Architektura układów FPGA cz.2

Transkrypt

Architektura układów FPGA cz.2
Module: Electronics & Telecomunication, 5rd year
Programmable Logical Devices
FPGA
architectures
Part 2
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
1
Agenda
• FPGA market offer
• Altera (Intel)
• Lattice
• Actel (Microsemi)
• Cypress
• FPGA startups
• Achronix
• Tabula
• SoC – FPGA + uP
• NIOS (Altera)
• PicoBlaze, MicroBlaze (Xilinx)
• ARM ( all ☺)
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
References
WWW FPGA manufactures
•
Big labels ( in alphabetical order)
–
–
–
–
•
FPGA startups
–
–
•
http://www.achronix.com
http://www.tabula.com
general
–
–
•
www.actel.com (Microsemi)
www.altera.com
www.cypress.com
www.latticesemi.com
http://www.soccentral.com
www.eetimes.com/design/programmable-logic
King of the kings ☺ embedded:
–
www.arm.com
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera – top FPGA offer
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Cyclone V
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Cyclone V
■ Technology:
■ 28-nm TSMC low-power process technology
■ 1.1-V core voltage
■ Low-power serial transceivers:
■ 614 Mbps to 5.0 Gbps integrated transceivers
■ Transmit pre-emphasis and receiver equalization
■ Dynamic partial reconfiguration of individual channels
■ General purpose I/Os (GPIOs):
■ 875 Mbps LVDS (receiver), 840 Mbps LVDS
(transmitter)
■ 400 MHz/800 Mbps external memory interface
■ On-chip termination (OCT)
■ 3.3-V support with up to 16 mA drive strength
■ Embedded transceiver I/O hard IP:
■ Basic mode (up to 5.0 Gbps)
■ PCIe Gen2 x1, x2 and Gen1 x1, x2, or x4; with
multi-function, endpoint, and root port
■ Gigabit Ethernet (GbE) and XAUI PCS
■ Serial RapidIO® (SRIO) PCS
■ Common Public Radio Interface (CPRI) PCS
■ JESD204A PCS
■ OBSAI PCS
■ SATA PCS
■ SDI SD/HD and 3G-SDI PCS
■ DisplayPort PCS
■ Vx1 PCS
■ High-performance core fabric:
■ Enhanced 8-input ALM with four registers
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Cyclone V
Variable precision DSP blocks hard IP:
■ Natively support three signal processing precision
ranging from three 9 × 9s, two 18 × 19s, or one
27 × 27 in the same variable precision DSP block
■ 64-bit accumulator and cascade
■ Embedded internal coefficient memory
■ Pre-adder/subtractor improves efficiency
■ Internal memory blocks:
■ M10K, 10-Kbit with soft error correction code (ECC)
■ Memory logic array block (MLAB), 640-bit distributed
LUTRAM—up to 25% of the ALMs can be used as
MLAB memory
■ DDR3, DDR2, LPDDR, and LPDDR2 memory controller
hard IP
■ Partial and dynamic reconfiguration of the FPGA
■ PLLs:
■ Precision clock synthesis, clock delay compensation,
and zero delay buffering
■ Integer mode and fractional mode
■ Clock networks:
■ 625 MHz global clock network
■ Global, quadrant, and peripheral clock networks
■ Unused clock networks can be powered down to
reduce dynamic power
■ Configuration:
■ Configuration via Protocol (CvP)
■ Active Serial (x1 and x4), Fast Passive
Parallel (x8 and
x16), Passive Serial, and JTAG options
■ Enhanced advanced encryption
standard (AES) design
security features
■ Tamper protection
■ Packaging:
■ Wirebond halogen-free packages
■ Multiple device densities with
compatible package
footprints for seamless migration between
different
device densities
■ Lead and RoHS-compliant options
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
The Arria® 10 device family includes three variants:
• Arria 10 GT FPGAs: Up to 96 full-duplex optimized transceivers with
data rates up to 28.1 Gbps chip-to-chip, and up to 1150K equivalent
Logic Elements (LEs)
• Arria 10 GX FPGAs: Up to 96 full-duplex transceivers with data rates up
to 17.4 Gbps chip-to-chip, 16.0 Gbps backplane, and up to 1150K
equivalent LEs
• Arria 10 SX SoCs: Integrated ARM® CortexTM -A9 hard processor
systems (HPS) with up to 48 full-duplex transceivers with data rates up
to 17.4 Gbps chip-to-chip, 16.0 Gbps backplane, and up to 660K
equivalent LEs
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10 Transceivers
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Aria 10 SoC
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Stratix 10
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Stratix 10
Stratix 10 GT FPGAs
For the most demanding applications requiring ultra-high
bandwidth and performance Stratix 10 GT FPGA transceivers
support data rates up to 56 Gbps
Stratix 10 GX FPGAs
Built for high performance and bandwidth applications such as
multi-100G/400G systems Stratix 10 GX FPGA transceivers support
32 Gbps chip-module, chip-to-chip, and backplane operations at up
to 28 Gbps Built for high performance and power-efficient
computing applications such as data center acceleration, radar, and
line card processing
Stratix 10 SX SoCs
Built for maximum processor performance per watt for highbandwidth applications with an integrated HPS
Stratix 10 SX SoCs feature hard processor system with 64 bit
quad-core ARM Cortex-A53 processor
- See more at: http://www.altera.com/devices/fpga/stratixfpgas/stratix10/stx10-index.jsp
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series Stratix 10
Industry’s First Gigahertz FPGAs and SoCs
•New ultra-high performance FPGA architecture
•2x the core performance of prior generation high-end FPGAs
•>10 TFLOPs of single-precision floating-point DSP performance
•>4x processor data throughput of prior-generation SoCs
Break the Bandwidth Barrier with Unimaginable High-Speed
Interface Rates
•4x serial transceiver bandwidth from previous generation FPGAs for high
port count designs
•28 Gbps backplane capability for versatile data switching applications
•56 Gbps chip-to-chip/module capability for leading edge interface standards
•Over 2.5 Tbps bandwidth for serial memory with support for Hybrid Memory
Cube
•Over 1.3 Tbps bandwidth for parallel memory interfaces with support for
DDR4 at 3200 Mbps
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA series HardCopy V
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA from Lattice
This is not to say that
Lattice doesn’t innovate.
They do. In fact, Lattice
basically created the “mid-range”
FPGA category that both Xilinx and
Altera have now adopted. When
Lattice rolled out the first low-cost
FPGA with high-speed serial
interfaces, they sent their larger
competitors into a spin, trying to
rapidly re-define the line between
their expensive, high-end FPGAs
with SerDes and their marketsaturating low-cost FPGAs with
conventional IO. Lattice has
consistently looked at profitable
market segments, designed better
mouse traps specifically for those
segments, and quietly raised
victory flags over numerous
applications in whose small ponds
they had suddenly become the big
fish.
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA from Lattice
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Flagship FPGA from Lattice iCE40
Lattice acquired iCE40 from Silicon Blue
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Lattice iCE40 – very small packages available
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Lattice FPGA applications
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA from Actel (Microsemi)
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA from Actel (Microsemi)
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA from Actel (Microsemi)
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Actel – mixed signal FPGA
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Actel – mixed signal FPGA
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Actel – „antifuse” technology
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Actel – „antifuse” technology
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Actel – „antifuse” technology
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Cypress PSoC Programmable System-on-Chip
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Cypress PSoC Programmable System-on-Chip
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
The fastest FPGA? Achronix?
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
The fastest FPGA? Achronix
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
picoPIPE Achronix
An important concept to highlight is the 'Data Token'. In conventional logic, a Data Token is a logic value at a clock
edge. With traditional logic implementations, data is always present, but is only valid (and therefore propagated)
when a clock edge is received at a storage element. Hence every time data is propagated from one storage element
to the next, only a distinct, valid data value or 'Data Token' is propagated. picoPIPE stages are the atomic elements
of the Achronix FPGA fabric. The fabric is capable of implementing any logic function. To implement a logic function,
picoPIPEs use explicit Data Tokens, rather than propagating data in response to a global clock edge. A Data Token
in picoPIPE logic can be considered as the data and the clock edge merged together. The keyinnovation that
enables the picoPIPE fabric to operate at high frequency is this new representation of Data Tokens.
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
The fastest FPGA? Tabula Spacetime?
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Tabula Spacetime
Programmable logic
company Tabula is rumored to
close its doors on March 24
2015
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
FPGA SoC (marketing data from Altera)
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Softprocessor for FPGA
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera FPGA SoC
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera Softprocessor NIOS II
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Why ARM ??
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Why ARM ??
~2011
~ 200pcs/sec
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Why ARM ??
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Why ARM ??
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Altera ARM based SoC
SoC FPGAs integrate an ARM-based hard processor system (HPS) consisting of
processor, peripherals, and memory interfaces with the FPGA fabric using a highbandwidth interconnect backbone. The Arria® V SoC FPGAs reduce system power, system
cost, and board size while increasing system performance by integrating discrete
processor, FPGA, and digital signal processing (DSP) functions into a single, user
customizable ARM-based system on a chip (SoC). SoC FPGAs provide the ultimate
combination of hardened intellectual property (IP) for performance and power savings,
with the flexibility of programmable logic
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Xilinx PicoBlaze softprocessor
PicoBlaze microcontroller supports the following features:
• 16 byte-wide general-purpose data registers
• 1K instructions of programmable on-chip program store,
automatically loaded during FPGA configuration
• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and
ZERO indicator flags
• 64-byte internal scratchpad RAM
• 256 input and 256 output ports for easy expansion
and enhancement
• Automatic 31-location CALL/RETURN stack
• Predictable performance, always two clock cycles per instruction,
up to 200 MHz or 100 MIPS in a Virtex-II Pro FPGA
• Fast interrupt response; worst-case 5
clock cycles
• Optimized for Xilinx Spartan-3 architecture
—just 96 slices and 0.5 to 1 block RAM
• Support in Spartan-6,
and Virtex-6,7 FPGA architectures
• Assembler, instruction-set
simulator support
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
IDE for PicoBlaze (Mediatronix)
no direct support
- webpage closed
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
MicroBlaze
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
MicroBlaze
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
MicroBlaze
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Xilinx Zynq-7000 Extensible Processing
Platform
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Xilinx Zynq-7000 Virtual Platform
A virtual platform enables the development, integration and test of full software stacks without access to
real hardware. Virtual platforms also provide new capabilities that can significantly reduce development
time compared to traditional hardware-based approaches.
Xilinx provides multiple virtual platform choices to address the cost, capability and extensibility needs of
different developers. Each virtual platform can be described as a functional simulator which includes a fast
instruction set simulator for the ARM® Cortex™ A9 MPCore™ processor, models of the Zynq™-7000 EPP
peripheral set, memory, and ancillary peripherals necessary to create a full development platform. Every
device model is register-accurate, ensuring that they will run the same production binaries as the actual
hardware.
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
Thank you !
J.Kasperek & P.J.Rajda © 2015 Katedra Elektroniki AGH
66

Podobne dokumenty