mathematical model of photosynthesis process in leaf, the

Transkrypt

mathematical model of photosynthesis process in leaf, the
Łochów, 23rd –27th September 2014
MATHEMATICAL MODEL OF PHOTOSYNTHESIS PROCESS IN
LEAF, THE INTERACTION BETWEEN TWO LEAVES
Antoni Leon Dawidowicz1 , Anna Poskrobko2 and Jerzy Leszek Zalasiński3
1
Faculty of Mathematics and Computer Science, Jagiellonian University
ul. Łojasiewicza 6, 30-348 Kraków, Poland
1
Faculty of Computer Science, Bialystok University of Technology
ul. Wiejska 45A, 15-351 Białystok, Poland
3
Ekspert FAO
1
[email protected], 2 [email protected],
3
[email protected]
ABSTRACT
The paper deals with the description of the mathematical model of photosynthesis process in two interacting
(peripheral and shaded) leaves.
REFERENCES
[1] V. A. Alekseev: Photic regime of forest (Russian), Nauka, Leningrad, 1975.
[2] Y. G. Anderson: Seasonal development in sun and shade leaves, Ecology 36 (1955), 430–439.
[3] O. Björkman and P. Holmgren: Adaptability of the Photosynthetic Apparatus to Light Intensity in Ecotypes from
Exposed and Shaded Habitats, Physiologia Plantarum 316 (1963), 889–914.
[4] A. L. Dawidowicz and J. L. Zalasiński: Mathematical Model of Photosynthesis Process in Leaf, Proceedings of the
Eighth National Conference Application of Mathematics in Biology and Medicine, Łajs 2002, pp. 31–36.
: On the Mathematical Model of Morphology of Leaves, Proceedings of the Eleventh National Conference
[5]
Application of Mathematics in Biology and Medicine, Zawoja 2005, pp. 97–100.
[6]
: A Model Participation of Autotrophic and Heterotrophic Organisms in Phenomenon of Life, Proceedings of
the Twelfth National Conference Application of Mathematics in Biology and Medicine, Koninki 2006, pp. 37–39.
[7]
: Mathematical Model of Photosynthesis Process in Leaf, Proceedings of the Sixteenth National Conference
Application of Mathematics in Biology and Medicine, Krynica 2010, pp. 14–18.
[8]
: Mathematical model of ionic pump (Na+ /K + - ATP-ase), Proceedings of the Seventeenth National Conference Application of Mathematics in Biology and Medicine, Zakopane - Kościelisko 2011, pp. 17–21.
[9]
: Mathematical Model of Water Balance of Arborescent Plant, Proceedings of the XVIII National Conference
Application of Mathematics to Biology and Medicine, Krynica Morska 2012, pp. 44–47.
[10] A. L. Dawidowicz, A. Poskrobko, and J. L. Zalasiński: A Mathematical Model of the Bioenergetic Processes in Green
Plants, Mathematical Population Studies (to appear).
[11] U. Foryś and Z. Szymańska: Models of Interactions between Heterotrophic and Autotrophic Organisms, Applicationes Mathematicae 36 (2009), 279–294.
[12] D. M. Gates: Transpiration and Leaf Temperature, Annual Review of Plant Physiology 19 (1968), 211–238.
[13] K. Krebb: Methoden der Pflanzenökologie, Gustav Fischer Verlag, Jena, 1977.
[14] R. O. Slatyer: Plant-water relationships, Academic Press, London, New York, 1967.
[15] P. P. Szopa and M. J. Piotrowska: Growth of Heterotrophe and Autotrophe Populations in an Isolated Terrestrial
Environment, Applicationes Mathematicae 38 (2011), 67–84.
[16] J. L. Zalasiński: Wpływ lokalnych warunków świetlnych w koronie buka (Fagus silvatica L.) na kierunki zmian morfologicznych, anatomicznych i niektórych właściwości optycznych liścia, Rozprawa doktorska, Akademia Rolnicza
w Krakowie, 1973.
A.L. Dawidowicz, A. Poskrobko, J.L. Zalasiński
[17] M. H. Zimmermann and C. L. Brown: Trees: Structure and Function, Springer, Berlin, Heidelberg, 1975.