CONDITIONS FAVOURING VOLTAGE COLLAPSE IN THE

Transkrypt

CONDITIONS FAVOURING VOLTAGE COLLAPSE IN THE
Conditions favouring voltage collapse in the operation of generator regulators –
selected issues
CONDITIONS FAVOURING VOLTAGE COLLAPSE IN THE OPERATION OF
GENERATOR REGULATORS – SELECTED ISSUES
         

Jacek Klucznik / Gdansk University of Technology

Robert
Małkowski / Gdansk University of Technology

Piotr Szczeciński / Gdansk University of Technology

Ryszard Zajczyk / Gdansk University of Technology



1. INTRODUCTION

Generator
regulator
structures
applied
today and
the
presettings
of main
circuits of voltage regulators

 





primarily
affect
voltage
regulation
rate
and
local
stability.
Signals
from
the
regulation
system, relating to the

limitation
of the synchronous generator field of action, play the
key role in excitation control in hazardous


  from



 
 structure is equipped with:
situations
resulting
low or
high voltage.
Every
regulator
apart
from its inherent









• underexcitation limiter, named also limiter of power factor angle [OKM]

• excitation minimal current limiter of generator [OMPW]
 
•  induction
limiter V/Hz [OI]

•  excitation
current limiter of generator [OPW]

•  stator
current limiter of generator [OPS]

•  overvoltage
limiter [ONN].

 

A structural
diagram of a multiparameter generator regulator for machine excitation

diode

in

exciter
and excitation
rectifier) is presented
Fig.1.   
        


        

Fig. 1. Structural diagram of multiparameter generator regulator for machine excitation systems [1]
Abstrtact

The paper focuses on selected issues relating to the
operation of multiparameter generator regulators in voltage collapse. Results of studies are presented regarding the
influence of the system stabiliser, a component of the generator regulator system so often neglected. Attention is
brought to the advisability of automating the process of active power decreasing in increasing the capacity for reactive
power generation. Furthermore, the paper indicates errors
in the structure of the primary circuit for voltage regulation
with the LV and HV gates intercepting signals in the system.

systems (with AC
49
50
Jacek Klucznik; Robert Małkowski / Gdansk University of Technology
   ee     e 
Piotr Szczeciński; Ryszard Zajczyk / Gdansk University of Technology
eeeee
 
 ee     e 
eeeee

2. IMPACT ANALYSIS OF PRESENT STRUCTURE, ACTING ALGORITHMS AND PRESETTING OF

POWER
SYSTEM STABILIZER (PSS) ON POTENTIAL VOLTAGE FAILURE AND RESULTANT COURSE
       
OF EVENTS
  


 



 









2.1.
Introduction         

 


 electromechanical
  


The excitation
control
system,
increasing
swinging
damping,
is called a system


stabilizer, most often marked with the acronym PSS (Power System Stabilizer). The system, apart from limiters,



 
 
constitutes
an
integral
part
of generator
regulators
used today.



 
 








 single


We

System stabilizers
can 
be classified 
according to thenumber
of input signals.
can identify



 contain







 

input
and 
multi-input
stabilizers.
Stabilizer
input
signals
or
signal
should
information
on the possible







 



 
electromechanical
swinging.
Single-input stabilizers
apply angular
velocity
of
synchronous
generator
rotor,






















1
active power generated or voltage frequency on generator terminals. Multi-input system stabilizers use two


input
signals. The most common systems used are those applying measuring generator shaft rpm or generator




 






 
active power. The
general structure
of a single
input system stabilizer
is shown
in Fig. 2, whereas
a 2-input type














       
system
stabilizer
is
given
in
Fig.
3.




 







 


 

     

 

  



  
  


   
   
            
    

    

 
   
 
 
 


Fig. 2. Structural diagram of 1-input system stabilizer


    



  




 


  
  
  
 








  





   


  



   

   

  
 
   

   
 
  




     

  

 

  
 
  
  
  
  
  
  
  
  






  

  


       


       

  

 
  




Fig.
3. Structural
diagram of 2-input
system stabilizer
of PSS2B
type 
[4]

        





structures:


and


 


A 
series of
analysis
was made
for
two NES used
system stabilizers
1-input
2-input, to











identify
the relations between parameters of stabilizers and the system’s contribution to the loss of generator
       
stability in terms
of voltage
collapse.

 
    
Analysis
of system stabilizers’
in conditions
favouring
the initiation
of voltage
collapse has



 operation
 

 




demonstrated
that
stabilizer
structure,
amplification
factor
and
values
of
input
limits
are
of
key
significance.
In
       
some cases, operation of system stabilizers can be disadvantageous in terms of ensuring voltage
stability. The


problem
can
be
explained
by
the
fact
that
system
stabilizers
act
in
transient
states
when
values
of stabilizer
 

input signals change. In synchronous generators equipped with a 1-input type system stabilizer, relying on
measurement of active power, the functioning of system stabilizers is visible when the value of generated
 active
power
 fluctuates.
1 This is the most commonly applied solution in generation units operating in NES [National Electrical System]
Vg [-]

Vg [-]
 
       



Conditions 
favouring
collapse 
in the
operation of 
generator
regulators
– 

 
 
voltage
 


selected issues
51


 
  
 


 

 
 
 

 
 


 




Variations of generator active power can be generated by the following two factors:
 
–
 


 in
the



• external
such as short-circuits
or violent
voltage
instability
power
system,

 occur
 









• internal – related with the turbine regulation system, when variations of turbine mechanical power


 



 
in
result of activated
primary
or secondary
regulation
or with malfunctions 
related
with
boiler 
operation.
 









If during external disturbances system stabilizers function correctly, increasing the damping of

 

 from

electromechanical
swinging, 
we can observe
phenomena,
resulting
turbine 
power instability, that may


 

 

     
contribute to voltage
collapse.  

dPg

2

< 0 , 
When
the
decreases
output
signal
of
the stabilizer
is
positive

U


 generation
    


 
> 0  the
 

 




stab 
dt



increased excitation
voltage
and in effect
generatorvoltage.
Such a 
situation does
not generate a
resulting
   in
 


 

dPg

  

risk for 
loss of voltage stability. The situation can become worse with increasing
 turbine power, when dt > 0


 







< 0. The
and stabilizer
signal 
has a negative
value U
stabilizer
added
to the voltage
error
of primary


 signal
stab 



circuit
regulator
results indipping
both
excitation
voltage as well
as generator
voltage.


















2.2. Exemplary results of simulation studies
e
An
example of the operation referred to above is presented in Fig. 4a. The simulatione
was performed in a

one-machine system
for
235MVA
turbo-set,
equipped
with
a
machine
excitation
system.
The
amplification
factor

 
        

e
of the system
stabilizer
varied,
taking
50%,
100%
and
200%
of
the
base
value,
corresponding
to
the
markings
in
 
       

Fig. 4a. 
(k
= 0.5, k
= 
1 and k
= 2).

  
 
 
 




In
an extremely adverse
situation, the 
system
stabilizer
can generate
a signal, resulting
from stabilizer
 
 



 
, VSmax, at the level
of – 0.05÷0.09.
Therefore, in 
the worst case
the stabilizer can
cause a drop in
limits
V



Smin 

generator
voltage
of
about
0.05,
which
coinciding
with
dipping
generator
voltage
can
pose
the
risk of voltage


collapse. To counteract the above, the system stabilizer limiter should be set unsymmetrical VS max 
> VS min to



 
  stabilizer
 


 the
 

 

the
limit excessive
fall of
generator voltage.
Another option
for restricting
output
signal
involves
 



reduction
of the stabilizer amplification factor, but this leads to decreased operational efficiency
of the system










 









stabilizer.

 
  
       
b) 
 
  a)
 

   


 

 
 
  
 


  k = 2

  



    


k
=
1
k
=
0.5
k
=
1
k
=
0.5
k=2
      


  
1.001
 1.005
 
  
     
 

   
   

1
1



  0.995
 
 
  
0.999




0.99
0.998




0.985
0.997





0.98
0.996





0.975
0.995

 




 



0
10
20
30
0
10 t [s]
20
 30
t [s]

 


PSS
na

Rys.wartości
4. Wpływ
wartości
współczynnika
wzmocnienia
PSS 
na przebieg
napięcia
Rys. 4. Wpływ
współczynnika
wzmocnienia
przebieg
napięcia generatora
przy skokowej
zmianie generatora
mocy zadanej turbozespołu;
 


zadanej


 jednowejściowy, b)
a) stabilizator
jednowejściowy,
b) stabilizator
dwuwejściowy
przy
skokowej
zmianie
mocy
turbozespołu;
a) stabilizator
stabilizator dwuwejściowy
 Two-input
stabilizers, basing on measurement of generator active power and its stator rpm, are free of the
resulting from
power instability3.
defect involving
generation
of a na
non-grounded
signal U
> 0wyjściowego
Wady,
polegającej
generowaniu input
niezerowego
V pssturbine
> 0 przy
pss 


sygnału

Inzmianach
effect, no
voltage
error
appears with
turbine power
changes.
curves
dwuwej
ściowe,The
bazuj
ące napresented
pomiarze in Fig. 4b show
mocy
turbiny,
pozbawione
są stabilizatory
 





 
3 system stabilizer. In effect, there
that
turbine
power
variations
lead
to
a
very
small
output
signal
from
the
mocy czynnej generatora i prędkości obrotowej
wirnika generatora . Dzięki temu nie

 
 powoduj




 
 power
is in practice
no
voltage
dipping
on generator
with increasing
of the generating
unit, thus
ą one
powstawania
uchybu
napięciaterminals
przy zmianach
mocy turbiny.
Przedstawione
na

eliminating
the
great
defect
of
1-input
stabilizers
basing
on
the
measurement
of
generator
active
power.
rysunku 4b przebiegi wskazują, Ŝe zmiany mocy turbiny powodują powstawanie bardzo
 
 

 

niewielkiego
sygnału
wyjś
ciowego stabilizatora
systemowego. Dzi
ęki temu przy zwiększaniu
2 The
amplification
factor
is
negative,
causing
inversion
of
input
signal
phase
by
180º.

mocy jednostki wytwórczych praktycznie nie dochodzi do obniŜania napięcia na zaciskach
3 Today NES applies voltage frequency measurement of generator in place of the rpm measurement, however this does not alter the principle of
generatora,
co 
było
główną wad
stabilizatora
jednowej
ściowego
bazującego na pomiarze
 
ą 

stabilizer
operation
mocy
czynnej
generatora.
        

Jacek Klucznik; Robert Małkowski / Gdansk University of Technology
Piotr Szczeciński; Ryszard Zajczyk / Gdansk University of Technology
52
2.3. Conclusions
The conducted analysis pointed to the following conclusions:
• Single-input system stabilizers, with measurement of active power, can lead to dipping generator voltage in
result of turbine power instability. The voltage decrease depends on stabilizers presettings – amplification
factor and limiters of input signal. We can assume, on the basis of selected stabilizer presettings used in
NES that maximum voltage decrease in the effect of stabilizer operation can achieve 5%. This value, in case
of extremely unfavourable voltage values, can put stability at risk. The problem can be solved by locking
decreasing block power in case of dipping voltage, what is also advantageous
from the point of view of
4
. Dobór
nastaw
nowopowstających
i modernizowanych
blokach
tego typu
układów
stator
current limiter. Another
solution is the usage
of 2-input
stabilizers,
where
problems
with takich
voltage error
stabilizatorów
musi4 odbywać
sięnever
indywidualnie
dla
kaŜdego
z
bloków
z
uwzględnieniem
in turbine
power instability
practically
occur.
4
nowopowstających i modernizowanych blokach tego typu układów . Dobór nastaw takich
.stabilizers
Dobór
nastaw
takich
nizowanych•blokach
tego
typu
układów
stabilizatorów
musi odbywać
się indywidualnie
dla this
kaŜdego
zmoŜna
bloków
z uwzględnieniem
No ich
impact
of two-input
on potential
voltage
failure
is observed.
Thus,
of installation
specyfiki,
sposobu
powiązania
z systemem
elektroenergetycznym
itp.
Nietype
w
ich specyfiki,
sposobu powiązania z systemem elektroenergetycznym itp. Nie moŜna w
4
ać się indywidualnie
dla
każdego
z
bloków
z
uwzględnieniem
.
Presettings
selection
of
stabilizers
should
be done
is proposed
on all newly
and modernized
sposób ogólny
podaćbuilt
zalecanych
nastaw,blocks
zaleŜą
one
od
efektów,
które
ma
powodować
sposób ogólny podać zalecanych nastaw, zaleŜą one od efektów, które ma powodować
iązania z systemem
elektroenergetycznym
itp. Nieinto
można
w stabilizator
individually
for
each
block
taking
consideration
its
specifics,
connection
to
the
power
system,
etc.
w
odniesieniu
do
danego
generatora
(kołysania
własne)
stabilizator w odniesieniu do danego elektroenergetycznego
generatora (kołysania
(kołysania
własne)
i systemu i systemu
obszarowe
i międzyobszarowe).
anych nastaw, zależą
one recommendations
od efektów, które should
ma powodować
Presetting
not
be
generalised
as
the
presettings
depend
on
the
stabilizer’s
effects
elektroenergetycznego
(kołysania
obszarowe i międzyobszarowe).
u do danego on
generatora
(kołysania
własne)
i power
systemu
the generator
(own swinging)
and
system (area and inter-area swinging).
3. Zasady odciąŜania turbin w celu zwiększenia generacji mocy biernej
ysania obszarowe i międzyobszarowe).
3.1 Wstęp
Wartość
mocy biernej
generowanej
przez generator synchroniczny, jest nierozerwalnie
3. Zasady odciąŜania turbin w celu zwiększenia
generacji
mocy
biernej
związana
z wartościąREACTIVE
napięcia generatora.
Ograniczeniem
generowanej przez generator
3.
PRINCIPLES
OF
TURBINES
UNLOADING
TO
INCREASE
POWER
GENERATION
w celu zwiększenia
generacji mocy biernej
synchroniczny mocy biernej jest wartość dopuszczalna prądu stojana i prądu wzbudzenia.
3.1 Wstęp
Definicja ograniczeń opisanych zaleŜnościami (1) i (2) pozwala na wyznaczenie obszaru
3.1. Introduction
dopuszczalnej pracy na płaszczyźnie P-Q, co pokazano na rys. 5.
Wartość
mocy
biernejingenerowanej
generator
synchroniczny,
nierozerwalnie
Reactive
power,
generated
synchronous przez
generators,
is inseparably
relatedjest
to the
generator voltage.
+ Q ≤ S = (V × I )
enerowanej przez
generatorz synchroniczny,
jest nierozerwalnie
związana
wartością napięcia
generatora.P Ograniczeniem
generowanej przez generator (1)
2
g
2
g
2
g
2
The admissible value of stator and excitation currents is limited by the generated reactive power from the syna generatora.
Ograniczeniem
generowanej
generator
synchroniczny
biernejprzez
jest
wartość
dopuszczalna
stojana
prądu wzbudzenia.
chronous
generator.mocy
The definition
of
limits
delineated
by
and (2)iidentifies
the area of permit the
× V  (1)
V relations
 V prądu
≤

P +  Q +
est wartość ted
dopuszczalna
prądu
stojana
i
prądu
wzbudzenia.
 xpozwala
 (2)
operation on
plane P-Q,opisanych
which is presented
in Fig.
5.
x
Definicja
ograniczeń
zaleŜnościami
(1)
i
na
wyznaczenie
obszaru (2)


 
h zależnościami (1) i (2) pozwala na wyznaczenie obszaru
dopuszczalnej pracy na płaszczyźnie P-Q, co pokazano na rys. 5.
yźnie P-Q, co pokazano na rys. 5.

2
2
g
P + Q ≤ S = (Vg × I gM )
2
g
2
g
 2 Vg2   Vg × V fM
≤
P +  Qg +
  x
x
d 
d


2
g
2
g
gM
g
d
fM
2
d

2
2
g
2
g
g
(1)



(1)


  
2
(2)
(2)








Rys. 5. Obszar


   



 stanów
 
dopuszczalnych




pracy generatora synchronicznego przy napięciu
Fig. 5. The area of admissible synchronous generator operation states
at rated voltage
(continuous
lines) and
at voltage
less than rated
(intermittent
znamionowym
(linie ciągłe)
i przy napięciu
mniejszym
do znamionowego
(linie
przerywane).
 limit
(1)(current)
– granicalimit
wynikająca
z dopuszczalnej
obciąŜalności
prądowej
stojana, by
(2)stability
– granica
lines). (1) – admissible stator ampacity limit , (2) – admissible voltage
of excitation,
(3) – natural
balance
(conditioned
wynikająca z dopuszczalnego napięcia (prądu) wzbudzenia, (3) – granica równowagi
requirement). To simplify the figure only limits resulting from admissible
current
of
machine
rotor
and
stator
are
presented.
naturalnej (wynikająca z warunku zachowania stabilności). Dla uproszczenia na rysunku
When the value of generated reactive power Postulat
is too
high, i.e. exceeds the generator permitted operation
ten jest zgodny z zapisami w IRiESP [6]
area, the generator regulator changes operational
priorities, from voltage regulationto operation with quasi
fixed value of stator or rotor current. In such circumstances systems called rotor current limiters or stator
current limiters reduce the generator excitation voltage reducing the excitation current (rotor current) and
generator voltage reducing the generator stator current according to Formula (1).
Enhancing the generating possibilities of reactive power range is important particularly in case of low
generator voltage. In result of low voltage, stator current increases as well as the generated
 active power Pg1.
Reduction of reactive power is necessary
to
prevent
overheating
of
stator
windings.
This
is illustrated in Fig. 5,

  








where the generated reactive power must be lowered from Qg1 to Qg2 following lower generator voltage from
 
Vg1 to Vg2 to keep the generator
in the acceptable range. The problem grows if a permanent reactive power
deficiency
occurs. synchronicznego przy napięciu
ch stanów pracy
generatora

Another
current limitation
method is to decrease active power generation. The decreasing of active
rzy napięciu mniejszym
dostator
znamionowego
(linie przerywane).
opuszczalnej obciążalności
prądowej
stojana, (2) stanów
– granicapracy generatora synchronicznego przy napięciu
Rys. 5. Obszar
dopuszczalnych
napięcia (prądu)
wzbudzenia,
(3)
–
granica
równowagi
4 This proposal complies with IRiESP (Instrukcja ruchu i eksploatacji sieci przesyłowej) notations [Electrical Power Transmission Network
znamionowym
(linie ciągłe)
i przy napięciu mniejszym do znamionowego (linie przerywane).
Running
and Operating Instructions]
[6].
unku zachowania
stabilności).
Dla uproszczenia
na rysunku
w IRiESP [6]
4
(1) – granica wynikająca z dopuszczalnej obciąŜalności prądowej stojana, (2) – granica
wynikająca z dopuszczalnego napięcia (prądu) wzbudzenia, (3) – granica równowagi
naturalnej (wynikająca z warunku zachowania stabilności). Dla uproszczenia na rysunku
5
Conditions favouring voltage collapse in the operation of generator regulators –
selected issues
53
power generation from Pg1 to Pg2 increases potential reactive power generation in each case. Reactive power
generation can decrease to Qg3, i.e. by ∆Qg. In case of reactive power generation deficit, possible reactive power
generation growth is a desirable feature.
To recapitulate, by decreasing active power we can increase the generated reactive power, within admissible stator current limits, without decreasing generator voltage. The solution was mentioned in a paper on
voltage collapse of 26-th June 2006 [2], however, the problem was not extensively discussed.
3.2. Examples of simulation study results
Today, generator unloading as a preventive measure against generator overloading in case of voltage collapse risk is described in emergency procedures. The only drawback of such unloading is its manual character
at dispatcher’s command. Results of simulation studies for automatic generator unloading are presented below.
Dipping voltage and appearance of reactive power swinging in result of limiters reaction of power angle and stator current5 triggered the procedure of generator unloading. The first stage of unloading was activated directly
following disclosure of “inter-forcing” of limiters (acting OPS, OKM and reactive power swinging). The following
two stages are activated after a specified interval, provided the conditions for stage 1 are met. Unloading power
in the following stages was 5% Pgn.
Professional literature refers to various conditions required to initiate the process of automatic unloading. These involve either voltage level or delay or reactive power close to zero at activated power angle
limiter. Constant values of delay and voltage presettings can be a defect in the first case, while in the second
case the defect may involve negligence of dynamic alteration of activation limit for OKM depending on voltage
and no reversal of OPS sign). The proposed solution does not feature the
level
(OKM activation at QogrOKM > 0,

defect.
Results
of simulator
study examples
for a 
case
of dynamic
Qogr = f(Vg), 
Fig.7, 
and constant limit





 value
OKM,
(Fig.
6.)
confirm
the
above.





























































































           
            
Fig. 6. Effects of generator unloading operation, taking into account the sign of reactive power in OPS. Regulator structure – correction: a) generator

c)
 

power,

 
voltage,
b) excitation
current,
generator
current, d) generator
reactive
power, 
e) generator active
f) signals
form individual limiters. OGR
– overall
signal.








Problems resulting from inter-forcing of limiters are elaborated in [5].
 
         
           
5 

54









           
Jacek Klucznik; Robert Małkowski / Gdansk University of Technology
            
Piotr Szczeciński; Ryszard Zajczyk / Gdansk University of Technology
            

Not all structures of power angle limiters (OKM) take into account the influence of generator voltage.

However, voltage value on generator bus-bars has a significant impact on the value of the stability limit (falling
 
voltage results in limit displacement to point of inductive power, see: Fig. 5, curves 3). The power angle limiter
         
should change the limitation position depending on voltage value. Results obtained for the case shown in Fig.
           
6 are presented below, however, in this case the impact of changing limitation level, initiated by alternating
         
voltage
on generator terminals is taken into account.






































































































           
Fig. 7. Effects of generator unloading taking into account the sign of reactive power in OPS. Regulator structure – corrective accounting for dynamic



active
power,
variation
of QogrOKM = f(Vg): a) generator voltage, b) excitation current, c) generator current, d) generator reactive power, e) generator
f) signals
from individual limiters. OGR – overall signal.


3.3. Conclusions from simulation studies
The
 following conclusions are drawn from the simulation study results:
• Generator unloading by alteration of generator active power presetting value increases the generator volt
age
stability margin in case of voltage collapse. Automation of the process is desirable. The criterion referred to in the paper can be applied for this purpose– individually or jointly with other criteria.

• Active power limiters should be above all installed in blocks, which are most susceptible to voltage collapse.

• Active power decreasing for generating blocks is pointless, if the limitation of reactive power generation is
          
not caused by generator regulator systems, but by ARNE system. Therefore, correct presettings of reactive
       
power limiters
in ARNE
systems should
be reviewed.


      
• Dynamic alternating
of
reactive
power
limit
Q
=
f(Vg) 
in OKM is
necessary.
into account
the 
generaogr
    
 Taking

tor ‘s actual
voltage level facilitates effective protection of the generator against stability loss (compare Fig.

6 and Fig.
7)
        
        

          
          
      

         
           








4
Wpływ lokalizacji bramek wybierających sygnał w głównym torze układu
Conditions
favouring
voltage
collapse in the operation of generator regulators –
regulacji napięcia
na przebieg
awarii
napięciowej
selected
issues

  e e    e

4.1
Wstęp
eeee
55

4. IMPACT
SIGNAL
SELECTION
GATES POSITIONING
IN THE
PRIMARY
VOLTAGE
W OF
układach
analogowych
i cyfrowych
w głównym torze
regulacji
stosuje CIRCUIT
się z reguły
REGULATION
SYSTEMjako
ONwzmacniacza
VOLTAGE FAILURE
SEQUENCE
strukturę regulatora,
ze sprzężeniem
korekcyjnym, rys. 1.
  
Jedną z różnic w spotykanych w KSE układach analogowych i cyfrowych jest sposób

4.1. Introduction
wprowadzania
sygnałów
z ograniczników
do toru
głównego
regulacji.

As a 
rule, regulator
structure
is applied as a correction
coupling amplifier
(Fig.W1), układach
in digital and analogue
analogowych
sygnały
ograniczników
wprowadzane
są
do
węzłów
sumacyjnych
przed
lub za










systems in the primary regulation circuit.
wzmacniaczem
z
członem
korekcyjnym.
W
stosowanych
obecnie
cyfrowych
układach

One of the differences between digital and analogue systems in NES is the method of signal input from liwzbudzenia
stosuje
się wprowadzenie
ograniczników
poprzez
bramki
przejmujące
 

 


miters
to the primary
regulation
circuit.
In sygnałów
analogue
systems
limiters
signals
feed the
summing junction before

sygnały
LV
i
HV.
Wprowadzenie
przez
jeden
z
ograniczników
do
bramki
LV
wartości
or after the correction coupling amplifier unit. Contemporary digital excitation systems feed
the limiter signals
 
 
  
 
 
mniejszej
od sygnału
z głównego 
toru regulacji
jest jednoznaczne
z przejęciem
regulacji
through
gates accepting
LVand
HV signals.
The access
a signal below
the primary
regulation circuit to LV




 
of



wzbudzenia
przez
sygnał
z ogranicznika.
Wprowadzenie
do bramkiHV
sygnałów
większych
gate through
one
of
limiters
is
synonymous
with
the
signal
from
the
limiter
intercepting
excitation regulation.
od
sygnału z toru głównego regulacji, powoduje przejęcie regulacji wzbudzenia przez sygnały
Input
of signals to HV gate over the primary regulation circuit signals results in signals from those limiters
z tych ograniczników. Przy niepobudzonych ogranicznikach sygnał z ograniczników
takingover
control. In the
case of inactivated
limiters, their
signalinput
to LV gate is 10V, and on HV
excitation



wchodzący
na bramki LV 
wynosi 10V, a na bramkę
HV odpowiednio
0V. 
gate 0V,
respectively.

Przykładową strukturę stosowanych regulatorów przedstawiono na rys. 8. Stosowane
An example
of regulator
structure
is presented
in Fig.
8. The applied
solutions
of limiters’ signal input to





 
 
rozwiązania z wprowadzaniem sygnałów z ograniczników do węzłów sumacyjnych przed lub

summing
junctions before or after the correction amplifier unit, can be met in technologically older excitation
zawzmacniaczem
korekcyjnym,
można
spotkać w
starszych
technologicznie
 z członem
 


systems.
układach wzbudzenia.


diagram
 

 



 regulation systems.
Fig. 8.Rys.
Block
of primary
circuit for voltage
applied
by domestic
and foreign
producersof
automatic
voltage
8. Schemat
blokowy
toru regulation
głównego
regulacji
napięcia
stosowany
u krajowych
i

zagranicznych
producentów
układów
automatycznej
regulacji
napięcia.
The presently
applied digital
systems
of generators’
regulation,
in which regulation algorithms take into
        
consideration
gates
intercepting
signals,
do
not
require
additional
system
locking
limiters,
as in the case of
Obecnie
stosowane
cyfrowe
układy
regulacji
generatorów,
których
algorytmy
regulacji

older,
power
angle
and
stator
current
analogue
systems
for
generator
regulation.
The
priority
of the control
uwzględniają
stosowanie
bramek
przejmujących
sygnał,
nie
wymagają
dodatkowych
układów
           
signal
in
digital
systems
is
defined
by
the
position
of
the
gate
intercepting
control
signals.
According
to Fig. 8,
blokujących
ograniczniki,
jak to jest
w ogranicznikach
kąta mocy
i ogranicznikach
prądu
  


 

the stojana
signal
is w
fedstarszych,
from
the power
angle limiter
to theregulacji
HV gate
secondary
to the
LV gate. 
In effect,
analogowych
układach
generatorów.
Nadrzędność
sygnałuthe signal from

 

 


the sterowania
power
anglewlimiter
(OKM)
is secondary
output
from
the limiter
of excitation
current (OPW) and
układach
cyfrowych
jesttodefiniowana
kolejnością
rozmieszczenia
bramek





 signals

 

 


(OPS).

  kąta
 
sygnały
sterujące.
Zgodnie
z rys. 8
sygnał
z ogranicznika
mocy jest
fromprzejmujących
the limiter of 
stator
current
 
 
 


 
wprowadzany
do bramki
HV, podrzędnej
względem
bramki
LV. Powoduje
to, że
sygnał z

kąta mocy (OKM)
4.2.ogranicznika
Results of simulation
studiesjest podrzędny względem sygnałów z ogranicznika prądu
wzbudzenia
(OPW)
i
z
ogranicznika
prądu
stojana
(OPS).
 Figures 9, 11, 13 and 15 show the
curves
of active
and reactive power, generator current and voltage,
excitation
voltage
and
current
and
signals
from
individual
limiters in the case of dipping voltage in the power

supply system to 370 kV in the structure shown in Fig. 8. Dipping voltage in electric power systems with proper4.2 Wyniki
badań

ly operating
limiters
insymulacyjnych
the structure, shown in Fig. 8, reduce the voltage of synchronous generator excitation
         
and may, inNasome
result
loss of generator
synchronism.
Dipping
voltage
in power
activate
rys. cases,
9, 11, 13
i 15inprzedstawiono
przebiegi
mocy czynnej
i mocy
biernej,
prądusystems
i
the napięcia
excitation generatora,
current limiter
and later
limiter and
limiter, (Fig. 15). Repeated
napięcia
i stator
prądu current
wzbudzenia
orazexcitation
sygnały current
z poszczególnych
activation
of excitation current limiter results in de-excitation of the synchronous generator and its falling out

9
of step. As presented in Fig. 15, the operation of the stator current limiter, in terms of reactive power
consumption and power angle limiter, do not influence the generator regulator system in result of signals flowing from
both limiters to the secondary gate. Incorrect positioning of signal intercepting gates intercept the signal in the
primary regulation circuit, the high signal input from the power angle limiter to the HV gate cannot take over
control. Operation of the minimum current excitation limiter in this case is too slow, because excitation current
reaches the maximum value when excitation voltage falls to zero, Fig. 13. Minimum current excitation limiter
traces the value of the excitation current but that limiter is activated too late, practically after falling out of step.
Structure alteration of the primary regulation circuit, which involves a change in sequence of gates intercepting signals of LV to HV limiters, results in the power angle limiter taking over control of the signal. The
signal from the power angle limiter and stator current limiter in terms of reactive current consumption will be,
56
          
          

Jacek Klucznik; Robert Małkowski / Gdansk University of Technology
        
Piotr Szczeciński; Ryszard Zajczyk / Gdansk University of Technology

        
            
in this
case, primary signals. Figures 10, 12 and 14, 16 present active and reactive power curves, generator

current
and voltage, excitation voltage and current and also signals from individual limiters in the case of dipping voltage
electric power
system 
to 370 kV,for
generator
regulator
system
with altered
structure of main
 in





 
circuit,
shown in Fig. 17
.


        



Fig. 9. Curves of active and reactive power at slow electric power

 
voltage
reduction below 
370 kV
     


     
Fig.
10. Curves
of active and
reactive power
at slow electric
power





voltage reduction below 370 kV. Change in LV HV gate sequence
     









Fig. 11. Curves of voltage and current of synchronous generator at



slow electric
power voltage
reduction below 370 
kV



     


Fig.
12. Curves of voltage and current of synchronous generator at


slow
electric power voltage
reduction
below 370 kV. Change
in LV HV
gate
sequence  

      




     

   




Fig. 13.
Curves
of excitation
voltage
and
current
of 
synchronous


 


generator
at slow electric power voltage reduction below 370 kV

   
     


     
    
   

 


Fig.
of control
signals
in voltage
regulator
at slow
electric
14.Curves





power
voltage reduction
below
370 kV. 
Change in LV HV
gate sequence




   
      



Fig. 15.
Curves
of control
signals in
voltage regulator
at slow electric



      
power voltage reduction below 370 kV
Fig. 16. Curves of excitation voltage and synchronous generator
     current

at slow electric power voltage reduction below 370 kV. Change
     in

   
LV
HV
gate sequence
     
     

     







The change
of gate sequence provides protection
of the synchronous generator against falling out of
       

step. According to Fig. 16, the excitation current limiter is the first to react to voltage dipping, and is followed


 
 
 the
by the stator current
limiter, and
the superior
signal of power
angle
limiter takes
control
and
becomes




over



superior
control
signal. Change of gate positions allows
for compliance with design assumptions of analogue


excitation
systems.

       
            

        


            
       


Conditions favouring voltage collapse in the operation of generator regulators –
           

selected
issues
        


RA – regulacja automatyczna
Ograniczniki:
UNast
Ug -
Σ
+
KA
1+sTA
1+sTB
1+sTC
1+sTD
OKM [V]
OPW [V]
RR – regulacja ręczna
IfNast
Ifg -
Σ
+
57
Nastawy:
OKM [V]
0-10 [V]
OPW [V]
0-10 [V], I2t [A2s]
OPS [V]
0-10 [V], I2t [A2s]
OPS [V]
KIA
1+sTIA
1+sTIB
RA
LV
GATE
RR
RA – regulacja automatyczna
RR – regulacja ręczna
HV
GATE
Ust
          
Fig. 17. Correct sequence of gates selecting the signal in the primary voltage regulation circuit


 4.3. Conclusions
In new, contemporary digital generator regulation systems, the sequence of gates selecting signals in

the primary regulator circuit conform to the standard [4]. According to the standard and in the some digital
generator regulation systems, the sequence of gates selecting signals follows the pattern in Fig. 7 (HV gate;
LV gate). Gates thus positioned select the signal from limiters of stator and rotor currents as the superior si a structure is
gnal. The signal of the power angle limiter entering the first gate selects the higher signal. Such
 inadmissible and in states of low voltage reduces the exciting voltage of the synchronous generator by current
limiters, signals of which feed the second gate, selecting the lower signal value. In such a structure of primary
voltage regulation circuit, the last element of the circuit is superior in the regulation system; which does not
conform to the precursors’ assumptions for analogue systems.
5. SUMMARY
An extensive analysis of generator regulator operations indicates the hazards relating to seemingly known
structures of synchronous generators regulation systems. In conditions of dipping voltage, a malfunctioning
generator regulator can cause a voltage collapse or augmented consequences. Elimination of risks described in
the article will significantly improve electric power system operational safety.
LITERATURE
1. Zajczyk R., Modele matematyczne systemu elektroenergetycznego do badania elektromechanicznych stanów nieustalonych i procesów regulacyjnych, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2003.
2. Madajewski K., Sobczak B., Trębski R., Praca ograniczników w układach regulacji generatorów synchronicznych
w warunkach niskich napięć w systemie elektroenergetycznym, materiały konferencyjne APE ’07, Gdańsk 2007.
3. Kundur P., Power system stability and control, McGraw-Hill 1994.
4. IEEE Std 421.5 – 2005 IEEE Recommended Practice for Excitation System Models for Power System Stability Studies.
5. Analiza stanu obecnego i opracowanie zmian w układach regulacji napięcia i mocy biernej w elektrowniach, stacjach
sieci przesyłowej i w sieciach rozdzielczych w celu zmniejszenia ryzyka powstania awarii napięciowych w systemie elektroenergetycznym. Etap II, praca badawczo-rozwojowa wykonana dla PSE-Operator SA.
6. IRiESP – Warunki korzystania, prowadzenia ruchu, eksploatacji i planowania rozwoju sieci v. 1.2. Tekst jednolity
obowiązujący od dnia: 5 listopada 2007 roku.

Podobne dokumenty