modelling the long-range transport, concentrations and deposition of

Transkrypt

modelling the long-range transport, concentrations and deposition of
Proceedings of ECOpole
Vol. 2, No. 1
2008
Maciej KRYZA1, Marek BŁAŚ1, Anthony J. DORE2 and Mieczysław SOBIK1
MODELLING THE LONG-RANGE TRANSPORT,
CONCENTRATIONS AND DEPOSITION
OF ATMOSPHERIC POLLUTANTS IN POLAND
- APPLICATIONS OF THE FRAME MODEL
MODELOWANIE TRANSPORTU, KONCENTRACJI
I DEPOZYCJI ZANIECZYSZCZEŃ ATMOSFERYCZNYCH W POLSCE
- ZASTOSOWANIA MODELU FRAME
Summary: FRAME (Fine Resolution Atmospheric Multi-pollutant Exchange) is a statistical Lagrangian
atmospheric transport model. It has high spatial (5 km x 5 km) and vertical resolution (33 layers). The model was
developed in the Centre for Ecology and Hydrology (Edinburgh, UK) and has successfully been used for
modelling long-range transport and deposition of atmospheric pollutants. The model is used as a tool to support
government policy in assessing the effect of abatement of pollutant gas emissions. The FRAME model has been
recently adopted to work for the area of Poland. This study presents the spatial patterns of dry and wet deposition
of SOx, NOy and NHx as well as the yearly average air concentrations of SO2, NOx and NH3 for Poland for the year
2002. The model results are compared with the measurements. The modelled concentrations are found to be in a
good agreement with observations, with a determination coefficient around 0.7 for SO2 and NOx. The NH3
concentrations are not routinely measured in Poland, therefore only the spatial pattern of air concentration is
presented. FRAME dry and wet deposition of SOx, NOy and NHx was compared with the EMEP data and the
measurement-based estimates provided by the IMWM (wet only). The calculated deposition budgets were found
to be in close agreement. Spatial patterns of dry and wet deposition are generally similar to those reported by
EMEP and CIEP/IMWM. Because of the higher spatial resolution of the FRAME model, the calculated
depositions are locally higher, especially in the mountainous areas where the seeder-feeder effect is incorporated.
Keywords: atmospheric pollution, pollutant concentration, deposition, numerical modelling, FRAME, Poland
As the result of pollutant abatement policy on a national scale in Poland, since the
beginning of the nineties, substantial reduction of gaseous emissions has been observed,
with SO2 being reduced most [1]. Emissions of SO2 and NOx have fallen by 69 and 29%,
respectively, during the period 1980-2004, with further decrease of 44 and 51% over the
next 15 years [2]. However, pollutant deposition is still high and often exceeds critical load
limit values.
Atmospheric long-range transport models are important instruments to estimate the fate
of pollutants and to understand the effects of changes in emissions. Until recently, the
EMEP model [3] was the main source of information on long-range transport, air
concentration and deposition of atmospheric pollutants. The main drawback of the EMEP
model is coarse spatial resolution (50 km x 50 km).
This paper contains a general description and presents preliminary results of the
modelling of SO2, NOx and NH3 concentrations and SOx, NOy and NHx deposition for
Poland with the fine resolution FRAME model. The results are compared with the EMEP
and CIEP/IMWM (Chief Inspectorate of Environmental Protection, Institute of
1
Department of Meteorology and Climatology, University of Wrocław, Kosiby 6/8, 51-670 Wrocław,
email: [email protected]
2
Centre for Ecology and Hydrology, Edinburgh, UK
48
Maciej Kryza, Marek Błaś, Anthony J. Dore and Mieczysław Sobik
Meteorology and Water Management) estimates as well as with the available
measurements.
Model outlook & input data
A detailed description of the FRAME model can be found in papers [4-7]. Because of
certain limitations, only the most important features are presented here.
FRAME is a national scale Lagrangian model with 5 km x 5 km horizontal resolution.
The grid dimension is 160 by 160 grid squares and covers the whole area of Poland. Input
gas and aerosol concentrations at the edge of the model domain are calculated with the
FRAME-Europe model, using the EMEP expert emission inventory for Europe and run on
the EMEP 50 km scale grid. An air column is divided into 33 layers moving along straightline trajectories with a 1o angular resolution. The air column advection speed and frequency
for a given wind direction is statistically derived from radio-sonde measurements [8]. Layer
thickness varies from 1 m at the surface to 100 m at the top of the mixing layer. Vertical
diffusion in the air column is calculated using K-theory eddy diffusivity and solved with the
Finite Volume Method.
The model chemistry includes gas phase and aqueous phase reactions of oxidized
sulphur and oxidized nitrogen, and conversion of NH3 to ammonium sulphate and
ammonium nitrate aerosol. The modelled chemical species treated include:
NH3, NH +4 aerosol, NO, NO2, HNO3, PAN, NO3− aerosol, SO2, H2SO4 and SO 24− aerosol.
The point sources emissions of SO2, NO2 and NH3 were taken from the EPER database
[9]. The national totals of low level emissions of SO2, NO2, and NH3, presented by the
National Inventory Report 2002 [10], were spatially disaggregated based on census and
traffic data provided by the National Statistical Office [11], the General Directorate for
National Roads and Motorways, and the landcover map. The low-level emission of NH3
was calculated separately for cattle, pigs, poultry and sheep and mixed into the lowest
surface layers with a source-dependent emissions height. The low level emissions in the
surrounding countries, which are partially in the model domain, were taken from the EMEP
expert emission inventory.
The wind rose employed in FRAME uses 6-hourly operational radiosonde data from
the stations of Wrocław, Legionowo, Łeba, Greifswald, Lindenberg, Prague, Poprad and
Kiev, spanning the whole 2002 year period. High resolution maps of yearly precipitation,
developed with the multidimensional interpolation method [12], were converted to the 5 km
FRAME grid and used in simulations.
Wet deposition is calculated using a diurnally varying scavenging coefficient
depending on mixing layer depth and a ‘constant drizzle’ approximation driven by a map of
annual precipitation. Dry deposition is ecosystem specific and includes five land classes:
forest, moorland, grassland, arable, urban and water.
Results
The SO2, NOx (Fig. 1) and NH3 (not shown here) concentrations, calculated with the
FRAME model, are highest close to the low level emission sources. The spatial patterns
presented here are generally similar to those calculated with the EMEP model, though
Modelling the long-range transport, concentrations and deposition of atmospheric pollutants in Poland: …
49
FRAME modelled concentrations are locally higher. This is because of the high spatial and
vertical resolution of the FRAME model.
FRAME modelled concentrations of SO2 and NOx are in close agreement with
measurements [13], with the determination coefficient close to 0.7 for both species. For
certain monitoring stations, the model underestimates the concentrations. FRAME was not
able to reflect the measured high concentrations on the four urban stations located close to
the main roads. NH3 concentrations are not routinely measured at monitoring stations in
Poland, therefore it is not possible to validate the model estimates in a similar way.
Fig. 1. FRAME modelled yearly average air concentrations of SO2 (a) and NOx (b)
The general pattern of the FRAME modelled dry and wet deposition is similar to that
calculated by the EMEP model. The largest discrepancies are found for the dry deposition
of NHx (Fig. 2), as the FRAME model shows high spatial variation. For the mountainous
areas, FRAME shows significantly higher wet deposition of SOx, NOy and NHx than the
EMEP model. The main peaks are in the Western Sudety Mts. and Beskid śywiecki (SW
and S Poland). This occurs due to the seeder-feeder mechanism [14] incorporated in the
high-resolution FRAME model, contrary to the coarser-resolution EMEP model which may
not capture fine scale orographic precipitation effects. The detailed measurement-based
annual precipitation map used for the FRAME simulation can also positively influence the
results. FRAME modelled wet deposition of SOx, NOy and NHx was checked against the
available measurements showing good agreement, with an R2 of 0.76, 0.72 and 0.46 for
NHx, NOy, and SOx, respectively.
Table 1
Dry, wet and total deposition of SOx, NOy and NHx for Poland (Gg of S or N per year; 2002)
FRAME
EMEP
GIOS/IMGW
dry
129
140
-
SOx
wet
202
207
202
total
331
347
-
dry
58
72
-
NOy
wet
93
98
94
total
151
170
-
dry
80
86
-
NHx
wet
147
125
151
total
227
211
-
50
Maciej Kryza, Marek Błaś, Anthony J. Dore and Mieczysław Sobik
The FRAME modelled wet, dry and total deposition budgets for SOx, NOy and NHx
were checked against the results obtained with the EMEP model and interpolation-based
estimates of wet deposition calculated by CIEP/IMWM [13] for the year 2002 (Tab. 1).
FRAME dry deposition budget is generally slightly lower than that reported by EMEP
whereas wet deposition budget is in close agreement with the CIEP/IMWM estimates.
Fig. 2. FRAME (left column) and EMEP (right) dry (upper row) and wet (bottom) deposition of NHx
Conclusions
The Fine Resolution Atmospheric Multi-pollutant Exchange model, originally
developed for the United Kingdom, was used to asses the spatial patterns of yearly
averaged air concentrations and wet and dry deposition for the area of Poland with 5 km by
5 km resolution. The modelled concentrations and wet deposition are in close agreement
Modelling the long-range transport, concentrations and deposition of atmospheric pollutants in Poland: …
51
with measurements and deposition budget estimates provided by the EMEP and
CIEP/IMWM. The FRAME model, despite its relatively simple meteorological
parameterisations, is well suited to calculate average annual concentration and deposition of
pollutants for Poland.
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
Abraham J., Berger F., Ciechanowicz-Kusztal R., Jodłowska-Opyd G., Kallweit D., Keder J., Kulaszka W.
and Novák J.: Common report on air quality in the Black Triangle Region. 2002. ČHMÚ, WIOŚ, LfUG and
UBA Press, 2003.
Vestreng V.: Inventory Review 2004. Emission data reported to CLRTAP and the NEC Directive.
EMEP/EEA Joint Review Report 2006. EMEP/MSC-W Note 1.
Iversen T.: Modelled and measured transboundary acidifying pollution in Europe - verification and trends.
Atmos. Environ., 1993, 27A, 889-920.
Singles R., Sutton M.A. and Weston K.J.: A multi-layer model to describe the atmospheric transport and
deposition of ammonia in Great Britain. Atmos. Environ., 1998, 32, 393-399.
Fournier N., Dore A.J., Vieno M., Weston K.J., Dragosits U. and Sutton M.A.: Modelling the deposition of
atmospheric oxidised nitrogen and sulphur to the United Kingdom using a multi-layer long range transport
model. Atmos. Environ., 2004, 38(5), 683-694.
Vieno M.: The importance of emission height in an atmospheric transport model. PhD thesis. University of
Edinburgh, Edinburgh 2005.
Dore A.J., Vieno M., Tang Y.S., Dragosits U., Dosio A., Weston K.J. and Sutton M.A.: Modelling the
atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of
the influence of SO2 emissions from international shipping. Atmos. Environ., 2007, 41, 2355-2367.
Dore A.J., Vieno M., Fournier N., Weston K.J. and Sutton M.A.: Development of a new wind rose for the
British Isles using radiosonde data and application to an atmospheric transport model. Q.J. Royal.
Meteorol. Soc., 2006, 132, 2769-2784.
EPER: European Pollution Emission Register, 2006, www.eper.cec.eu.int
Olendrzyński K., Dębski B., Skośkiewicz J., Kargulewicz I., Fudała J., Hławiczka S. and Cenowski M.:
Inwentaryzacja emisji do powietrza SO2, NO2, NH3, CO, pyłów, metali cięŜkich, NMLZO i TZO w Polsce za
rok 2002. Inst. Ochr. Środow., 2004.
National Statistical Office: Regional Data Bank, 2006, www.stat.gov.pl
Kryza M.: Zastosowanie GIS do przestrzennego modelowania miesięcznych sum opadu atmosferycznego
w Polsce, [in:] Współczesna meteorologia i klimatologia w geografii i ochronie środowiska. Migała K. and
Ropuszyński P. (eds.), PTG, Wrocław 2006, 77-87.
Chief Inspectorate of Environmental Protection: National Monitoring of the Environment, 2006,
www.gios.gov.pl
Błaś M. and Sobik M.: Natural and human impact on pollutant deposition in mountain ecosystems with the
Sudetes as an example. Studia Geogr., 2003, 75, 420-438.
MODELOWANIE TRANSPORTU, KONCENTRACJI
I DEPOZYCJI ZANIECZYSZCZEŃ ATMOSFERYCZNYCH W POLSCE
- ZASTOSOWANIA MODELU FRAME
Streszczenie: FRAME (Fine Resolution Atmospheric Multi-pollutant Exchange) jest statystycznym modelem
trajektorii typu Lagrange’a. Główne cechy modelu to duŜa rozdzielczość pozioma (5 x 5 km) i pionowa
(33 warstwy) przy jednocześnie krótkim czasie wykonania obliczeń (ok. 30 minut). FRAME został pierwotnie
opracowany dla obszaru Wielkiej Brytanii przez Centre for Ecology and Hydrology w Edynburgu i jest od kilku
lat z powodzeniem uŜywany do modelowania transgranicznego transportu i depozycji zanieczyszczeń
atmosferycznych. FRAME stanowi narzędzie wspomagające dla podejmowania decyzji ograniczających emisję
gazów przemysłowych w Wielkiej Brytanii. W ostatnim czasie FRAME został przystosowany do działania na
obszarze Polski. Praca prezentuje mapy średniorocznej koncentracji i rocznej depozycji (suchej i mokrej) tlenków
siarki i azotu oraz azotu zredukowanego dla Polski, obliczone na podstawie emisji z 2002 roku. Wyniki działania
modelu FRAME zostały porównane z koncentracją SO2 i NOx zmierzoną w sieci stacji monitoringu jakości
52
Maciej Kryza, Marek Błaś, Anthony J. Dore and Mieczysław Sobik
powietrza GIOŚ. Stwierdzono duŜą zgodność modelu FRAME z pomiarami, wyraŜoną współczynnikiem
determinacji na poziomie ok. 0,7 (dla obu związków). Ze względu na to, Ŝe rutynowe pomiary koncentracji
zanieczyszczeń, prowadzone w sieci IOŚ, nie obejmują stęŜeń NH3, wykonanie podobnej analizy dla amoniaku nie
jest moŜliwe. Bilanse suchej i mokrej depozycji SOx, NOy i NHx, obliczone na podstawie map depozycji
uzyskanych za pomocą modelu FRAME, są zbliŜone do danych raportowanych przez EMEP i GIOŚ/IMGW
(tylko mokra depozycja). Mapy depozycji obliczone modelem FRAME są podobne w ogólnym zarysie do
prezentowanych przez dwa pozostałe źródła. RóŜnią się głównie ze względu na duŜą rozdzielczość przestrzenną
FRAME, która pozwala uwzględnić procesy działające w małej skali (np. efekt seeder-feeder).
Słowa kluczowe: zanieczyszczenie powietrza,
numeryczne, FRAME, Polska
koncentracja
zanieczyszczeń,
depozycja,
modelowanie

Podobne dokumenty