leżących u jej podłoża. Wyniki badań wskazują, że aberracje cytogenetyczne stwierdza się u około 55% chorych, a kariotyp klonu białaczkowego w chwili rozpoznania jest najsilniejszym czynnikiem prognostycznym w AML [13, 29]. W ostatnich latach dokonał
się znaczny postęp w rozwoju technik molekularnych pozwalających identyfikować nowe zaburzenia
genetyczne. Stale rośnie liczba poznanych aberracji genetycznych (mutacji, rearanżacji, amplifikacji)
odgrywających istotną rolę w procesie leukemogenezy, co skutkuje lepszym poznaniem patogenezy
AML i stwarza podstawy do rozwijania metod terapii celowanej. Celem pracy jest przedstawienie najważniejszych zaburzeń molekularnych w AML oraz ich znaczenia prognostycznego.
A. GOŁOS, A. WIERZBOWSKA
6
Patogeneza ostrej białaczki szpikowej
Rozwój ostrej białaczki szpikowej, podobnie jak innych złośliwych nowotworów, jest wynikiem
skumulowania nabytych na przestrzeni lat zaburzeń genetycznych, które upośledzają prawidłową hematopoezę [19]. Na podstawie badań na modelach zwierzęcych wysunięto hipotezę „dwóch uderzeń”
(„two-hit model of leukemogenesis”), dotyczącą ilości aberracji genetycznych w loci genów kontrolujących kluczowe dla komórki procesy, wymaganych do rozwoju ostrej białaczki [19].
Na modelu mysim wykazano, że ekspresja fuzyjnego genu PML-RARα powstajacego wskutek patognomonicznej dla ostrej białaczki promielocytowej (APL-acute promyelocytic leukemia) t(15;17), wywoływała u części transgenicznych zwierząt ostrą białaczkę poprzedzoną różnie długim (powyżej 6
miesięcy) okresem latencji. Rozwój AML u tych zwierząt następował po pojawieniu się, oprócz
t(15;17), dodatkowej mutacji (tzw. „drugie trafienie”) [19].
Podobnie obecność mutacji FLT3-ITD (Fms-like tyrosine kinase-3-internal tandem duplication)
prowadzi do powstania fenotypu zespołu mieloproliferacyjnego [3]. Progresję do ostrej białaczki obserwuje się dopiero po wystąpieniu dodatkowej mutacji hamującej różnicowanie [24, 20].
Wielostopniowość patogenezy AML potwierdzają również obserwacje rzadkich, dziedzicznych zespołów białaczkowych, takich jak FPD/AML (familial platelet disorder with propensity to AML syndrome). Zespół FPD/AML, dziedziczony autosomalnie dominująco, jest spowodowany mutacją typu
utraty funkcji w genie RUNX1. Mimo, że mutacja ta jest obecna już w liniach zarodkowych komórek,
osoby nią dotknięte nie rozwijają ostrej białaczki aż do czasu pojawienia się dodatkowych mutacji
w komórkach układu krwiotwórczego [19].
Wyniki ostatnich badań wskazują, że do transformacji białaczkowej niezbędne jest współistnienie
mutacji aktywującej szlaki przekazywania sygnału (klasa I), i w konsekwencji stymulującej proliferację
i/lub przeżycie białaczkowej komórki prekursorowej, oraz aberracji genetycznej modulującej funkcje
czynników transkrypcyjnych lub ich ko-aktywatorów (klasa II), odpowiedzialnej za nieprawidłowe
różnicowanie komórek [22 ] (Rycina 1).
Mutacje klasy II
Mutacje klasy I:
FLT3-ITD
FLT3-TKD
RAS
JAK2
KIT
SHP2
Proliferacja
Blok w różnicowaniu
PML-RARα
RUNX1
CBFβ-MYH11
MLL
CEBPA
AML
Ryc. 1. Model dwóch uderzeń w patogenezie ostrej białaczki szpikowej.
Fig. 1. „Two-hit“ model of leukemogenesis.
Mutacje „klasy I” indukują proliferację komórek w wyniku aktywacji receptorowych kinaz tyrozynowych (m.in.: FLT3, c-Kit, N-Ras, K-Ras) lub niektórych elementów wewnątrzkomórkowego szlaku
przekaźnictwa sygnału (kinazy JAK2, ABL). Jednoczesne występowanie mutacji dwóch lub więcej
genów biorących udział w jednym szlaku przekazywania sygnału spotykane jest bardzo rzadko. Izolowana mutacja „klasy I” wywołuje zwykle fenotyp zespołu mieloproliferacyjnego. Pełnoobjawowa
AML powstaje dopiero po wystąpieniu dodatkowej mutacji klasy II, hamującej różnicowanie komórek
[24].
Znaczenie aberracji cytogenetycznych
7
Mutacje „klasy II” modulują funkcję czynników transkrypcyjnych bezpośrednio (poprzez tworzenie
genów fuzyjnych, np.: CBFβ-MYH11, PML-RARα) lub pośrednio (przez ingerencję w proces transkrypcji). Najwcześniej poznaną mutacją klasy II jest zrównoważona translokacja wzajemna
t(15;17)(q22;q11-12). W jej wyniku powstaje gen fuzyjny PML-RARα, złożony z genu białaczki promielocytowej (PML) z chromosomu 15 oraz genu dla receptora kwasu retinowego- α (RARα) z chromosomu 17. PML kontroluje zależną od białka p53 apoptozę komórek i współdziała z innymi genami supresorowymi jak Rb i Mad. RARα jest jądrowym receptorem dla kwasu retinowego. Jego aktywacja
powoduje przyłączenie do regionów promotorowych docelowych genów, m.in. genów regulujących
cykl komórkowy (cykliny i cyklino-zależne kinazy) oraz genów innych czynników transkrypcyjnych
(np. STAT i HOX) i uruchomienie ich transkrypcji. Przy nieobecności ligandu RARα tworzy heterodimery z receptorem X kwasu retinowego (RXR-retinoid X receptor) i aktywuje kompleks korepresorowy o aktywności deacetylazy histonów, który powoduje kondensację chromatyny i hamuje
transkrypcję. Białko fuzyjne PML-RARα funkcjonuje jak wadliwy receptor dla kwasu retinowego, ze
zmienionymi miejscami wiązania DNA, co uniemożliwia prawidłową reakcję na fizjologiczne stężenia
retinoidów. Zahamowanie transkrypcji docelowych genów powoduje blok w różnicowaniu komórek
[27].
Do innych znanych mutacji klasy II należą geny fuzyjne charakterystyczne dla białaczek z grupy
core binding factor (CBF). Zalicza się do nich białaczki z inv(16)(p13.1q22)/t(16;16)(p13.1;q22) oraz
t(8;21)(q22;q22). CBF jest czynnikiem transkrypcyjnym składającym się z dwóch podjednostek: RUNX1 (znany także jako AML1) oraz CBFβ. Podjednostka AML1 wiąże się z DNA i aktywuje transkrypcję różnych genów (m.in. genów dla GM-CSF i dla IL-3) [16]. Właściwe współdziałanie obu podjednostek warunkuje prawidłową hematopoezę. W wyniku translokacji chromosomalnych podjednostki
CBF zostają rozdzielone i tworzą białka fuzyjne. t(8;21) skutkuje powstaniem genu fuzyjnego RUNX1RUNX1T1. RUNX1T1 jest supresorem transkrypcji, który aktywując ko-supresory i deacetylazę histonów uniemożliwia transkrypcję docelowych genów dla RUNX1 [38]. Natomiast w wyniku
inv(16)/t(16;16) powstaje nowe białko fuzyjne CBFβ-MYH11 (tzw. CBF-SMMHC), które wiąże się
z AML1 i hamuje jego funkcję [40].
Wyniki badań wskazują, że obecność izolowanej mutacji klasy II przyczynia się do zaburzenia różnicowania komórek, ale nie powoduje jeszcze rozwoju AML. Dotyczy to genów fuzyjnych RUNX1RUNX1T1, CBFβ-MYH11 i PML-RARα [7].
Istnieją dowody, że niektóre prawidłowe geny regulujące samoodtwarzanie białaczkowej komórki
pnia (ang. leukemic stem cell) np. WNT, Notch, HOX odgrywają istotną rolę w biologii AML
i w przyszłości, podobnie jak mutacje klasy I i II, mogą być celem terapeutycznym [40, 31].
Mutacje genów w białaczkach z prawidłowym kariotypem
U około 50% chorych z AML nie stwierdza się dodatkowych aberracji w komórkach białaczkowych w klasycznym badaniu cytogenetycznym [31]. Chorzy z prawidłowym kariotypem kwalifikowani
są do grupy o pośrednim rokowaniu i stanowią największą i najbardziej różnorodną jej część. Wraz
z rozwojem metod badawczych genetyki molekularnej, takich jak RT-PCR (real-time polymerase chain
reaction), czy GEP (gene expression profilinig), odkryto wiele nowych zaburzeń submikroskopowych/molekularnych o istotnym znaczeniu rokowniczym. Niektóre z nich zostały uznane za niezależne
czynniki prognostyczne (Tabela 1) [31].
Mutacje genu NPM1
Mutacje genu nukleofosminy (NPM1; nucleophosmin member 1) występują u 46-62% chorych na
AML z prawidłowym kariotypem (cytogenetically normal-acute myeloid leukemia; CN-AML) [31].
Locus genu NPM1 znajduje się na chromosomie 5, w regionie q35q. Fizjologiczna rola NPM1 polega
A. GOŁOS, A. WIERZBOWSKA
8
Tabela 1. Aberracje molekularne w białaczkach z prawidłowym kariotypem i ich znaczenie prognostyczne.
Table 1. Molecular abnormalities in cytogenetically normal AML and their prognostic significance.
Aberracja (%)
NPM1 (53%)
NPM1 & FLT3-ITD -
Znaczenie prognostyczne
Korzystne
Wpływ na CR, OS: odsetek CR wyższy dla NPM1+/FLT3-ITD
Wpływ na OS
CEBPA (15-19%)
Korzystne; wpływ na EFS i OS
FLT3-ITD (28-33%)
Niekorzystne
Wpływ na OS i DFS
FLT3-TKD (5-14%)
MLL-PTD (8%)
Bez wpływu na OS
Wpływ na CRD i OS
BAALC-nadekspresja
Wpływ na OS, DFS, EFS, CR
ERG-nadekspresja
MN1-nadekspresja
Wpływ naOS, CR i EFS
Wpływ na OS i EFS
Nieznane/w trakcie badań [10]
Brak danych o znaczeniu prognostycznym
W trakcie badań
Jak do tej pory nie wykazano znaczenia prognostycznego
W trakcie badań
RUNX1 (10%)
KIT (30%w CBF-AML)
RAS(9-14%)
WT1(10%)
Źródło
Fallini et al. (2005) [14]
Schnittger et al. (2005)
[36]
Fröhling et al. (2004) [18]
Bienz et al. (2005) [4]
Whitman et al. (2001) [44]
Fröhling et al. (2002) [17]
Caligiuri et al. (1998) [6]
Schnittger et al. (2000)[35]
Baldus et al. (2003) [2]
Baldus et al. (2006) [3]
Marcucci et al. (2005) [28]
Heuser et al. (2006) [23]
na regulacji integralności DNA i kontroli cyklu komórkowego poprzez regulację działania szlaków
ARF i białka p53 [15]. NPM1 jest także częścią genów fuzyjnych powstających w wyniku translokacji
chromosomowych w ostrej białaczce promielocytowej (NPM-RARα) lub w anaplastycznym wielkokomórkowym chłoniaku (NPM-ALK) [34]. Najczęstszą mutacją jest duplikacja 4 par zasad
(956dupTCTG) w eksonie 12 genu NPM1, która poprzez zmianę ramki odczytu powoduje utratę tryptofanu, aminokwasu odgrywającego istotna role w prawidłowej lokalizacji białka. Konsekwencją tej mutacji jest przemieszczenie NPM1 z jądra do cytoplazmy, co uniemożliwia jej prawidłową funkcje w regulacji apoptozy [15]. Mutacja NPM1 współistnieje często z pewnymi cechami biologicznymi
i klinicznymi, takimi jak: płeć żeńska, wysoka liczba blastów w szpiku, WBC i PLT, wysoki poziom
LDH, w surowicy, brak ekspresji CD34 na komórkach białaczkowych [36]. Istnieją dowody, że obecność izolowanej mutacji NPM1 jest korzystnym czynnikiem prognostycznym u chorych na AML
z prawidłowym kariotypem. Ponadto u około 40% chorych mutacja ta współistnieje z FLT3-ITD (Tabela 2). W licznych badaniach potwierdzono, że genotyp NPM1(+)/FLT3-ITD(–) jest korzystnym czynnikiem prognostycznym i wiąże się z wyższym odsetkiem całkowitych remisji (complete remission –CR),
dłuższym czasem przeżycia wolnym od nawrotu (relapse free survival – RFS) i czasem całkowitego
przeżycia (overall survival – OS), które są porównywalne z wynikami obserwowanymi w białaczkach
z grupy CBF [36]. Obecność mutacji NPM1 nie równoważy złego rokowania wynikającego z obecności
FLT3-ITD. [11]. Genotyp NPM1(+)/FLT3-ITD(–) został uznany za niezależny czynnik prognostyczny
dla CR, DFS, EFS i OS [11].
Mutacje FLT3
Gen FLT3 (Fms-like tyrosine kinase-3), znany także jako FLK-2 (fetal liver kinase-2) lub STK-1
(human stem cell kinase-1) został po raz pierwszy opisany w 1991 r. Gen FLT3 koduje błonowe białko
należące do III klasy receptorów kinazy tyrozynowej (RKT) i bierze udział w proliferacji, różnicowaniu
Znaczenie aberracji cytogenetycznych
9
i apoptozię prekursorów komórek krwiotwórczych [39]. Ponadto ekspresję tego genu stwierdza się
w niedojrzałych komórkach łożyska, gonad i mózgu [20]. Nabyte mutacje genu FLT3 stwierdza się
u około 30–35% chorych z AML [15]. Do najczęściej spotykanych mutacji genu FLT3 należy wewnętrzna tandemowa duplikacja (FLT3-ITD – internal tandem duplication) części przybłonowej. Opisane zostały także 2 typy mutacji punktowych w tym genie: mutacje w domenie kinazy tyrozynowej
(TKD-tyrosine kinase domain) oraz w domenie przybłonowej [20]. W wyniku mutacji powstaje nieprawidłowe białko, które ulega niezależnej od ligandu dimeryzacji, autofosforylacji i w konsekwencji
stałej aktywacji. Jej rezultatem jest stałe pobudzenie szlaków kinazy MAPK (mitogen activated protein
kinase), fałszywie dających sygnały do niekontrolowanej proliferacji komórek, aktywacja czynników
transkrypcyjnych STAT5 (Signal transducer and activator of transcription 5) i kinazy PI3 (phosphoinositide-3-kinase), która blokuje apoptozę komórek [20] (Rycina 2).
FLT3-ITD
PI3K
RAS
STAT5
AKT
Raf
STAT
STAT
MEK
Bad
Foxo3a
Caspase 9
Caspase 8
Apoptoza
MAPK
cykliny
Transkrypcja
CDK
Proliferacja
Ryc. 2. Szlaki molekularne aktywowane przez mutacje FLT3.
Fig. 2. Molecular pathways activated by mutant FLT3.
10
A. GOŁOS, A. WIERZBOWSKA
Wewnętrzne tandemowe duplikacje (ITD-internal tandem duplications)
FLT3-ITD została po raz pierwszy opisana w 1996 r. przez Nakao i wsp. jako polimorfizm
w długości domeny zewnątrzbłonowej FLT3 [32]. Wewnętrzne tandemowe duplikacje występują
w regionie kodującym część przybłonową i zawierają fragmenty różnej długości, od 3 do ponad 400
nukleotydów. Są one zawsze mutacjami „w ramce odczytu” [43, 44]. Wewnętrzne tandemowe duplikacje uznane zostały za niezależny, niekorzystny czynnik rokowniczy dla czasu trwania całkowitej remisji
(CRD-complete remission duration), skumulowanego ryzyka nawrotu (CIR-cumulative incidence of
relapse) oraz całkowitego przeżycia [4]. Istnieją dowody, że wielkość zduplikowanego fragmentu nukleotydów ma również istotne znaczenie prognostyczne [43, 44 ].
FLT3-TKD
Mutacje w domenie kinazy tyrozynowej dotyczą najczęściej kwasu asparaginowego w kodonie 835
pętli aktywacyjnej w jej C – końcu. Są to mutacje punktowe, insercje lub delecje. Ich znaczenie prognostyczne jest niejasne [17]. Mutacje punktowe dotyczące innych kodonów spotykane są bardzo rzadko.
Mutacje CEBPA
Gen CEBPA (CCAAT/enhancer-binding protein α), zlokalizowany jest w ramieniu długim chromosomu 19 (19q13.1) i koduje jądrowy czynnik transkrypcyjny z rodziny bZIP (Basic region Leucine
Zipper), istotny w regulacji granulopoezy. Dotychczas poznano dwa typy mutacji CEBPA: mutacje
w obrębie jej C-końca, które uniemożliwiają wiązanie z DNA oraz nonsensowe mutacje N-końca, prowadzące do syntezy niekompletnego białka [33]. Istnieją dowody, że mutacja CEBPA wiąże się
z współwystępowaniem pewnych cech klinicznych i genetycznych AML takich jak: większa ilość blastów we krwi obwodowej, mniejsza liczba płytek oraz rzadsze zajęcie węzłów chłonnych i narządów
pozaszpikowych w momencie rozpoznania [33]. Wyniki Preudhomme i wsp., wskazują, że obecność
mutacji CEBPA jest korzystnym czynnikiem prognostycznym u chorych z grupy pośredniego ryzyka
cytogenetycznego [33] i wiąże się z dłuższym DFS i OS, porównywalnym do tych uzyskiwanych
u chorych z AML NPM1(+)/FLT3-ITD(–) [4, 18]. Ponadto u chorych CEBPA(+) rzadko stwierdzano
obecność mutacji FLT3 – ITD i FLT3 – TKD, a nie stwierdzano MLL – PTD [18].
Mutacje genu MLL (Mixed-lineage leukemia)
Częściowa tandemowa duplikacja (MLL-PTD – partial tandem duplications) obejmująca eksony 5–
11 genu MLL w locus 11q23 jest najwcześniej opisanym, niekorzystnym czynnikiem prognostycznym
w CN-AML [5]. Obecnośc tej mutacji stwierdza się u około 5–10% chorych z prawidłowym kariotypem [9]. Gen MLL koduje białko, które reguluje transkrypcję poprzez kontrolę ekspresji genów
z rodziny HOX w procesie hematopoezy. Wykazano, że czas trwania całkowitej remisji u chorych
z MLL-PTD jest znamiennie krótszy w porównaniu z wt-MLL (wild type MLL) [12].
BAALC
Ekspresja genu BAALC (Brain And Acute Leukemia, Cytoplasmic), zlokalizowanego na ramieniu
długim chromosomu 8(8q22.3), obserwowana jest głównie w tkankach pochodzenia neuroektodermalnego oraz w komórkach prekursorowych układu krwiotwórczego [42]. Gen BAALC koduje białko
o nieznanej funkcji i strukturze niepodobnej do żadnego dotychczas znanego białka [42]. Po raz pierwszy wysoka ekspresja BAALC została opisana w komórkach AML u chorych z trisomią chromosomu 8
[42]. Nadmierną ekspresję BAALC obserwowano również w ostrej białaczce limfoblastycznej (ALL)
Znaczenie aberracji cytogenetycznych
11
i kryzie blastycznej CML. W kolejnych badaniach wykazano, że wysoka ekspresja BAALC jest niekorzystnym czynnikiem prognostycznym i koreluje z krótszym OS i DFS u chorych z AML o prawidłowym kariotypie bez współistniejącej mutacji FLT3-ITD i CEBPA [2, 3, 4, 25]. Ponadto, wysoka ekspresja BAALC wiąże się z niepowodzeniem osiągnięcia całkowitej remisji a także wysokim skumulowanym ryzykiem nawrotu (CIR). Wstępne obserwacje wskazują, że allogeniczny przeszczep komórek
krwiotwórczych (allogenic stem cell transplantation) może niwelować niekorzystne znaczenie/działanie
BAALC [3].
Nadekspresja ETS-related gene (ERG)
Gen ERG, zlokalizowany jest na ramieniu długim chromosomu 21(21q22) i koduje czynnik transkrypcyjny biorący udział w proliferacji, różnicowaniu i apoptozie komórek. Po raz pierwszy został
opisany u chorych z niekorzystnym rokowniczo złożonym kariotypem [30]. Badania grupy CALGB
wskazują, że wysoka ekspresja ERG w komórkach białaczkowych koreluje z wyższym CIR i krótszym
OS u chorych na AML [28].
Nadekspresja genu MN1 (Meningioma1)
Gen MN1 znajduje się na chromosomie 22 i został po raz pierwszy zidentyfikowany jako część genu fuzyjnego w białaczce z t(12;22) [23]. W późniejszych badaniach wykazano także nadmierną ekspresję MN1 w białaczkach z prawidłowym kariotypem. Wysoka ekspresja genu MN1 warunkuje złą
odpowiedź na leczenie indukujące oraz większe prawdopodobieństwo nawrotu i krótsze całkowite
przeżycie [23].
Mutacje genu WT1
Gen WT1 (Wilm`s Tumor 1) koduje czynnik transkrypcyjny regulujący proliferację i różnicowanie
komórek progenitorowych [40]. Do najczęstszych mutacji WT1 zalicza się insercje i delecje w eksonach
7 i 9. Występują one w około 10% CN-AML. Wstępne badania wskazują, że mutacja WT1 koreluje
z niepowodzeniem terapii indukującej [40]. Jednak niezbędne są dalsze badania na większej grupie
chorych w celu potwierdzenia prognostycznego znaczenia mutacji WT1 w AML.
Interakcje mutacji występujących u jednego pacjenta
Jak wspomniano wyżej, do rozwoju ostrej białaczki wymagane jest skumulowanie co najmniej
dwóch różnych mutacji w komórkach. Pojedyncze zaburzenie genetyczne nie jest w stanie wywołać
transformacji normalnej komórki w nowotworową. Mimo, że obserwuje się nagromadzenie kilku aberracji molekularnych w jednym przypadku AML, jednak rzadkością jest odkrycie mutacji w genach
biorących udział w jednym szlaku metabolicznym [1]. W badaniach zaobserwowano, że współwystępowanie mutacji FLT3-ITD znosi korzystne rokowniczo działanie mutacji NPM1, i wiąże się ze skróceniem OS, DFS i EFS w porównaniu z grupa chorych NPM1(+)/FLT3-ITD(–) [23]. Jednakże nie
stwierdzono podobnej zależności dla mutacji FLT3-TKD [23]. Współistnienie FLT3-ITD z nadmierną
ekspresją BAALC dodatkowo pogarsza rokowanie w tej grupie chorych i wiąże się z istotnym skróceniem OS i wzrostem CIR [23]. Podobnie obecność FLT3-ITDs przy wysokiej ekspresji genu ERG jest
niekorzystnym czynnikiem prognostycznym dla OS i CIR [28]. Dotychczas zebrano niewiele danych na
temat znaczenia koincydencji dwóch lub więcej mutacji w AML i celowe jest prowadzenie dalszych
badań celem dokładnego wyjaśnienia, czy kombinacje te mają istotny wpływ na rokowanie (Tabela 2).
A. GOŁOS, A. WIERZBOWSKA
12
Tabela 2. Wpływ na rokowanie współistnienia kilku aberracji jednocześnie
Table 2. Interrelation of molecular genetic markers and its prognostic impast
Porównywane
kombinacje mutacji
NPM1mut/FLT3-ITD+
vs NPM1mut/FLT3-ITDNPM1wt/FLT3-ITD+
vs NPM1mut/FLT3-ITD+
NPM1mut/FLT3-TKD+ vs
NPM1mut/FLT3-TKDNadekspresja BAALC/FLT3-ITD+ vs
Niska ekspresja BAALC/FLT3-ITD+
Nadekspresja ERG/niska BAALC vs
Nadekspresja ERG/wysoka BAALC
Nadekspresja ERG/FLT3-ITD+ vs
Nadekspresja ERG/FLT3-ITD-
Wyniki
porównania
Niekorzystny wpływ
na OS, EFS, DFS
Brak wpływu
na OS, EFS
Brak wpływu na OS
Samodzielny niezależny
czynnik prognostyczny
NPM1
FLT3-ITD
NPM1
FLT3-ITD
NPM1
Niekorzystny wpływ
na CR, OS, CIR
Niekorzystny wpływ
na OS
Niekorzystny wpływ
na OS, CIR
BAALC
FLT3-ITD
BAALC
Baldus et al. [3]
FLT3-ITD
Marcucci et al. [28]
Źródła
Döhner et al. [11]
Schnittinger et al. [36]
Schnittger et al. [36]
Schnittger et al. [36]
Marcucci et al. [28]
Znaczenie aberracji molekularnych w klasyfikacji AML
W wyniku szybko postępującego rozwoju nowych metod diagnostyki molekularnej klasyfikacja
ostrych białaczek wg grupy FAB (French-American-British) straciła na znaczeniu na rzecz nowszych,
opartych jednocześnie na zmianach genetycznych zachodzących w komórkach klonów białaczkowych
i ich wpływie na rokowanie chorych. Aberracje cytogenetyczne obserwuje się u blisko połowy chorych
na AML [31]. U pozostałej części chorych metodami klasycznej cytogenetyki nie udaje się stwierdzić
żadnych zmian w kariotypie [31]. W ostatnich latach stworzono klasyfikacje prognostyczne białaczek,
które w oparciu o kariotyp klonu nowotworowego definiują 3 grupy ryzyka (Tabela 3).
Tabela 3. Porównanie klasyfikacji rokowniczych dla ostrych białaczek szpikowych wg MRC [21] i SWOG [37]
Table 3. Prognostic classifications in AML used by MRC [21] and SWOG [37]
Rokowanie
MRC
SWOG
dobre
dobre
Marker molekularny
Kariotyp
t(8;21)(q22;q22)
inv(16)(p13q22)/t(16;16)(p13;q22)
t(15;17)(q22;q12-21)
AML1-ETO
CBFβMYH11
PML-RARA
pośrednie pośrednie Normalny kariotyp(NK)
złe
złe
SWOG: +8, +6, -Y, del(12p)
MRC: +8; 11q23 abn, del(9q),
del(7q), +21, +22
del(5q)/-5,
-7/del(7q),
abn 3q,
t(6;9),
t(9;22),
kariotyp złożony*
SWOG: abn 9q, 11q, 20q, 21q, 17p,
–
–
–
–
–
–
Podtyp
wg WHO [8]
Odsetek
chorych
CR
(%)
AML z powtarzającymi się aberracjami
genetycznymi
20–21%
84
AML inaczej niesklasyfikowana
(not otherwise
specified, NOS)
40–47%
76
AML ze zmianami
związanymi z mielodysplazją/AML
i MDS wtórne do
chemioterapii
17–30%
55
Skróty: SWOG-South-West Oncology Group; MRC-Medical Research Council
*Kariotyp złożony wg SWOG: ≥3 nieprawidłowości genomu, wg MRC ≥5 niezależnych aberracji cytogenetycznych.
Znaczenie aberracji cytogenetycznych
13
Najnowsza, zrewidowana klasyfikacja WHO (World Health Organisation) 2008, obejmuje najwięcej zmian cytogenetycznych poznanych do tej pory, jednak wciąż istnieje duża grupa białaczek bez
określonych markerów molekularnych klasyfikowana jako NOS (non otherwise specified – inaczej
niesklasyfikowane), która nadal opiera się na podziale morfologicznym wg FAB). Wraz z odkrywaniem
nowych mutacji klasyfikacja ta będzie z pewnością uzupełniana [41].
W wyniku prac międzynarodowego panelu ekspertów grupy European LeukemiaNet w 2009 roku
opracowano ujednolicony system klasyfikowania zaburzeń genetycznych i molekularnych oraz ich
związku z danymi klinicznymi w celu ułatwienia porównywania danych z badań klinicznych (Tabela 4)
[8].
Tabela 4. Cytgonetyczno-molekularna klasyfikacja AML wg European LeukemiaNet [8]
Table 4. Standardized classification proposed by European LeukemiaNet [8]
Dane kliniczne – rokowanie
Korzystne
Pośrednie – I
Pośrednie – II
Niekorzystne
Zaburzenia genetyczne
t(8;21)(q22;q22); RUNX1-RUNX1T1
inv(16)(p13.1q22)/t(16;16)(p13.1;q22); CBFβ-MYH11
NPM1mut/FLT3-ITD-(prawidłowy kariotyp)
CEBPAmut(prawidłowy kariotyp)
NPM1mut/FLT3-ITD+
wtNPM1/FLT3-ITD+
–
wtNPM1/FLT3-ITD
pozostałe białaczki z prawidłowym kariotypem z wyłączeniem sklasyfikowanych
w grupie korzystnego rokowania.
t(9;11)(p22;q23); MLLT3-MLL
zaburzenia cytogenetyczne niesklasyfikowane jako korzystne lub niekorzystne
inv(3)(q21q26.2)/t(3;3)(q21;q26.2); RPN1-EVI1
t(6;9)(p23;q34); DEK-NUP214
t(v;11)(v;q23); rearanżacje MLL
–5/del(5q)
–7/abn(17p)
Złożony kariotyp
PODSUMOWANIE
Zmiany w klasyfikacji ostrych białaczek odzwierciedlają ogromny postęp, jaki dokonał się
w ostatnich latach w badaniach nad ich molekularnym podłożem. Szczegółowe poznanie licznych aberracji molekularnych oraz ich wzajemnych zależności potwierdza heterogenność patomechanizmów
prowadzących do powstania AML, a także stanowi podstawę dla nowych klasyfikacji prognostycznych.
Wyniki ostatnich badań wskazują, że szczegółowe poznanie złożonych wzajemnych interakcji pomiędzy zmutowanymi genami pozwoli na racjonalne, dostosowane do ryzyka wykorzystanie dotychczasowych środków leczniczych, a także stworza podstawy do wprowadzenia nowych leków i rozwoju terapii celowanej.
PISMIENNICTWO
1.
2.
Baldus CD, Mrózek K, Marcucci G, Bloomfield CD. Clinical outcome of de novo acute myeloid leukaemia patients with
normal cytogenetics is affected by molecular genetic alterations: a concise review. British Journal of Haematology; 2007;
137: 387-400.
Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G, Caligiuri MA, Carroll AJ, Vardiman JW,
Powell BL, Allen SL, Moore JO, Larson RA, Kolitz JE, de la Chapelle A, Bloomfield CD. BAALC expression predicts
clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B
study. Blood; 2003; 102: 1613–1618.
14
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
A. GOŁOS, A. WIERZBOWSKA
Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G. BAALC expression and FLT3 internal tandem
duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. Journal of
Clinical Oncology; 2006; 24: 790–797.
Bienz M, Ludwig M, Oppliger Leibundgut E, Müller BU, Ratschiller D, Solenthaler M, Fey MF, Pabst T. Risk assessment
in patients with acute myeloid leukemia and a normal karyotype. Clinical Cancer Research; 2005; 11; 1416–1424.
Bloomfield CD, Mrózek K, Caligiuri MA. Cancer and Leukemia Group B Leukemia Correlative Science Committee:
major accomplishments and future directions. Clinical Cancer Research; 2006; 12: 3564–3571.
Caligiuri MA, Strout MP, Lawrence D, Arthur DC, Baer MR, Yu F, Knuutila S, Mrózek K, Oberkircher AR, Marcucci G,
de la Chapelle A, Elonen E, Block AW, Rao PN, Herzig GP, Powell BL, Ruutu T, Schiffer CA, Bloomfield CD. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Research; 1998; 58: 55–59.
Castilla LH, Garret L, Adya N et al. The fusion gene CBFβ blocks myeloid differentiation and predisposises mice to acute
myelomonotcytic lekemia. NatGenet; 1999; 23: 144-146.
Döhner H, Estey EH, ,Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson
RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield
CD. Diagnosis and mamgement of acute myeloid leukemia in adults: recommendations from an international expert panel,
on behalf of he European LeukemiaNet. Blood; 2010; 115: 453-474.
Döhner H. Implication of the molecular characterization of acute myeloid leukemia. Hematology; 2007: 412-419.
Döhner K, Döhner H, Molecular characterisation of acute myeloid leukemia; Haematologica; 2008; 93(7): 976-982.
Döhner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin(NPM1) predicts favorable prognosis in younger adults
with acute myeloid leukemia and normal cytogenetics-interaction with other gene mutations. Blood; 2005; 106: 37403746.
Döhner K, Tobis K, Ulrich R, Fröhling S, Benner A, Schlenk RF, Döhner H. Prognostic significance of partial tandem
duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a
study of the Acute Myeloid Leukemia Study Group Ulm. Journal of Clinical Oncology; 2002; 20: 3254–3261.
Estey E, Döhner H. Acute myeloid leukaemia: Lancet 2006; 368: 1894-907.
Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A,
Bigerna B. Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F,
Pelicci PG, Martelli MF. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype [Erratum
in: New England Journal of Medicine; 2005; 352: 740]. New England Journal of Medicine; 2005; 352: 254–266.
Fallini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Giemema Acute Leukemia Working Party.
Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. NEngl J Med.; 2008; 358: 1909-18.
Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD. The AML1/ETO fusion protein blocks transactivation of
the GMCSF promoter by AML1B. Oncogene; 1995; 11: 2667–74.
Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Döhner H, Döhner K. Prognostic significance of
activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a
study of the AML Study Group Ulm. Blood; 2002; 100; 4372–4380.
Fröhling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal
cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol.; 2004; 22: 624-633.
Gilliiland DG, Craig TJ, Felix AC. The molecular basis of Leukemia. Hematology; 2004; 80-97.
Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 1; September 2002, vol. 100: 15321542.
Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612
patients entered into the MRC AML 10 trial. Blood; 1998; 92 :2322-2333.
Haferlach T. Molecular genetic pathways as therapeutic target in AML. Hematology; 2008; 400-411.
Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B, Ganser A. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood; 2006; 108: 3898–
3905.
Kelly LM, Liu Q, Kutok JL et al. FLT3 internal tandem duplications mutations associated with human acute myeloid
leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 99; 310-318.
Langer C, Radmacher MD, Ruppert AS et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-exression signature in cytogenetically normal patients younger than 60 years with
acute myeloid leukemia: a cancer and Leukemia Group B(CALBG) study. Blood;2008; 11: 5371-5379.
Liu PP, Wijmenga C, Hajra A, et al. Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in
inv(16) leukemia cells. Genes Chromosomes Cancer; 1996; 16: 77–87.
Lo-Coco F, Ammatuna E. The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematology; 2006: 156-161.
Znaczenie aberracji cytogenetycznych
15
28. Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression oft he ETS-related gene, ERG, predicts a worse outcome in
acute myeloid leukemia with normal karyotype: a cancer and leukemia group B study. J Clin Oncol.; 2005; 23: 92349242.
29. Mrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev; 2004; 18: 115-36.
30. Mrózek K, Heinonen K, Theil KS, Bloomfield CD. Spectral karyotyping in patients with acute myeloid leukemia and a
complex karyotype shows hidden aberrations, including recurrent overxpression of 21q, 11q, and 22q. Genes Chromosomes Cancer.; 2002; 34: 137-153.
31. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression
changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular
classification? Blood; 2007; 109: 430-447.
32. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia.
Leukemia; 1996; 10: 1911-1918.
33. Preudhomme C, Sagot C, Boissel N, et al. Favorable prognosis significance of CEBPA mutations in patients with de novo
AML: a study from the Acute Leukemia french Association(ALFA). Blood; 2002; 100: 2717-2723.
34. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses anucleophosmin-retinoic acid receptor fusion. Blood; 1996; 87: 882-886.
35. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Büchner T, Wörmann B, Hiddemann W,
Griesinger F. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia; 2000; 14: 796–804.
36. Schnittger S, Schoch C, Kern W et al. Nucleophpsmin gene mutations are predictors of favorable prognosis in acute
mzeloid leukemia with a normal karyotype. Blood; 2005; 106: 3733-3739.
37. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe
JM, Forman SJ, Appelbaum FR. Karyotypic analysis predicts outcome of preremission and postremission therapy In adult
acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood; 2000; 96:
4075–4083.
38. Steffen B, Müller-Tidow C, Schwäble J, Berdel WE, Serve H. The molecular pathogenesis of acute myeloid leukemia.
Critical Reviews in Oncology/Hematology; 2005; 56: 195–221.
39. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nature Reviews Cancer; 2003; 3: 650–665.
40. Summers K, Stevens J, Kakkas I, Smith M, Smith LL, Macdougall F, et al. Wilms’ tumour 1 mutations are associated
with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia; 2007;
21: 5501.
41. Swerdlow SH, Campo E, Harris NL et al. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues,
Fourth Edition (WHO Classification of Tumors, 2008 vol.2).
42. Tanner SM, Austin JL, Leone G et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is
implicated in hematopoiesis and acute leukemia. Proc NAtl Acad Sci USA. 2001; 98: 13901-13906.
43. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979
patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor
prognosis. Blood; 2002; 99: 4326-35.
44. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor
prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3:
a cancer and leukemia group B study. Cancer Res.; 2001; 61: 7233-9.
Praca wpłynęła do Redakcji 11.10.2010 r. i została zakwalifikowana do druku 14.12.2010 r.
Adres Autorów:
Katedra i Klinika Hematologii
ul. Ciołkowskiego 2
93-510 Łódź
e-mail: [email protected]

Podobne dokumenty