Dr Alina Teresa Dubis, Instytut Chemii Uniwersytet w Białymstoku

Transkrypt

Dr Alina Teresa Dubis, Instytut Chemii Uniwersytet w Białymstoku
Załącznik 2B
Dr Alina Teresa Dubis
University of Białystok
Faculty of Biology and Chemisty
Institute of Chemistry
Department of Natural Product Chemistry
Al. J. Piłsudskiego 11/4, 15-443 Białystok, Poland
mobile 600-447773, 85-7457800
Documentation for the application for the initiation of the habilitation
procedure
Scientific achievements presented as a series of nine publications
after being granted the PhD degree
Scientific achievements as defined in the Act of 1 September 2011 (Journal of Laws No 1165)
and of 22 September 2011 (Journal of Laws No 201, Item 1200) are presented under the
title:
“INFLUENCE OF THE CONFORMATION OF
2-ACYLPYRROLES ON SPECTROSCOPIC PROPERTIES AND
HYDROGEN BOND FORMATION”
Białystok 2014
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
1.
SURENAME AND NAME:
Alina Teresa Dubis
2. EDUCATION:
1972 – 1976 I Liceum Ogólnokształcące w Białymstoku
1976 – 1980 University of Warsaw, Branch in Białystok
3.07.1980
M.SC. in chemistry, teaching specialist,
Thesis: "Studia nad wydzielaniem substancji biologicznie czynnych stonki
ziemniaczanej (Leptinotarsa decemlineata Say). Identyfikacja frakcji
wymrożonych w acetonie”
Supervisor: dr hab. Janusz Popławski
Graduated with Honors
4.03.2004
Ph.D in chemistry, Department of Biology and Chemistry, University of
Białystok,
Thesis: „The Application of IR Spectroscopy, Theoretical Calculation and Bader
Theory in Conformational Analysis of -Substituted Pyrroles"
Supervisor: dr hab. Sławomir J. Grabowski
1.10.2010 - 2.07.2011 post graduated study in the field of „Management of Research and
Development Works” completed with very good results;
Diploma Thesis: A.T. Dubis, J. Piekutin, “Metody badań naukowych z przykładami
ich zastosowania” chapter in a monograph edited by Professor Bazyli Poskrobko,
„Experimental Methods”, pp.127-145, Wydawnictwo Ekonomia i środowisko,
Białystok, 2012.
3. PROFESSIONAL POSITION:
 1980- 2004 Specialist, Department of Organic Chemistry, Institute of Chemistry, UwB
 2004 - 2007 Research Assistant, Department of Organic Chemistry, Institute of
Chemistry, UwB
 2007- Adjunct, Department of Chemistry of the Natural Products , Institute of
Chemistry, UwB
3
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
 Deputy Director of Institute of Chemistry since 2012
4. INTERNATIONAL FELLOWSHIOS
November 1990 – June 1991 Rurgers University, Department of Entomology, USA (New
Jersey), Prof. Lena B. Brattsten
5. SCIENTIFIC ACHIEVEMENTS
 Scientific publications: ...................................................................................................39
 Before Ph.D: ...................................................................................................................17
 After Ph.D ........................................................................................................................22
 Total number of publications from JCR: ........................................................................34
 Conference messages .....................................................................................................38
 Patents .............................................................................................................................4
 Book chapters: ..................................................................................................................2
 Review for editors – J. Mol. Struct., Vib. Spectroscopy ..................................................10
 Total points of MNiSW ..................................................................................................935
 IF according to the Journal Citation Report (JCR)
summarized……………………………………………………………………………. ........... IF =72.43
after PhD ….…………………………………..…………………………… ....... ……………… IF=48.28
average IF per publication ...................................................................... IF= 2.13
Summarized of [H1-H9] directly related to the habilitation thesis ........ IF=17.64
 My Average contribution to the publications [H1-H9] is at the level of .................. 62,7%
6. CITATION OF THE PUBLICATION – DATA FROM WEB OF KNOWLEDGE October,2014:
 The total number of the publications ............................................................................33
 Sum of the times cited .................................................................................................376
 Sum of times without self-citations .............................................................................336
 Average citation per item ........................................................................................ 11.39
 H-index ...................................................................................................................... H=12
4
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
7. INTERNATIONAL COLLABORATION:
Prof. dr hab. Sławomir J. Grabowski - Faculty of Chemistry, University of the Basque
Country
8. NATIONAL COLLABORATION:
Dr Andrzej Łapiński, Institute of Molecular Physics PAS, Poznań
Dr hab. Marcin Palusiak, Department of Chemistry, University of Łódź
9. PARTICIPATION IN RESEARCH PROGRAMMES:

Research grant: 4T09A 163 22
Project duration : 2002-2004
Project subject: Zastosowanie spektroskopii w podczerwieni, obliczeń ab initio i
teorii Badera w badaniach konformacji -podstawionych piroli
Head of the project: dr hab. Sławomir J. Grabowski
5
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
main contractor

Research grant: N310 06331/2813
Project duration : 2006-2008
Project subject: Zastosowanie zaawansowanych metod spektralnych w badaniach
peraminy jako alternatywnego środka ochrony roślin
Head of the project: dr Andrzej Łapiński
main contractor

grant: NN 20411535
Project duration: 2008-2010
Project subject: Badanie możliwości wykorzystania małych nanocebulek węglowych
w bioczujnikach
Head of the project: dr Marta Płońska-Brzezińska
main contractor
grant: OPUS, NCN2011/03/B/ST5/02691
Project duration: 2012-2015
Project subject: Synteza nanocząstek magnetycznych z polimerowymi powłokami
chelatującymi
Head of the project: dr Agnieszka Wilczewska
contractor
10. Received Awards:

Rector’s Award for Scientific Work, University of Warsaw, Białystok Branch, 1995

Rector’s Award of Teaching, University of Białystok 1997

Rector’s Award of Organizational Work, University of Białystok, 2001

The Award of the III Multidyscyplinarna Konferencja Nauki o Leku, 2002 for the
Best Poster Presentation „Hypolipidemic Agents – New -Asarone Analogs”,
6

Rector’s Award for Scientific Work, University of Białystok,2004

Rector’s Award of Teaching, University of Białystok, 2005

Rector’s Award for Scientific Work, University of Białystok, 2010

Nominated in the pool „Lecturer of the year 2010” Kuriera Porannego
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
11. PARTICIPATION IN THE WORK OF THE INTERANATIONAL AND NATIONAL CONFERENCE
ORGANIZING COMMITTEES:

55 Zjazd Polskiego Towarzystwa Chemicznego, Białystok, 9-12.IX.1992,
patricipation in the Organizing Committee works

XXI Międzynarodowa Konferencja Izoprenoidowa, Białowieża, 23-29.IX.2005,
patricipation in the Organizing Committee works

55. Zjazd Polskiego Towarzystwa Chemicznego, Białystok, 16-20.IX.2012, the
treasurer of the Conference
12. MEMBERSHIP IN SCIENTIFIC ORGANIZATIONS AND SOCIETIES
Polish Chemical Society; Physical Organic Chemistry Section
13. CHEMISTRY POPULARIZING ACTIVITIES

Chemistry Preparatory Course for high-school students - teaching kinetics and
termochemistry (2009-2013)

Member of Regional Commmittee of the Polish Chemistry Olympiad PTCh (20012010)

Co-organizer of „Soboty u Chemików” (2013-14) meetings with the high-school
students

Co-organizer of the „Podlaski Konkurs Chemiczny” for high-school students
(2014)
14. ORGANIZATIONAL ACHIEVEMENTS:

Participation in work on development of a study programme in Environmental
Protection under the TEMPUS project “Development and implementation of a
new BSc degree in Environmental Protection including chemistry, modern
technologies, environmental protection practice and legislation at Universities of
Gdańsk and Warsaw – Bialystok Branch” S_JEP-09615-95”; 1995-996

Participation in training under the TEMPUS project “Development and
implementation of a new BSc degree in Environmental Protection including
chemistry, modern technologies, environmental protection practice and
legislation at Universities of Gdańsk and Warsaw – Bialystok Branch” S_JEP-0961595”; Hertfordshire, 1996
7
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego

The member of the committee for teaching of the Institute of Chemistry

Participation in training on the requirements of the National Qualifications
Frameworks (2011-12)

The member of the Scientific Council of the Institute of Chemistry since 2012

The member of the Faculty Council Committee for the development of the
teaching since 2012

Coordinator of the Program Council for teaching since 2012

Preparation of the application to the Competition for funding of basic
organizational units of universities in the implementation of systems to improve
the quality of education and the National Qualifications Framework KRK2013,
MNiSW (spetember 2013)

Member of the team preparing the report for the purpose of self-assessment
program accreditation of Chemistry (May 2014)
15. TEACHING:

I was supervisor of 11 master thesis

I was supervisor of 8 bachelor thesis

I am supervisor of 1 doctor thesis
16. COURSES FOR STUDENTS OF FACULTY OF BIOLOGY AND CHEMISTRY:

Molecular Spectroscopy - lecture 30 h (Chemistry, MSc, 1st year)

Molecular Spectroscopy - laboratory (Chemistry, MSc, 1st year)

Instrumental Laboratory (Chemistry, MSc, 1st year)

Specialization Laboratory I (Chemistry, MSc, 1st year, Environmental Protection,
MSc, 1st year)

Specialization laboratory II (Chemistry, MSc, 1st year, Environmental Protection,
MSc, 2nd year)

Specialization Course (Chemistry, Environmental Protection, BSc, 3rd year)

The Laboratory of Spectroscopic Methods of Analysis (Environmental Protection,
MSc, 1st year)

The Laboratory of Chemical Analysis of Environmental Pollution (Environmental
Protection, MSc, 1st year)
8
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego

The Laboratory of Organic Chemistry (Chemistry, BSc, 2nd year)

The Laboratory of Environmental Monitoring (Environmental Protection, BSc, 3rd t
year)

The Laboratory of Instrumental Analysis (Environmental Protection, BSc, 3rd year)

Specialization Course (Chemistry and Environmental Protection, MSc, 2nd year)
Classes were conducted in the dimension of 210-240 hours per year.
Evaluation of teaching based on student surveys is contained in the range of 4.5-4.7 on a
scale of 5 points.
9
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
ALL PUBLICATIONS INCLUDED IN THE JOURNAL CITATION
REPORTS (JRC)
[H1], H[2] ...- directly related to the habilitation thesis
IF - based on year of publication
IF5 - based on 5-year
TC - total number of citation
PUBLICATIONS BEFORE BEING GRANTED THE PHD DEGREE
1. E. Dubis, E. Maliński, A.T. Dubis, J. Szafranek, J. Nawrot, J. Popławski, J.T. Wróbel
Sex-dependent Composition of Cuticular Hydrocarbons of the Colorado Beetle
Leptinotarsa decemlineata Say,
Comp. Biochem. Physiol., 87A (1987) 839-843.
IF5 =2,381
TC = 18
My contribution to [1] is related to collection of the insects and potato leaves, extract
preparation, the separation of the hydrocarbon using chromatographic methods,
participation in the discussion, preparation of the manuscript.
I declare my contribution to be equal to 15 %
2. A.T. Dubis, J.W. Morzycki, J. Popławski
The alkali metal reduction of trimethoxybenzenes in hydrocarbon solvents,
Journaj f. prakt. Chemie; 333 (1991) 643-650.
IF = 0,885
TC = 0
My contribution to [2] is related to formulate a research problem, the synthesis of a
sample, interpretation and discussion, preparation of the manuscript
I declare my contribution to be equal to 50 %
3. S. J. Grabowski, A.T. Dubis
Intramolecular C-H..O Hydrogen Bonds in the Crystal Structure of Ethyl 3,4,5Trimethoxybenzoate (ETMB).
Polish J. Chem. 69 (1995) 218-222.
IF = 0,422
TC =2
10
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [3] is related to the synthesis of a sample, interpretation and
discussion, preparation of the manuscript
I declare my contribution to be equal to 20 %
4. A.T. Dubis, Z. Łotowski, L. Siergiejczyk, A. Z. Wilczewska, J. W. Morzycki
Study of Hydrogen Bonding in Nitro Enamindes.
J. Chem. Research (S), (1998) 170-171.
IF = 0,522
TC = 3
My contribution to [4] is related to IR spectroscopic investigation, interpretation and
discussion, preparation of the manuscript
I declare my contribution to be equal to 20 %
5. A.T. Dubis, Z. Łotowski, L. Siergiejczyk, A. Z. Wilczewska, J. W. Morzycki
Study of Hydrogen Bonding in Nitro Enamindes.
J. Chem. Research (M), (1998) 813-821.
IF = 0,522
TC = 3
My contribution to [5] is related to IR spectroscopic investigation, interpretation and
discussion, preparation of the manuscript
Mój udział procentowy szacuję na 20 %.
6. E.N. Dubis, A.T. Dubis, J. W. Morzycki
Comparative Analysis of Plant Cuticular Waxes Using HATR FT-IR Reflection Technique.
J. Mol. Struct. 511-512 (1999) 173-179.
IF = 0.868
TC = 11
My contribution to [6] is related to formulate a research problem, the choice of research
methodology, spectroscopic measurements, interpretation, discussion of results,
preparation of the manuscript.
I declare my contribution to be equal to 45 %
7. J. Popławski, B. Łozowicka, A.T. Dubis, B. Lachowska, Z. Winiecki, J. Nawrot
Feeding-deterrent Activity of -Asarone Isomers Against Some Stored Coleoptera,
Pest Manag Sci. 56 (2000) 560-564.
IF = 0,642
TC = 12
11
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [7] is related to formulate a research problem, the choice of research
methodology, synthesis of the alpha-asarone derivatives, spectroscopic measurements,
interpretation, discussion of results, preparation of the manuscript.
I declare my contribution to be equal to 15 %
8. J. Popławski, B. Łozowicka, A.T. Dubis, B. Lachowska, S. Witkowski, J. Cybulski, Z.
Chilmonczyk, R. Kaliszan
Synthesis and Hypolipidemic and Antiplatelet Activity of Alpha-Asarone Isomers.
Journal of Medicinal Chemistry 43 (2000) 3671-3676.
IF = 4,139
TC = 29
My contribution to [8] is related to the choice of research methodology, synthesis of the
alpha-asarone derivatives, spectroscopic measurements, interpretation, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 15 %
9. L. Siergiejczyk, J. Popławski, A.T. Dubis, B. Lachowska. B. Łozowicka
1H and 13C NMR Studies of -Asarone Isomers,
Magnetic Resonance in Chemistry, 38 (2000) 1037- 1038.
IF = 1,006
TC = 11
My contribution to [9] is related to the choice of research methodology, synthesis of the
alpha-asarone derivatives, spectroscopic measurements, discussion of results,
preparation of the manuscript.
I declare my contribution to be equal to 15 %
10. A.T. Dubis, S. J. Grabowski
Infrared Spectroscopic and Theoretical Ab Initio Studies on Conformational Isomers of
Methyl Pyrrole-2-Carboxylate.
J. Mol. Struct. 562 (2001) 107-117.
IF = 0,970
TC = 17
My contribution to [10] is related to the choice of research methodology, synthesis of the
sample, spectroscopic measurements, discussion of results, preparation of the
manuscript.
I declare my contribution to be equal to 50 %
12
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
11. T.M. Krygowski, E. Pindelska, R. Anulewicz-Ostrowska, S.J. Grabowski, A. Dubis
Angular group-induced alternation (AGIBA). Part5 – Conformational dependence and
additivity of the effect: structural studies of 3,5-dimethoxybenzaldehyde and related
systems.
J. Phys. Org. Chem. 14 (2001) 349-354.
IF = 1,330
TC = 8
My contribution to [11] is related to the choice of research methodology, synthesis of the
sample, spectroscopic measurements, discussion of results, preparation of the
manuscript.
I declare my contribution to be equal to 10 %
12. E.N. Dubis, A.T. Dubis, J. Popławski,
Determination of the Aromatic Compounds in Plant Cuticular Waxes using FT-IR
Spectroscopy.
J. Mol. Struct. 596/1-3 (2001) 83-88.
IF = 0,970
TC =5
My contribution to [12] is related to the choice of research methodology, synthesis of the
aromatic esters, spectroscopic measurements, discussion of results, preparation of the
manuscript.
I declare my contribution to be equal to 60 %
13. A.T. Dubis, S. J. Grabowski
Vibrational Spectrum of Methyl Pyrrole-2-Carboxylate.
Spectrochim. Acta A, 58 (2002) 213-215.
IF = 1,046
TC =2
My contribution to [13] is related to the choice of research methodology, synthesis of the
aromatic esters, spectroscopic measurements, discussion of results, preparation of the
manuscript.
I declare my contribution to be equal to 60 %
14. A.T. Dubis, S. J. Grabowski
Spectroscopic and Theoretical Studies on Monomeric and Dimeric Forms of Methyl
Pyrrole-2-Carboxylate.
New J. Chem. 26 (2002) 165-169.
IF = 2,060
TC =14
13
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [14] is related to the choice of research methodology, spectroscopic
measurements, interpretation, discussion of results, preparation of the manuscript.
I declare my contribution to be equal to 50 %
15. M.E. Płońska, A. Dubis, K. Winkler
New insights into the electrodeposition and redox properyties of [M(Bipyridyl)3](CLO)4
(M=Co and Fe) films in media of low dielectric constant.
J. Electroanal. Chem. 526 (2002) 77-84.
IF = 2,027
TC =3
My contribution to [15] is related spectroscopic measurements and discussion of results.
I declare my contribution to be equal to 10 %
16. A.T. Dubis, S.J. Grabowski, D. Romanowska, T. Misiaszek, J. Leszczynski,
Pyrrole-2-carboxylic acid and its dimers: molecular structure and vibrational spectrum.
J. Phys. Chem. A, 106 (2002) 10613-10621.
IF = 2,765
TC = 53
My contribution to [16] is related to the choice of research methodology, synthesis of the
samples, spectroscopic measurements, theoretical calculations, discussion of results,
preparation of the manuscript.
I declare my contribution to be equal to 35 %
17. A.T. Dubis, S.J. Grabowski
Infrared, Density-Functional Theory, and Atom in Molecules Method Studies on
Conformers of Some 2-Substituted 1H-Pyrroles.
J. Phys. Chem. A, 107 (2003) 8723-8729.
IF = 2,792
TC =14
My contribution to [17] is related to the choice of research methodology, spectroscopic
measurements, theoretical calculations, discussion of results, preparation of the
manuscript.
I declare my contribution to be equal to 65 %
14
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
PUBLICATIONS AFTER BEING GRANTED THE PHD DEGREE
18. S.J. Grabowski, A. Pfitzner, M. Zabel, A.T. Dubis, M. Palusiak
Intramolecular H...H Interactions for the Crystal Structures of [4-((E)-But-1-enyl)-2,6dimethoxyphenyl]pyridine-3-carboxylate and [4-((E)-Pent-1-enyl)-2,6dimethoxyphenyl]pyridine-3-carboxylate; DFT Calculations on Modeled Styrene
Derivatives.
J. Phys. Chem. B. 108 (2004) 1831-1837.
IF = 3,834
TC =32
My contribution to [18] is related to the synthesis of the samples, synthesis of the
samples, spectroscopic measurements, discussion of results.
I declare my contribution to be equal to 20 %
19. [H1] S.J. Grabowski, A.T. Dubis, D. Martynowski, M. Główka, M. Palusiak,
J. Leszczynski
Crystal and Molecular Structure of Pyrrole-2-carboxylic Acid; -Electron Delocalization of
Its Dimers - DFT and MP2 Calculations.
J. Phys. Chem. A, 108 (2004) 5815-5822.
IF = 2,639
TC =21
My contribution to [19 (H1)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 35 %
20. [H2] S.J. Grabowski, A.T. Dubis, M. Palusiak, J. Leszczynski
Heteronuclear Intermolecular Resonance-Assisted Hydrogen Bonds. The Structure of
Pyrrole-2-Carboxamide (PyCa).
J. Phys. Chem. B, 110 (2006) 5875-5882.
IF = 4,115
TC =17
My contribution to [20 (H2)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 40 %
15
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
21. A.J. Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski, J. Nawrot-Modranka
Intramolecular Hydrogen Bond in Crystals of Thiophosphorylbenzopyrane Derivatives – XRay and FT-IR Studies.
Chem. Phys. 320 (2006) 247-258.
IF = 1,984
TC =19
My contribution to [21] is related to the IR and NMR spectroscopic measurements, ,
discussion of results..
I declare my contribution to be equal to 25 %
22. [H3] E. Bilewicz, A.J. Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski
Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone.
J. Mol. Struct. 829 (2007) 208-211.
IF = 1,486
TC =30
My contribution to [22 (H3)] is related to the choice of research methodology, discussion
of results, preparation of the manuscript.
I declare my contribution to be equal to 35 %
23. [H4] S.J. Grabowski, M. Palusiak, A.T. Dubis, A. Pfitzner, M. Zabel
Inter- and intramolecular hydrogen bonds – Structures of 1-methylpyrrole-2-carboxamide
and 1-hydroxypyrrole-2-carboxamide.
J. Mol. Struct., 844-845 (2007) 173-180.
IF =1,486
TC =5
My contribution to [23 (H4)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 40 %
24. [H5] A.T. Dubis, A. Łapiński
Spectroscopic and theoretical study on peramine and some pyrrolopyrazzinone
compounds.
Vib. Spec. 49 (2009) 265-273.
IF = 1,936
TC =2
My contribution to [24 (H5)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
16
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
I declare my contribution to be equal to 90 %
25. [H6] A. Łapiński, A.T. Dubis
A DFT/TD-DFT study for the ground and excited states of peramine and some
pyrrolopyrazinone compounds.
J. Phys. Org. Chem. 22 (2009) 1058-1064.
IF = 1,602
TC =1
My contribution to [25 (H6)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 85 %
26. [H7] A.T. Dubis, M. Domagała, S.J. Grabowski
Spectroscopic and Theoretical Studies on Some New pyrrol-2-yl-chloromethyl ketones.
New J. Chem. 34 (2010) 556-566.
IF = 2,631
TC =3
My contribution to [26 (H7)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 60 %
27. J. Luszczyn, M.E. Płonska-Brzezinska, A. Palkar, A.T. Dubis, A. Simionescu,
D.T. Simionescu, B. Kalska-Szostko, K. Winkler, L. Echegoyen.
Small Noncytotoxic Carbon Nano-Onions: First Covalent Functionalization with
Biomolecules.
Chem. Eur. J. 16 (2010) 4870-4880.
IF = 5,476
TC =12
My contribution to [27] is related to the spectroscopic measurements, discussion of
results and preparation of the manuscript.
I declare my contribution to be equal to 5 %
28. M.E. Plonska-Brzezinska, A.T. Dubis, A. Lapinski, A.Villalta-Cerdas, L. Echegoyen
Electrochemical Properties of Oxidized Carbon Nano-Onions: DRIFTS FT-IR and Raman
Spectroscopic Analyses.
ChemPhysChem, 12 (2011) 2659-2668.
IF = 3,412
TC =2
17
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [28] is related to the FTIR-DRIFTS spectroscopic measurements,
discussion of results.
I declare my contribution to be equal to 25 %
29. M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A.Villalta-Cerdas, K.
Winkler, L. Echegoyen
The synthesis and characterization of carbon nano-onions produced by solution
ozonolysis.
Carbon, 49 (2011) 5079-5089.
IF = 5,378
TC =6
My contribution to [29] is related to the FTIR-DRIFTS spectroscopic measurements,
discussion of results and preparation of the manuscript.
I declare my contribution to be equal to 10 %
30. B. Kalska-Szostko, M. Rogowska, A.T. Dubis, K. Szymański
Enzymes Immobilization on Fe3O4-goldnanoparticles.
Appl. Surf. Sci. 258 (2012) 2783-2787.
IF = 2,103
TC =12
My contribution to [30] is related to the FTIR spectroscopic measurements and discussion
of results.
I declare my contribution to be equal to 10 %
31. M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L.
Echegoyen
Preparation and Characterization of Composites that contain Small Carbon Nano-Onions
and Conducting Polyaniline.
Chem. Eur. J. 18 (2012) 2600-2608.
IF = 5,47
TC =11
My contribution to [31] is related to the FTIR spectroscopic measurements and discussion
of results.
I declare my contribution to be equal to 5 %
32. [H8] A.T. Dubis, S. Wojtulewski, K. Filipkowski
Spectroscopic and Theoretical Studies on the Aromaticity of Pyrrol-2-yl-carbonyl
Conformers.
J. Mol. Struct. 1041 (2013) 92-99.
18
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
IF = 1,404
TC =1
My contribution to [32 (H8)] is related to the choice of research methodology, synthesis
of the samples, spectroscopic measurements, theoretical calculations, discussion of
results, preparation of the manuscript.
I declare my contribution to be equal to 80 %
33. B. Łozowicka , P. Kaczyński , T. Magdziarz , A.T. Dubis
Synthesis, antifeedant activity against Coleoptera and 3D QSAR study of alpha-asarone
derivatives,
SAR QSAR Environ Res. 25(3) (2014) 173-88.
IF=1,924
TC=1
My contribution to [33] is related to the synthesis of the samples and spectroscopic
measurements.
I declare my contribution to be equal to 20 %
34. B. Kalska-Szostko, M. Rogowska, A.T. Dubis, A. Basa
Enzyme immobilization on Fe3O4-Silver Nanoparticles.
J. Surf. Interfac. Mater. 2 (2014) 69-73.
IF = 1,404
TC =0
My contribution to [34] is related to the spectroscopic measurements and discussion of
results.
I declare my contribution to be equal to 10 %
PUBLICATIONS NOT INCLUDED IN THE JCR JOURNAL LIST
35. J. Popławski, S. Lux, S. Witkowski, E.N. Dubis, A.T. Dubis, J.T. Wróbel, J. Dmoch, Preliminary
Isolation Study of Colorado Beetle Leptinotarsa Decemlineata Say Body Components and
their Influence on Male Behaviour,
Bulletin of the Polish Academy of Science 41 (1994) 243-246.
My contribution to [35] is related to collection of the insects, extract preparation, the
separation of the cuticular waxes using chromatographic methods, participation in the
discussion, preparation of the manuscript.
I declare my contribution to be equal to 15 %
19
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
36. A. Łapiński, A.T. Dubis
(2008) Zastosowanie zaawansowanych metod spektralnych w badaniach antyfidantu
peraminy, jako alternatywnego środka ochrony roślin,
Progress in Plant Protection 48(2) (2008) 730-733.
My contribution to [36] is related to the FTIR-DRIFTS spectroscopic measurements,
discussion of results.
I declare my contribution to be equal to 50 %
37. A.T. Dubis, A. Łapiński
Własności fizykochemiczne peraminy i jej pochodnych jako alternatywnego środka
ochrony roślin.
Progress in Plant Protection 48(2) (2008) 715-718.
My contribution to [37] is related to the spectroscopic measurements and discussion of
results.
I declare my contribution to be equal to 70 %
38. M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L.
Echegoyen
Vibrational spectroscopic study of carbon nano-onions coated with polyaniline.
Physica Status Solidi C9, 5 (2012) 1210-1212.
TC=1
My contribution to [37] is related to the spectroscopic measurements and discussion of
results.
I declare my contribution to be equal to 5 %
39. [H9] A.T. Dubis – review paper
Conformational Preferences of 2-Acylpyrroles in Light of FT-IR and DFT Studies.
J. Phys. Chem. Biophys. 4 (2014) 155, doi:10.4172/2161-0398.1000155, open access
I declare my contribution to be equal to 100%
20
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
CHAPTERS IN MONOGRAPHS
1. A.T. Dubis
Wyniki analizy metoda FT-IR wybranych fragmentów polepy ze stanowiska 41 w
paprotkach Kolonii, gm. Miłki, pow. Gizycko,
rozdział w publikacji książkowej „Osada z okresu wpływów rzymskich i okresu Wędrówek
Ludów w Paprotkach Kolonii Stanowisko 41 w Karinie Wielkich Jezior mazurskich, tom 2
Analizy paleoekologiczne”, Podlasko-Mazurska Pracownia Archeologiczna, Białystok 2002,
str. 155-157.
I declare my contribution to be equal to 100%
2. A.T. Dubis, J. Piekutin
„Metody eksperymentalne”.
rozdział w książce „Metody badań naukowych z przykładami ich zastosowania” pod
redakcją Bazylego Poskrobki, Wydawnictwo Ekonomia i środowisko, Białystok, 2012,
str.127-145.
My contribution is related to the choice of chapter theme, discussion, preparation of the
manuscript.
I declare my contribution to be equal to 70%
INTERNATIONAL AND NATIONAL CONFERENCES BEFORE BEING
GRANTED THE PHD DEGREE
1. E. Dubis, E. Maliński, A.T. Dubis, J. Szafranek, J. Nawrot, J. Popławski (1988) Cuticular
Hydrocarbons of Larvae of the Colorado Potato Beetle Leptinotarsa decemlineata Say.
Proceedings of the International Conference Endocrinological Frontiers in Physiological
Insect Ecology 1988, pp. 511-514, Szklarska Poręba, Poland 7-12 IX (poster)
2. E. Dubis., B. Lachowska, A.T. Dubis, J. Popławski, E. Hebanowska, E. Maliński, J.
Szafranek, J. Nawrot (1988)
A Comparison of the Composition of Surfice Lipids of the Colorado Beetle Leptinotarsa
decemlineata Say to that of Potato Leaves Lipid Solanum tuberosum. Proceedings of
the Conference, pp. 67-71, Symposium of the Institute of Plant Protection in Poznań,
Poland, 10-12 II, (poster)
3. A.T. Dubis, B. Lachowska, E. Dubis, S. Witkowski, J. Popławski (1988)
Charakterystyka składu lipidów wewnętrznych chrząszczy stonki ziemniaczanej
Leptinotarsa decemlineata (Say).
Materiały Zjazdowe, Zeszyt A, 180,
Zjazd Naukowy Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inżynierów i
Techników Przemysłu Chemicznego, Łódź, 14-17 IX, (poster)
21
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
4. S. Witkowski, E. Dubis, B. Lachowska, A.T. Dubis, J. Popławski (1988)
Wstępna analiza wydzieliny obronnej (reflex bleeding) stonki ziemniaczanej
Leptinotarsa decemlineata (Say). Zjazd Naukowy Polskiego Towarzystwa Chemicznego
i Stowarzyszenia Inżynierów i Techników Przemysłu Chemicznego, Łódź, 14-17 IX 1988,
Materiały Zjazdowe, Zeszyt C, 69, 1988. (poster)
5. A.T. Dubis, B. Lachowska, L. Siergiejczyk, J. Popławski (1988)
Synteza biologicznie czynnych izomerów i analogów asaronu 1,2,4-trimetoksy-5propenylobenzenu. Zjazd Naukowy Polskiego Towarzystwa Chemicznego i
Stowarzyszenia Inżynierów i Techników Przemysłu Chemicznego, Łódź, 14-17 IX,
(poster)
6. A.T. Dubis, J. Morzycki, J. Popławski (1992)
Redukcja trimetoksybenzenów metalami alkalicznymi w rozpuszczalnikach
aerotycznych. Zjazd Naukowy Polskiego Towarzystwa Chemicznego i Stowarzyszenia
Inżynierów i Techników Przemysłu Chemicznego, Białystok, 9-12 IX, (poster)
7. E.N. Dubis, A.T. Dubis, Z. Winiecki, J. Nawrot, J. Popławski (1993)
Właściwości antyfidantne peraminy i jej pochodnych w stosunku do wybranych
owadów - szkodników magazynowych. Konferencja Naukowa “Jakość Badań w
Toksykologii”, Supraśl k. Białegostoku, 3-4.VI, (poster)
8. A.T. Dubis, B. Lachowska, B. Łozowicka, L. Siergiejczyk, J. Popławski (1994) Synteza
izomerów asaronu, związków obniżających stężenie cholesterolu i triglicerydów we
krwi. Jubileuszowe Sympozjum Chemii Organicznej PAN, Warszawa, 17-19.XI, (poster)
9. E. Dubis, A. Dubis, Z. Winiecki, J. Nawrot, J. Popławski (1994)
Effects of the Endophyte-associated Alkaloids Peramine and its analogues an Selected
Storage Pests. I International Conference on insects Chemical, Physiological an
Environmental Aspects, Lądek Zdrój, 26-29.IX, (poster)
10. J. Popławski, B. Łozowcka, A.T. Dubis, B. Lachowska (1995)
Synteza izomerów -asaronu o właściwościach hipolipemicznych. II Krakowska
Konferencjia Chemii Leków „Modelowanie cząsteczkowe w Chemii leków”, Kraków,
czerwiec, (poster)
11. A.T. Dubis, E.N. Dubis (1998)
Comparative analysis of cuticular waxes of potato leaves using FT-IT reflection
techniques and HPLC, II International Conference Vibrational Spectroscopy in Material
Science, Kraków, Poland, 22-25 X, (poster)
12. E.N. Dubis, A.T. Dubis, J. Popławski (2000)
Determination of the Aromatic Compounds in Plant Cuticular Waxes Using FT-IR
Spectroscopy, III International Conference Vibrational Spectroscopy in Material
Science, Kraków, Poland 23-26 IX, (poster)
22
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
13. A.T. Dubis, S.J. Grabowski, D.B. Romanowska, T. Misiaszek, J. Leszczyński (2002)
Badania struktury kwasu pirolo-2-karboksylowego przy zastosowaniu spektroskopii w
podczerwieni, obliczeń ab initio i teorii Badera, Szkoła Fizykochemii Organicznej "Nowe
metody w spektroskopii molekularnej", Karpacz, 10-15.VI, (poster)
14. A.T. Dubis, S.J. Grabowski (2003)
Analiza oddziaływań międzycząsteczkowych w dimerach -podstawionych piroli przy
zastosowaniu spektroskopii w podczerwieni, obliczeń ab initio i teorii Badera, Szkoła
Fizykochemii Organicznej „Metody fizykochemiczne badania oddziaływań
międzycząsteczkowych w układach biologicznych”, Przesieka, 9-14.VI, (poster)
15. A.T. Dubis, S.J. Grabowski (2003)
Experimental and theoretical study of cyclic dimers of 2-substituted pyrroles, VIIth
International Conference on Molecular Spectroscopy, Lądek Zdrój, 11-14.09, (poster)
INTERNATIONAL AND NATIONAL CONFERENCES AFTER BEING
GRANTED THE PHD DEGREE
16. A.T. Dubis, S.J. Grabowski (2004)
Experimental and theoretical study on conformers of some 2-substituted 1Hpyrroles, XXVII European Congress on Molecular Spectroscopy, 5-10 September,
Kraków. (oral presentation)
17. M. Palusiak, A.T. Dubis, S.J. Grabowski (2005)
Intermolecular resonance Assisted Hydrogen Bonds in Crystals of 1H- and
1-Methylpyrrole-2carboxylic Acid Amide, Konwersatorium Krystalograficzne, Polish
Crystallographic Meeting, Wrocław, 30.VI - 1 VII, (poster)
18. A.T. Dubis, S.J. Grabowski (2005)
Spectroscopic and Theoretical study on hydrogen Bonded 2-substituted
1H-pyrroles, Structural Organic Chemistry, Central European School on Physical
Organic Chemistry, Castle of Czocha, 19-24.06, (poster)
19. M. Palusiak, A.T. Dubis, S.J. Grabowski (2005) “Interomolecular resonance assisted
hydrogen bonds in crystals of pyrrole-2-carboxylic acid and its derivatives”. XVIth
International Conference Horizons in Hydrogen Bond research and Graduated School
"Hydrogen Bonding and Hydrogen Transfer", Roskilde, Denmark, 29.VIII- 4.IX.2005.
(poster)
20. A. Łapiński, A.T. Dubis (2007)
FT-IR and Raman spectroscopic study, aided by quantum chemical DFT calculations
of the peramine and its derivatives, 4th International Conference on Advanced
Vibrational Spectroscopy ICAVS-4, Corfu, Greece, June 10-15, (poster)
23
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
21. A.T. Dubis, A. Łapiński (2007)
Synthesies and spectroscopic study on peramine and its derivatives, 4th International
Conference on Advanced Vibrational Spectroscopy ICAVS-4, Corfu, Greece, June 1015, (poster)
22. A.T. Dubis, A. Łapiński (2008)
Spectroscopic studies aided by quantum chemical DFT calculations of the peramine
and its derivatives”. Central European School on Physical Organic Chemistry,
Structure and Properties of Organic Molecules, Karpacz, Poland, 08-12 June, (poster)
23. A. Łapiński, A.T. Dubis (2008)
Zastosowanie zaawansowanych metod spektralnych w badaniach antyfidantu peraminy jako alternatywnego środka ochrony roślin, XLVIII Sesja Naukowa Instytutu
Ochrony Roślin, Poznań, 31 styczeń – 1 lutego, (poster)
24. A.T. Dubis, A. Łapiński (2008) „Własności fizykochemiczne peraminy i jej pochodnych
jako alternatywnego środka ochrony roślin”. XLVIII Sesja Naukowa Instytutu Ochrony
Roślin, Poznań, 31 styczeń – 1 lutego 2008, (poster)
25. A. Łapinski, A.T. Dubis, K. Pogorzelec-Glaser (2008)
Struktura Krystaliczna i molekularna oraz badaniowa spektralne kryształu
molekularnego utworzonego przez 1-(5-chloro-2-oksopentylo)pirolo-2-karboksylan
5-chloro-2-oksopentylu, XVI Ogólnopolska Konferencja Kryształy Molekularne 2008,
Poznań-Błażejkowo, 8-12.IX, (komunikat ustny)
26. J. Łuszczyn, M.E. Plonska-Brzezinska, A.T. Dubis, K. Winkler, A. Palkar, A. Simionescu,
D.T. Simionescu, L. Echegoyen (2009)
Studies of biomolecular interactions in biosensor based on small Carbon NanoOnions, Central European School on Physical Organic Chemistry - Weak Molecular
Interactions, Przesieka, Poland, 2-6 June, (poster)
27. M.E. Płonska-Brzezinska, J. Luszczyn, A.T Dubis, A. Palkar, A. Simionescu, D.T.
Simionescu, L. Echegoyen (2009)
Studies of biomolecular interactions in biosensor based on small Carbon NanoOnions, 6th International Conference on Nanoscience and Nanotechnology,
Thessaloniki, Greece, 13-15 July, (poster)
28. M.E. Płonska-Brzezinska, J. Luszczyn, A. Palkar, A.T Dubis, A. Simionescu, D.T.
Simionescu, B. Kalska-Szostko, L. Echegoyen (2009)
Non-cytotoxic small Carbon Nano-Onions - the first covalent functionalization with
biomolecules, European Materials Research Society Meeting, Warsaw, Poland, 14-18
September, (poster)
29. A. Łapiński, M.E. Płońska-Brzezińska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, A.Z.
Wilczewska, L. Echegoyen (2011)
Badania Ramana modyfikowanych chemicznie nanocebulek węglowych, IV
Poznańskie Seminarium Ramanowskie, Wydział Fizyki UAM, Poznań, 29 kwietnia
(oral presenation)
24
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
30. A.T. Dubis, M.E. Płońska-Brzezińska, A. Łapiński, L. Echegoyen (2011) Zastosowanie
spektroskopii oscylacyjnej w badaniach nanocebulek węglowych, XV Ogólnopolskie
Sympozjum Zastosowanie Metod Spektroskopowych w badaniu materiałów i
związków chemicznych, UAM, Poznań, 25-27 may, (poster)
31. A. Łapiński, M.E. Płońska-Brzezińska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, A.Z.
Wilczewska, L. Echegoyen,
Badania Ramana modyfikowanych chemicznie nanocebulek węglowych, XV
Ogólnopolskie Sympozjum Zastosowanie Metod Spektroskopowych w badaniu
materiałów i związków chemicznych, UAM, Poznań, 25-27 may (oral presentation)
32. A.T. Dubis, L. Siergiejczyk (2011)
Badanie aromatyczności alfa-podstawionych piroli przy pomocy spektroskopii NMR,
III Spotkanie użytkowników BRUKER, Poznań, 27-28.IX, (poster)
33. A.T. Dubis (2012)
Zastosowanie metod spektroskopowych i teoretycznych w badaniu strukturalnych i
magnetycznych aspektów aromatyczności 2-podstawionych piroli, 55 Zjazd PTChem i
SiTPChem, Bialystok,16-20.IX, (oral presentation)
34. A. Jackowska, A.T. Dubis (2013)
Spektroskopowe metody badania fałszerstwa bursztynu”. II edycja Ogólnopolskiego
Studenckiego Mikrosympozjum Chemików pt. „Chemia – przyszłość zaczyna się dziś”
pp.63, Białystok, 17-19 may, (poster)
35. P. Stasiewicz, A.T. Dubis (2013)
Badanie międzycząsteczkowych wiązań wodorowych w 2-podstawionych piroli przy
zastosowaniu spektroskopii w podczerwieni oraz obliczeń teoretycznych, II edycji
Ogólnopolskiego Studenckiego Mikrosympozjum Chemików pt. „Chemia – przyszłość
zaczyna się dziś” pp. 92, Białystok, 17-19 may, (poster)
36. E. Jankowska, A.T. Dubis (2013)
Zastosowanie obliczeń kwantowo-chemicznych w badaniach wiązań wodorowych”, II
edycji Ogólnopolskiego Studenckiego Mikrosympozjum Chemików pt. „Chemia –
przyszłość zaczyna się dziś”, pp. 64, Białystok, 17-19 may, (poster)
37. A.T. Dubis, P. Stasiewicz, A. Łapiński, K. Pogorzelec-Glaser (2013)
Czy w 2-podstawionych pirolach mogą tworzyć się wewnątrzcząsteczkowe wiązania
wodorowe? III Konferencja „Związki Biologicznie czynne – aktywność, struktura,
synteza” Białystok, 4-6.X, (oral presentation)
17. LECTURES DELIVERED IN BIALYSTOK UNIVERSITY
 Reflection Techniques in FTIR Spectroscopy, 2006-2008
 Molecular Spectroscopy, lecture 30 hours; since 2007
25
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
18. INVITED LECTURES
 Analiza konformacyjna alfa-postawionych piroli przy zastosowaniu metod
spektroskopowych, Katedra Krystalografii i Krystalochemii Uniwersytetu Łódzkiego,
16 maj 2006
 Analiza konformacyjna alfa-postawionych piroli przy zastosowaniu metod
spektroskopowych, Pracowni Krystalochemii Wydziału Chemii UW, styczeń 2007
 Czy 2-acylopirole mogą tworzyć wewnątrzcząsteczkowe wiązania wodorowe? wykład
na zaproszenie Katedry Chemii Teoretycznej i Strukturalnej Uniwersytetu Łódzkiego,
24 październik 2014
19. TRAINING, SCHOOL

Participation in the Central European School on Physical Organic Chemistry, Faculty
of Chemistry , University of Wrocław, Section of Physical Organic Cehmistry of the
Polish Chemical Society

Participation in the Raman Seminar on the occasion of the 80-th anniversary of the
discovery of the Raman effect. Faculty of Physics, University im. Adama Mickiewicza
in Poznan, 18.VI.2008 r.

Participation in the Seminar Nowoczesne techniki spektroskopii ramanowskiej:
mapowanie i wzmocnienie powierzchniowe (SERS) Faculty of Chemistry, Jagiellonian
Univesrity, Kraków, 29.VI.2009 r.

Participation in the Spectroscopic Seminar: Zastosowanie metod spektroskopowych
w badaniu materiałów i związków chemicznych, Poznań, 2011
20. EXPERTISE (in Polish)

Analiza chemiczna polepy w ramach zadania „Dolina Węgorapy 2008-2010” (Analiza
próbek z Kalu, Wysieczy i Stulichów metodą spektroskopii w podczerwieni FTIR)ekspertyza wykonana na zlecenie Muzeum Ziemi w Węgorzewie obejmująca analizę
spektroskopową IR i Ramana próbek zabytkowych.

Badania fizykochemiczne ceramiki zabytkowej z doliny Węgorapy w ramach zadania
„Dolina Węgorapy 2008-2010”. Analiza próbek z Kalu, Wysieczy, Stulichów metoda
spektroskopii w podczerwieni FTIR/ATR oraz spektroskopii Ramana, ekspertyza
wykonana na zlecenie Muzeum Ziemi w Węgorzewie dotycząca analizy próbek
zabytkowej ceramiki ze stanowisk w Kalu, Stulichach i Wysieczy.
Analiza zawartości mgieł olejowych na stawiskach pracy metodą spektroskopii w
podczerwieni, analizy wykonywane na potrzeby lokalnego otoczenia gospodarczego
(ERGONOMIA, ECOCHEM) 2000-2010.

26
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego

Analiza zaniku grup NCO w laminatach foliowych, analizy wykonywane na potrzeby
lokalnego otoczenia gospodarczego (PAKPOL, MARPOL ERGONOMIA, EKOCHEM)
2000-2010.
21. PATENTS
 J. Popławski, A. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk, W.
Szelejewski, G. Grynkiewicz, 31.03.2005, PL 188701 B1 Sposób otrzymywania
/E/-1,2,3-trimetoksy-5-/1’-propenylo/benzenu
 J. Popławski, A. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk, W.
Szelejewski, S.Witkowski, 31.03.2005, PL 188702 B1 Sposób otrzymywania
/E/-1,2,5-trimetoksy-3-/1’-propenylo/benzenu
 J. Popławski, A. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk, W.
Szelejewski, S.Witkowski, 31.03.2005, PL 188703 B1 Sposób otrzymywania
/E/-1,2,4-trimetoksy-3-/1’-propenylo/benzenu
 J. Popławski, A. Dubis, B. Lachowska, B. Łozowicka, K. Kita, S. Kobes, Z. Chilmończyk, J.
Cybulski, S. Adamski, 31.10.2006, PL 192464 B1 Nowe pochodne
-asaronu i zawierające je środki farmaceutyczne o działaniu hipolipemicznym
27
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
SELECTED RESEARCH PAPERS FORMING
A HABILITATION THESIS
[H1]. S.J. Grabowski, A.T. Dubis, D. Martynowski, M. Główka, M. Palusiak, J. Leszczynski
Crystal and Molecular Structure of Pyrrole-2-carboxylic Acid; -Electron Delocalization of
Its Dimers - DFT and MP2 Calculations.
J. Phys. Chem. A, 108 (2004) 5815-5822.
IF = 2.639
TC =21
My contribution to [H1] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 35%
[H2]. S.J. Grabowski, A.T. Dubis, M. Palusiak, J. Leszczynski
Heteronuclear Intermolecular Resonance-Assisted Hydrogen Bonds. The Structure of
Pyrrole-2-Carboxamide (PyCa).
J. Phys. Chem. B, 110 (2006) 5875-5882.
IF = 4.115
TC =17
My contribution to [H2] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 40 %
[H3] E. Bilewicz, A.J. Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski
Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone.
J. Mol. Struct. 829 (2007) 208-211.
IF = 1.486
TC =30
My contribution to [H3] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 35 %
[H4] S.J. Grabowski, M. Palusiak, A.T. Dubis, A. Pfitzner, M. Zabel
Inter- and intramolecular hydrogen bonds – Structures of 1-methylpyrrole-2-carboxamide
and 1-hydroxypyrrole-2-carboxamide.
J. Mol. Struct., 844-845 (2007) 173-180.
IF =1.486
TC =5
28
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [H4] is related to formulate a research problem, the synthesis of a
sample, spectroscopic analysis, theoretical calculation, interpretation and discussion of
results, preparation of the manuscript
I declare my contribution to be equal to 40 %
[H5] A.T. Dubis, A. Łapiński
Spectroscopic and theoretical study on peramine and some pyrrolopyrazzinone
compounds.
Vib. Spec. 49 (2009) 265-273.
IF = 1.936
TC =2
My contribution to [H5] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 90 %
[H6] A. Łapiński, A.T. Dubis
A DFT/TD-DFT study for the ground and excited states of peramine and some
pyrrolopyrazinone compounds.
J. Phys. Org. Chem. 22 (2009) 1058-1064.
IF = 1.602
TC =1
My contribution to [H6] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 85 %
[H7] A.T. Dubis, M. Domagała, S.J. Grabowski
Spectroscopic and Theoretical Studies on Some New pyrrol-2-yl-chloromethyl ketones.
New J. Chem. 34 (2010) 556-566.
IF = 2.631
TC =3
My contribution to [H7] is related to formulate a research problem, the synthesis of a
sample, theoretical calculation, interpretation and discussion of results, preparation of the
manuscript
I declare my contribution to be equal to 60 %
[H8] A.T. Dubis, S. Wojtulewski, K. Filipkowski
Spectroscopic and Theoretical Studies on the Aromaticity of Pyrrol-2-yl-carbonyl
Conformers.
J. Mol. Struct. 1041 (2013) 92-99.
IF = 1.404
TC =1
29
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My contribution to [H8] is related to formulate a research problem, theoretical calculation,
NICS, HOMA indices calculation, spectroscopic measurements, interpretation and
discussion of results, preparation of the manuscript, corresponding author
I declare my contribution to be equal to 80 %
[H9] A.T. Dubis,
Conformational Preferences of 2-Acylpyrroles in Light of FT-IR and DFT Studies.
(Review article)
J. Phys. Chem. Biophys. 4, (2014) 155, doi:10.4172/2161-0398.1000155, open access
I declare my contribution to be equal to 100%.
The Aggregate Impact factor for H1-H9 amounts to IF=17.29
30
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
PRINCIPAL ACHIEVEMENTS IN RESEARCH PAPERS
H1-H9 PRESENTED FOR HABILITATION
Scientific achievements as defined in the Act of 1 September 2011 (Journal of Laws No 1165)
and of 22 September 2011 (Journal of Laws No 201, Item 1200) are presented under the
title:
”INFLUENCE OF THE CONFORMATION OF 2-ACYLPYRROLES ON
SPECTROSCOPIC PROPERTIES AND HYDROGEN BOND FORMATION”
1.
Introduction, aims and objectives
The shape of molecules and corresponding charge distribution determine molecular
properties and interactions between molecules. They also enable a better understanding of
the phenomenon of self-organisation and complementarity of shapes of a molecule and its
pharmacological activity. Molecules with the same general formula and the same connectivity
differing only in the spatial orientation of their constituent atoms are called stereoisomers.
Among them are conformational isomers called conformers which become identical after
simple rotation about a single bond. Internal factors, such as the spherical effect of local dipole
moments, intramolecular hydrogen bonds, and external factors, such as self-association,
association with solvent and lattice structure in the solid phase, determine conformations of
the molecule.
The influence of 2-substitution on different aspects of the conformational stability of these
molecular systems and the usefulness of infrared spectroscopy supported by theoretical
calculations in H-bonds and conformational studies were discussed. The purpose of my studies
was to investigate the effect of conformation and substituents on the spectroscopic properties
of preferred conformers of 2-acylpyrroles (Fig. 1) and hydrogen bonding formation within
these systems. The subject of my research are 2-acylpyrroles. This class of compounds is
characterised by partial conformational freedom of the carbonyl group. It is noted that the 2acylpyrrole motif is widespread in nature.1
31
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
a) syn
b) anti
Figure 1. Syn (a) and anti (b) 2-acylpyrroles; R= H, OH, OCH3, NH2, NHCH3, N(CH3)2, CH2Cl, CHCl2, CCl3;
R1=H, or CH3.
There are many examples of 2-acylpyrrole-based molecules with various biological
activities. Representative examples are pyoluteorin and pyrrolomycin D,2,3 secondary
metabolites produced by marine bacteria. There are also certain marine natural products such
as nakamuric acid,4 marinopyrroles5 or storniamide6 which show potent activity as inhibitors
of multidrug resistance (MDR)7 (Fig. 2). Among the bioactive compounds of marine origin
there are structures based on the 2-acylpyrrole motif such as distamycin and netropsine.8 Due
to promising antibacterial properties, these novel marinopyrroles have recently attracted
considerable attention. It is helpful to know the structure of small structural elements which
build large molecules of natural origin.9,10,11,12
32
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Figure 2. 2-Acylpyrroles from natural products.
The thesis includes H1-H9 scientific papers which present my recent investigations of 2acylpyrrole conformations, with a particular emphasis on hydrogen bonds being formed
within these systems. The influence of 2-substitution on different aspects of stability of these
molecular systems and the usefulness of infrared spectroscopy supported by theoretical
calculations in H-bonds and conformational studies were presented.
[H9] presents an overview of the last decades of investigation into the molecular structure
and conformational properties of 2-acylpyrroles. My results are presented on the background
of other research. I reviewed relevant literature and included references up to 2014. The
central part of the review is discussion of the usefulness of IR spectroscopy as a source of
information on molecular spatial structure, and usefulness of theoretical methods to study
hydrogen bond interactions. Results based on the structural information collected in the
Cambridge Structural Database (CSD) are also presented.13,14
Structures of 2-acyl compounds were determined by FT-IR, Raman, 1H,
13C
NMR
spectroscopy. Crystal structures were determined by X-ray studies. Theoretical calculations
33
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
were carried out using Gaussian15 in the Warsaw Supercomputer Centre (ICM) (G53-7). For
the analysed systems the Bader “Atoms in Molecules” (AIM) theory was applied to find bond
and ring critical points and to analyze them in terms of electron densities and their Laplacians.
The AIM calculations were carried out using QTAIM.16
Vibrational spectroscopy is a convenient method to study the conformation of molecules
and hydrogen bonds in solution. It can be used in a wide range of concentrations and in
solvents of different polarity, which enables observation of conformational changes. The
experimental results were correlated with the results obtained using theoretical calculations.
Owing to the theoretical calculations of various molecular properties, such as the geometry
and spectroscopic properties of individual molecules, the interpretation of the results of the
experimental measurements was supported by theory.
These studies involved co-operation with Professor Sławomir Grabowski, Faculty of
Chemistry, University of the Basque Country, Spain and Prof. J. Leszczynski, Computational
Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State
University, USA, in the field of theoretical chemistry, and with Dr Marcin Palusiak’s group,
Department of Crystallography and Crystal Chemistry, University of Łódź, and with Dr Andrzej
Łapiński, Institute of Molecular Physics PAS, Poznań.
2. Acknowledgments
I wish to express my gratitude to Professor Sławomir Grabowski and Professor Jerzy
Leszczynski for showing me the potential of computational methods. I would like to thank
Professor Jacek Morzycki for supporting me in the course of my research.
The experimental work in the crystallographic studies would not have been possible
without the support of crystallographers. I am very grateful to Professor Dr Marek Główka, Dr
Dariusz Martynowski, Professor Arno Pfitzner, Dr Manfred Zabel, Dr Marcin Palusiak, Dr
Agnieszka Rybarczyk-Pirek and Dr Małgorzata Domagała.
Many thanks to Dr Andrzej Łapiński for our fruitful cooperation.
3. Conformation of 2-acylpyrroles
Rotation about the C1-C6 bond is possible in 2-acylpyrroles, and there are two stable
rotamers of pyrrole-2-yl carbonyl moieties depicted in Figure 1a and 1b. According to the
34
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
IUPAC terminology rotamers are a set of conformers formed by restricted rotation about a
single σ bond.17 The rotational barrier is the activation energy required to convert one rotamer
to another. In the rotation of groups about a bond, the potential energy barrier between two
adjacent minima of a molecular entity is a function of the torsion angle. 18,19 If the energy
needed to convert one conformer into the other is sufficiently small, free rotation about a
single bond may occur and conformers are indistinguishable. At any point in time the majority
of particles may be in a more stable conformation and the conformers are in equilibrium.
Conformational analysis began to develop since the 1950s when Sir Derek H.R. Barton
formed basic principles of conformational analysis, and described the chemical consequences
of the spatial structure of molecules.20,21 These studies led to the explanation of chemical
reactions by determining spatial relations between reactive centres and provided the basis for
the understanding of reaction mechanisms. Since the adoption of the concept of
conformational and rotational isomerism a number of physical methods useful in the study of
rotameric equilibria were developed. Among these methods structural methods,
spectroscopic methods22 and theoretical methods can be noted. Because the spatial
arrangement of atoms in molecules has a profound effect on the biological function of
compounds and the rate of many chemical reactions,23 conformational studies of molecules
are still of interest to researchers.24,25,26
My studies were related to the analysis of conformation of 2-acylpyrroles (Fig. 1a,b) and
analysis of the influence of conformation on spectroscopic properties and the formation of
hydrogen bonds within these molecules.
The liquid and the solid phase were taken into
account in conformational analysis. NMR spectra were recorded in the liquid state only. Using
different methods of conformational analysis I took into account the fact that the
conformation of molecules in the solid state does not necessarily have to be the same as in
the liquid state. The results of spectroscopic analysis were correlated with theoretical
calculation results.15
4. Computational chemistry in conformational analysis
Theoretical calculations have developed into an important tool in conformational research
and they can greatly support experimental work with quite good accuracy. 27 The use of
computational methods in studies of interest to chemists has been made possible by the rapid
35
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
growth in computing power over the last several decades. Among the most useful parameters
are geometrical parameters, relative conformational energies, barriers to internal rotation,28
vibrational frequencies and chemical shifts for each conformer.
Theory shows that the determination of molecular structure involves determination of the
geometry of the molecule at the minimum of the potential energy surface.
If the barrier is lower than 12-15 kcal/mol, it is accepted that the molecule is not stable at
room temperature from the kinetic point of view. Therefore, designation of the geometry of
a stable structure requires knowledge of minimum energy values and the rotational barrier
for the possible forms. For many molecules the stable form is determined on the basis of
existing knowledge.29,30 The conformation of new structures is determined from energy
minima and rotational barriers. In my study of the spectroscopic properties of acylpyrroles a
computational method was used. The most stable structure and its vibrational frequencies
were predicted.
5. Discussion on the most significant achievements
My research focuses on the interdependence between the conformation of 2-acylpyrroles
and their spectroscopic properties and hydrogen bond formation. Using theoretical
calculations, preferred conformations of 2-acylpyrroles were first found [H1, H2, H4, H7, H8].
I paid particular attention to the energy difference between rotational isomers and the energy
barrier separating the syn and anti form [H1, H7, H8, H9]. The next step of the studies was to
identify the conformational form of 2-acylpyrroles experimentally. Using vibrational
spectroscopy the syn and anti form in the liquid phase was found [H2, H7, H8]. The role of the
substituent R group in inter- and intramolecular hydrogen bond formation was analysed [H7,
H8, H9]. The stabilisation of the most stable syn form in the liquid state depending on HB
formation was also considered. The influence of 2-substitution on different aspects of
aromaticity and stability of pyrrol-2-yl carbonyl conformers was also discussed. The vibrational
frequency of the pyrrole ring as a measure of p-electron delocalisation over the pyrrole ring
was proposed [H8].
The energy of the same rotameric forms of 2-acylpyrroles was calculated [H8, H9]. The
calculations show that for all the species studied syn and anti are the most stable forms. The
carbonyl group and the N-H or N-CH3 groups are located on the same side of the C2-C6 bond
36
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
for the syn form. In the anti form the carbonyl group and N-H groups are located on the
opposite sides of the C2-C6 bond. In other words, syn and anti rotamers differ in the spatial
arrangement of the carbonyl group in respect to the N-H group. Theoretical calculations show
that the carbonyl group is in general in the same plane as the pyrrole ring [H8]. For some
conformers, such as pyrrole-2-carboxylic acid amide, the carbonyl group is twisted in respect
to the pyrrole ring plane. The twist is 1.76 for the syn form and 18.7 for the anti conformer.
The anti form of the moiety with N1-CH3 shows the O-C6-C2-N dihedral angle deviating from
0 in a range of 20.6 to 52.3, whereas for syn rotamers (R-NH2, NHCH3 and N,Ndimethylamide) the dihedral angle O-C6-C2-N twist is in a range from 9.2 to 28.5° [H8].
The theoretical calculations (B3LYP/6-311G(d,p)) reveal that the syn forms are more
stable than the anti form. The energy difference ΔEsyn/anti=Esyn-Eanti is in a range of 1.06-8.04
kcal/mol (Table 1). For R1=H ΔEsyn/anti is in a range from 1.06 to 5.15; for R1=CH3 ΔEsyn/anti is
from 1.93 to 8.08 kcal/mol. For R1=H ΔEsyn/anti is greater than ΔEsyn/anti for R1=CH3 [H8, H9]. The
potential energy curve obtained for 2-acylpyrroles was presented in [H9]. The torsional curves
computed at B3LYP levels of theory are shown in Figure 3. The angle of rotation is zero for the
syn conformation; for the angle of rotation of 180° there is the anti conformer.
Fig. 3. Energy profile of pyrrol-2-yl carbaldehyde (2) The most stable syn and anti conformers differ in the
spatial arrangement of the carbonyl group about the inverting single bond (C-C). The calculations were
performed at the B3LYP/6-311++G(d,p) level of theory. 360° scanning of the dihedral angle N-C-C=O
was performed with an increment of 5° [H9].
For all the 2-acylpyrroles studied, the rotational profile obtained from theoretical
calculations has a similar shape. The profiles show the existence of two energetically most
37
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
stable syn and anti conformers corresponding to a value of  close to 0 and 180°. The highest
energies correspond to angles of rotation of 90°and 270° and may be considered transition
states for transformation reactions of conformations from the syn to the anti form. The
barriers for those reactions vary from 7.03 to 16.21 kcal/mol depending on the R substituent
group. Barriers for antisyn reactions vary from 2.07 to 11.94 kcal/mol (Table 1). Barriers for
𝑎
𝑎
𝐸𝑠𝑦𝑛→𝑎𝑛𝑡𝑖
and 𝐸𝑎𝑛𝑡𝑖→𝑠𝑦𝑛
transformation for pyrrole moieties (R1=CH3) are in a range of 8.98-
15.26 kcal/mol and 4.48-11.79 kcal/mol, respectively. These calculations reveal that the syn
form is relatively more stable than its anti counterpart. This phenomenon is most likely related
to more effective -electron delocalisation in the syn conformation.
In the case of 2-acylpyrroles the carbonyl group is directly coupled with the aromatic ring.
The rotation of the C=O group has a role in changing the nature of the C2-C6 bond which
connects the carbonyl group with the pyrrole ring. The theoretically calculated geometrical
parameters of 2-acylpyrroles reveal elongation of the C2-C6 bond for anti compared with syn
conformers. These observations suggest relatively larger stability of the syn conformer than
its anti counterpart. It can be stated that this phenomenon results from more effective electron delocalisation.31 This was very clearly shown by HOMA32,33,34 and NICS35 aromaticity
indices [H8].
The HOMA index represents aromaticity in relation to the optimal bond length concept. This
index is expressed by the following equation:
𝛼
𝛼
𝐻𝑂𝑀𝐴 = 1 − ∑(𝑅𝑜𝑝𝑡 − 𝑅𝑖 )2 = 1 − [𝛼(𝑅𝑜𝑝𝑡 − 𝑅𝑎𝑣𝑒 )2 + ∑(𝑅𝑎𝑣𝑒 − 𝑅𝑖 )2 ]
𝑛
𝑛
𝐻𝑂𝑀𝐴 = 1 − 𝐸𝑁 − 𝐺𝐸𝑂
2

where: 𝐸𝑁 = 𝛼(𝑅𝑜𝑝𝑡 − 𝑅𝑎𝑣 ) and 𝐺𝐸𝑂 = 𝑛 ∑(𝑅𝑎𝑣 − 𝑅𝑖 )2
for heterocyclic -electron systems the expression for the HOMA term is as follows:
257.7
2
2

HOMA 1   257.7 1.388  rav  
 rav  ri  

N


where N is the number of bonds taken into consideration, rav is averaged bond length
1
𝑅𝑎𝑣 = 𝑛 ∑𝑛𝑖=1 𝑅𝑖 , and Ri is the virtual bond length calculated from the Pauling bond number33
𝑛𝑖= 𝑒𝑥𝑝
38
𝑅(1)−𝑅(𝑛)
𝑐
according to the general formula:
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
𝑅𝑛= 1,467 − 0,1702ln(𝑛)
On the basis of these observations, I assumed that the electron donating substituents
slightly destabilise the ring system, affecting the aromaticity of the pyrrole ring (Figure 4b).
The observed effect may be interpreted as follows: the substitution of the pyrrole ring in
position 2 by a group such as -NH2 leads to substantial double bond localisation in the pyrrole
ring and in consequence to a decrease in its aromaticity. In the case of chloro derivatives an
increase in aromaticity is mainly due to the EN contribution to HOMA. These findings are
consistent as the elongation of bond length requires more energy than alternation.36
a
b
Figure 4. a) Plot of changes of the HOMA index of syn and anti 2-acylpyrroles in respect to the R group; b)
plot of changes of the HOMA index and calculated ring frequencies C=C [H8].
It was suggested based on these observations that the frequency of ring quadrant
stretching ring is related with the aromaticity of five-membered rings as measured by HOMA
[H8]. For more aromatic moieties lower frequencies ring of ring stretching vibration are
observed. There is a correlation with HOMA aromaticity and the frequency of stretching
vibration C=C of the pyrrole ring of syn and anti 2-acylpyrrole conformers. This effect is
illustrated in Figure 5.
39
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Figure 5. Quadrant ring stretching vibration C=C of the pyrrole ring for syn and anti 2-acylpyrroles in relation
to the substituent group R [H8].
IR spectroscopy was applied
to
investigate
conformational
preferences
of
2-acylpyrroles and N-methyl-2-acylpyrroles. It was observed experimentally that
the 2-acylpyrroles studied form essentially doublet carbonyl bands. [H7]. The components of
the doublet were assigned as being the characteristic absorptions of the syn and anti forms.
The spatially crowded pyrrole-2-carboxylic acid amide (R=NHCH3, N(CH3)2) and chloro
derivatives of 2-acylpyrroles (R= CCl3) only show a single carbonyl band [H7]. The band
asymmetry phenomenon was explained by the formation of the associated forms. The
formation of associated forms was the cause of the asymmetry of the low frequency carbonyl
band (Fig. 6a). It is noted that 2-substituted pyrroles tend to form dimeric hydrogen bonded
species for steric reasons.
a
b
Figure 6. IR spectra of 2-acylpyrroles in diluted cyclohexane solution: a) R 1= H; R2= CCl3, CHCl2, CH2Cl; b) R1=CH3;
R2= CCl3, CHCl2, CH2Cl [H7].
40
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
My attempts focused on the investigation of hydrogen bond formation using theoretical
calculations. The experimental C=O frequencies of syn, anti and dimeric forms were compared
with the theoretically predicted carbonyl frequencies. Having considered these calculations,
it was observed that anti and syn conformers are present in diluted solution whereas the
dimeric form occurs in concentrated solution [H1, H7].
Figure 7. 2-acylpyrrole cyclic dimers; R1= H; R2= OH, CH2Cl, CHCl2, CCl3 [H7].
The formation of associated forms gives rise to an additional C=O and N-H band (Figure 8a, b).
a
B
Figure 8. IR spectra of 2-acylpyrrole in cyclohexane: a) R1= H; R2= CCl3, b) R1=H; R2= CCl3, CHCl2, CH2Cl [H7].
These bands are slightly red-shifted compared with the C=O(C=O) and N-H (N-H) band of the
free syn or anti form. This phenomenon is a result of weakening of the dimer C=O and N-H
bond in comparison with the monomer. Theoretical calculations also predict that the C=O
band of the anti form lies at a higher frequency than the C=O band of the syn form (Table 1).
41
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
syn
anti
Obl.*
Eksp.
Obl.
Eksp.
Obl.
N-H
N-H
C=O
C=O
C=C
C=C
1532b
1540
1552b
1553
1
pirol
3485
3600
2
R1=H, R=H
3460
3565
3
4
5
6
R1=H, R=OCH3
R1=H, R=NH2
R1=H, R=NH2
12
R1=H, R=NHCH3
16
18
3458d
R1=H, R=CH2Cl
R1=H, R=CHCl2
3457d
R1=H, R=CHCl2
1719d
1705
3589
1701
d
1736
3559
1644c
1603c
1683
R1=H, R=CCl3
20
metylopirol
21
R1=CH3, R=H
22
23
25
27
29
R1= CH3, R=OCH3
R1= CH3, R=OCH3
R1= CH3, R=NH2
31
3581
1690
1548
1623
1662d
1695
3594
1683d
1714
3561
1658
d
1692
3562
1683d
1710
33
1670b
R1= CH3, R=N(CH3)2
1670
1687
1711
1639
R1= CH3, R=CH2Cl
R1= CH3, R=CHCl2
R1= CH3, R=CHCl2
1543a
1542c
1.11
11.3
(13.03)
11.94
1.06
(1.10)
12.35
(12.43)
11.36
10.17
6.60
4.91
1546
1538a
1539b
1538c
1689
6.02
8.75
3.33
4.95
7.03
2.07
1694
5.15( 3.1)
1724
1706
13.9
10.8
4.19 (2.4)
13.89
11.45
1683
1532b
1531
1537
1529c
1528
1695
1537
1667
1537
1677
1542
1635
1694
1683
d
1693
1658d
1692
1683d
1690
1681d
1531
1537a
1536b
1692
1529
1526
1526
1527
1524a
1522c
1526
1522
0.875
0.923
0.927
10,33
0.922
0.865
4.52
(3.47)
15.31
(15.26)
11.79
1.93
11.19
9.25
0.914
0.906
0.913
0.904
1.93
10.37
8.44
5.54
9.67
7.21
4.32
8.98
4.65
3.85
13.51
0.910
0.902
0.908
0.882
0.908
0.877
0.902
0.870
6.61
(5.68)
12.74
6.67
1527
1526a
1524c
0.914
0.926
12.85
1542
1527a
1522c
0.917
0.921
1536
1717
1690
R1= CH3, R=CCl3
1530d
1536b
0.917
0.899
2.55
(2.51)
1533
0.916
0.886
1542
1531
0.921
0.911
1545
1528b
0.911
0.882
1544
1546
0.923
0.913
1548
1708
1662d
R1= CH3, R=CCl3
42
10.38
1552
1660
R1= CH3, R=N(CH3)2
38
16.21
1560
1546a
1545c
1734
1630d
R1= CH3, R=CH2Cl
36
37
1679d
1681b
R1= CH3, R=NHCH3
34
35
3583
1548a
1547b
1697
3562
R1= CH3, R=NHCH3
32
1550
1558
1612
3.84
1559
1552c
1560
c
R1= CH3, R=NH2
30
1555
1665
R1= CH3, R=OH
28
1554b
1557c
1710
1670
R1= CH3, R2=OH
26
1561
0.854
1517
R1= CH3, R=H
24
1556
3571
3456d
19
1555c
3582
3563
R1=H, R=CCl3
1554
1754
3587
R1=H, R2=N(CH3)2
17
1723
3450
R1=H, R=CH2Cl
15
1671d
3571
3552
R1=H, R=N(CH3)2
13
14
3415
3336c
R1=H, R=NHCH3
11
3570
1685
1712
3587
3465b
3480b
R1=H, R=OCH3
9
10
3465
R1=H, R=OH
7
8
3576
R1=H, R=H
R1=H, R=OH
1659d
[kcal/mol]
Indeks HOMA [a.u.]
∆𝑬𝒔𝒚𝒏/𝒂𝒏𝒕𝒊
Eksp.
Bariera rotacyjna
𝑬𝒂𝒏𝒕𝒊→𝒔𝒚𝒏
[kcal/mol]
Eksperymentalne i obliczone częstości IR [cm-1]
Bariera rotacyjna
𝑬𝒔𝒚𝒏→𝒂𝒏𝒕𝒊
[kcal/mol]
Table 1. Experimental and calculated (B3LYP/6-311++(d,p)) IR stretching frequencies of C=O,
C=C and N-H groups for syn and anti pyrrol-2-yl carbonyl conformers (1-38). E is the
difference between the energies of the syn and anti form. HOMA49 is the aromaticity index.
0.909
0.886
6.64
(6.97)
13.5
8.08
(8.04)
11.62
6.59
0.905
0.889
4.48
0.899
0.878
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
FSD-IR37,38 was used to extract individual components from the overlapping band of N-H
and C=O groups. In such a way separation of the overlapping bands was achieved. FSD-IR was
applied for separating anti, syn and dimeric overlapping carbonyl bands [H7].
Figure 9. IR spectra of 2-acylpyrroles in cyclohexane: a) R1= H; R2= CCl3, b) R1=H; R2= CCl3, CHCl2, CH2Cl [H7].
It was found that conformational equilibrium depends on solvent polarity.39 When two
conformers have very different dipole moments, spectra in solvents with different polarities
reveal variable intensities of some bands. It is noted that a method is available to discern the
anti and the syn rotamer. 40 The greater stability of the syn form over the anti rotamer for 2acylpyrroles in a low polarity solvent is due to its lower dipole moment. The moments for the
pyrrole ring and the oxo group are mutually opposing which leads to much lower dipole
moments of the syn forms [H2].
Infrared spectra of N-methyl 2-acylchloropyrroles were investigated in acetonitrile and
nonpolar solution to distinguish the anti and the syn rotamers [H7]. In such a way the
AsynC=O/AantiC=O ratio of integrated intensities of the carbonyl bands was determined. The
ratio is lower in acetonitrile solution compared to the value in less polar cyclohexane solution.
It means that the population of the more polar anti form increases with higher solvent polarity
(Figure 9) [H7]. Further confirmation of dimer formation was provided by comparing
experimental and theoretically calculated spectra of monomers (the syn and anti form) and
the dimeric form [H2].
43
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Conformational studies of 2-acylpyrroles using NMR spectroscopy provided qualitative or
quantitative data. On the basis of the chemical shift values the conformers were identified.
The 1H and
13C
NMR spectra of pyrrole-2-carboxamide enable observation of syn and anti
conformers in DMSO solution. (Figure 10). The population of the molecular forms was
calculated from the integral intensity of the carbon signals in the
syn/anti ratio calculated from
13C
13C
NMR spectra. The
NMR on the basis of 1H decoupling without NOE41 is 3:1
[H2].
Figure 10. 13C NMR spectra of pyrrole-2-carboxylic acid amide in DMSO solution [H2].
It was calculated from the integral intensity of the carbon signals in the 13C NMR spectra. The
syn/anti ratio calculated from 13C NMR on the basis of 1H decoupling without NOE is 3:1
[H2]. The chemical shift is a useful tool for measuring ring currents and studying aromaticity
of the systems under investigation. For the s-cis form of 2-acylpyrroles, a correlation
between the 1H chemical shift of the H5 pyrrole proton (H5) and the GEO part of the HOMA
index was found (Figure 11). The π-electron delocalisation of the homogenous set of 2acylpyrrole conformers was evaluated on the basis of 5-H chemical shifts [H8].
44
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Figure 11. Plot of HOMA vs. d5-H chemical shift for the syn conformers of 2-substituted pyrroles.
2-acylpyrroles were studied by experimental FT-IR as well as by theoretical methods. The
theoretical calculations of vibrational frequencies performed at different levels of
approximation showed that centrosymmetric dimers (Fig. 8) formed with two equivalent N–
H…O bonds between the N–H pyrrole ring and the C=O carboxyl group [H7, H9]. The strength
of the hydrogen bond within cyclic dimers was determined by theoretical calculations (Table
2). Binding energies for the analysed complexes were computed as a difference between the
total energy of the complex and the energies of the isolated monomers and corrected for
the basis set superposition error (BSSE) via the standard counterpoise method (counterpoise
correction) of Boys and Bernardi.42
45
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
(mon-dim)
EHB
[kcal/mol]
17
21
-5.9
-6.9
(-5.7)
R=CCl3
R=CHCl2
R=CH2Cl
R=OH
R=H
C=O [cm-1]
R=CH3
Table 2. Binding energies, C=O modes and topological parameters of HB interactions for the
2-acylpyrrole dimers, B3LYP/6-311++G(d,p) and B3LYP/6-311+G* (in parentheses).
34
28
25
-6.23
-6.45
-6.63
-5.26
0.0261
0.0283
0.0278
0.0282
RCP [au]
0.0029
0.0030
0.0036
0.0036
0.0036
H8
H9
H7
H7
H7
anti
10
25
-6.78
-6.96
BCP [au]
0.0303
0.0298
0.0314
RCP [au]
0.0048
0.0049
0.0058
H2
H2
(mon-dim)
EHB
[kcal/mol]
-6.01
H9
anti
-6.57
H9
H7
R=OH
R=NHCH3
R1=H
syn
C=O
syn
R1=CH3
0.0263
R=NH2
0.030
R=NH2
BCP [au]
syn
anti
syn
anti
7.5
15.6
(53)
(60)
-6.98
-7.61
H9
H9
-8.0
-8.5
(-7.7)
(-8.3)
0.0483
0.0498
0.0081
0.0081
(0.008)
(0.008)
H1
H1
The crystal structure of pyrrole-2-carboxylic acid determined by single-crystal X-ray
diffraction proved that both C=O…H-O and N-H…O=C syn dimers exist in the solid state. Pyrrole2-carboxylic acid has a proton donating and proton accepting COOH carboxylic group as well
as an N–H proton donating bond. All of them are involved in hydrogen bond interactions in
the crystal structure of the acid where centrosymmetric dimers are formed with two
equivalent O–H...O bonds between the carboxylic groups and N–H...O bonds between the N–H
46
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
pyrrole ring and the C=O carbonyl group. Hence, according to Etter grafs’ designations, the
following H-bond motifs were detected in the crystal structure of the acid: R22(8) and R22(10)
(Figure 13).
The energy of the H-bonds within the dimers (C=O…H-N) has a medium value (Table 2):
5.9 kcal/mol. The H…O contact length is 1.880 Å, and the N-H…O angle is 163.7.
According to theoretical calculations dimers linked through two C=O…H-O bonds are more
stable than those formed through N-H…O=C bonds. Additionally, the O-H…O bond within the
dimer formed by the syn conformers is stronger than the O-H…O bond within the anti dimer.
EHB is 8.0 kcal/mol. The H…O contact length is 1.661 Å and the O-H…O angle is 179.7 [H1, H9].
B3LYP/6-311++G**
calculations
for
centrosymmetric
dimers
of
both
N-methylpyrrole-2-carboxamide conformers connected through equivalent N–H...O hydrogen
bonds were carried out. The calculated binding energy of the N-H…O intermolecular HB is
11.49 and 12.67 kcal/mol for the syn and anti dimer, respectively [H4].
Other commonly accepted criteria for the description of hydrogen bonds were introduced
by Koch and Popelier.43 They proposed that hydrogen bonds can be characterised based on
various descriptors originating from Bader’s quantum theory of “Atoms In Molecules” (AIM).16
There are eight effects for charge density being the necessary criteria for the existence of
inter- or intramolecular hydrogen bonds. Among them there are the bond critical point (BCP)
for H…Y (where Y is a proton acceptor centre within the X-H…Y hydrogen bond) and the ring
critical points (RCP) existing due to the formation of an intramolecular hydrogen bond or due
to the formation of a dimer (Figure 12b).
47
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Figure 12. a) Syn and anti conformers of 2-acylpyrrole; b) conformation of different types of 2-acylpyrrole
dimers, where R = OH, NH2, NHCH3. The dimer represents combination of a 2-acylpyrrole pair found in many
aggregates presented in Table 2; small circles correspond to ring critical points (RCP).
The value of electron density at the BCP (H. . Y) should be within a range of 0.002–0.040 a.u.
The corresponding Laplacian of electron density at the BCPs (2BCP) should be within a range
of 0.024–0.139 a.u. Additionally there are energetic descriptors of BCPs such as electron
energy density at the BCP (HC) and its components, potential electron energy density (VC) and
kinetic electron energy density (GC). According to Rozas et al.44 weak H-bonds are
characterised by 2BCP > 0 and HBCP > 0.
The studies of the nature of the HB using QTAIM theory revealed that acid dimers are more
stable than cyclic dimers formed by N-H...O=C bonds [H1]. The dimers formed by N-H…O=C
amide bonds are more stable than cyclic dimers formed by N(1)-H…O=C bonds [H2, H9].
Because the 2-acylpyrroles prefer formation of cyclic dimers in concentrated solutions and in
the solid state, I analysed the N-H..O=C hydrogen bond [H1, H2, H4] weak interaction of a CH...O type and the halogen bond [H3]. On this basis it was found that the N-H…O=C interaction
plays a key role in the stabilisation of 2-acylpyrrole conformation.
The X-ray studies were very valuable in conformational analysis and hydrogen bond
detection. Pyrrole-2-carboxylic acid has a proton donating and proton accepting COOH
carboxylic group as well as an N–H proton donating bond. All of them are involved in hydrogen
bond interactions in the crystal structure of the acid where centrosymmetric dimers are
formed with two equivalent O–H...O bonds between the carboxylic groups and N–H...O bonds
between the N–H pyrrole ring and the C=O carbonyl group. Hence, according to Etter grafs’
48
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
designations45, the following H-bond motifs were detected in the crystal structure of the acid:
R22(8) and R22(10) (Fig. 13). According to this designation the (C=O…H-O-C=O…H-O) motif is
formed by hydrogen bonds with a centre of inversion. Such patterns R22(8) exist in the crystal
structure with two O-H…O bonds between the oxygen atoms and the O-H donors of the
carboxylic groups as well as between the oxygen atoms of the carboxylic groups and the C-H
donors C-H…O and O-H…N.46 These structural motifs fit well to the structural models predicted
by modelling of the acid dimer structure using DFT results (B3LYP/6-311+G(d) level of theory)
as well as based on infrared and Raman spectroscopic studies. For the acid dimer connected
by two C=O…O-H hydrogen bonds intermolecular resonance-assisted hydrogen bonds
(RAHBs)47 were detected. The real molecular structure of the pyrrole-2-carboxylic acid dimer
may be considered a mixture of tautomeric forms. Their effective mixing was supported by
the process of -electron delocalisation [H1]. Syn conformers of pyrrole-2-carboxylic acid
create a network of cyclic dimers formed through C=O…H-O interactions, connected by an
additional network of N-H…O=C hydrogen bonds with slightly lower energy (Fig. 13).
Figure 13. H-bond motifs detected in the crystal structure of the pyrrole-2-carboxylic acid. Dotted lines show
hydrogen bonds [H1].
The analysis of the crystal structure of certain 2-acylpyrroles leads to a conclusion that the
energetically more stable syn form is present in the solid state. For crystal structures of
pyrrole-2-carbamide there is only the syn conformer in crystals with bifurcated N-H…O
hydrogen bonds. [H2]
49
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
Figure 14. Arrangement of molecules in the crystal of pyrrole-2-carbamide; H-bonds and HB motifs are
shown: R22(8), R22(10) and R42(8) [H2]
In the crystal structure of pyrrole-2-carbamide there are heteronuclear hydrogen bonds.48
There are three H-bond motifs corresponding to three interactions of the O atom: R22(8),
R22(10) and R42(8). The N-H…O hydrogen bonds as a result of interactions through the amide
groups are the strongest in amide crystals since N…O distances are the shortest. DFT
calculations and X-ray analyses indicate that N-H…O hydrogen bonds are resonance-assisted.
[H2].
Figure 15. Network of intermolecular contacts in the crystal structure of N-methylpyrrole-2-carboxamide.
N-H…O interactions are shown with dotted lines [H4].
50
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
The crystal structure of N-methylpyrrole-2-carboxamide (Fig. 15) also shows the existence of
syn conformation. Figure 14 shows the arrangement of molecules in crystals [H4]. There are
R22(8) H-bonded motifs with two N–H…O hydrogen bonds equivalent owing to symmetry
constraints.
The 2-acylpyrroles for which two conformers exist in solution as a rule crystallise
exclusively in the most stable syn conformation. In the crystals without strong proton donors
unconventional hydrogen bonding CH ... O49, 50 plays an important role. An example of this
interaction is illustrated in [H1] and [H3]. The existence of C5-H5…O2 interactions in the crystal
structure of the acid was also found [Fig. 16b]. The H…O distance is 1.94 Å, lower than van der
Waals radii, 51 and the C-H…O angle is 138° [H1]. For N-methylpyrrole-2-carboxamide there is
also an extra intramolecular C–H…O interaction (Figure 14). There is no classic proton donating
group, and the C-H group is a proton donor [H4].
The existence of the C–Cl...O halogen bond52,53 was found in the crystal structure of
1-methylpyrrol-2-yl trichloromethyl ketone [H3]. The halogen atom connected with the
carbon atom (C–Cl) acts as a Lewis acid. The O-atom of the carbonyl group acts as an acceptor
centre. Cl…O distances are 3.047 Å. This is slightly less than the corresponding sum of van der
Waals radii of 3.27 Å, according to Bondi.51 This means that the halogen bond and the
hydrogen bond affect the arrangement of the molecules in the crystal and influence their
conformation.
a
b
Figure 16. a) Network of intermolecular contacts in the crystal structure of 1-methylpyrrol-2-yl
trichloromethyl ketone [H3]. Arrangement of molecules in the crystal of pyrrole-2-carboxylic acid;
C-H…O contacts are shown with dotted lines [H1].
51
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
The analysis of the crystal structure of some 2-acylpyrroles leads to the conclusion that
the energetically more stable syn form is present in the solid state. The most stable form is
the syn conformer since it enables the formation of a hydrogen bond between the pyrrole NH and C=O groups. For all of the above crystal structures of 2-acypyrrole derivatives a crucial
role of carbonyl group hydrogen bonds influencing the arrangement of molecules in crystals
is seen [H1, H3]. The analysis of crystallographic data of 2-acylpyrroles indicates that the
hydrogen bonds have a locking effect on conformation about the C-C bonds. Cambridge
Structural Database (CSD) searches on 2-acylpyrroles reveal that there are also some other
instances of 2-acylpyrroles which form dimers in the solid phase by N-H…O=C interactions.
Among the 2-acylpyrrole dimers the mean d(N)H...O distance is 2.018 Å and differs generally by
0.05-0.1 Å. The mean dN...O distance is 2.875 Å and differs generally by 0.1 Å while the mean
dC=O bond length is 1.22 Å. It is noted that the longest C=O bond was observed for compounds
in which R is NH2, OH, N(CH3)2 [H9]. The shortest dC=O was observed for electron-accepting
substituents such as R = OCH3, OC2H5 [H8].
The results of the analysis of the conformation of the 2-acylpyrroles are extremely
valuable in the discussion of the conformation of peramine and its derivatives, which was the
subject of research under the State Committee for Scientific Research grant. Peramine54
belongs to a group of secondary metabolites produced by perennial ryegrass fungal
endophytes55 (Figure 17).
O
N
NCH3
NH HBr
N
NH2
H
Peramine
fungal endophytes
Figure 17. Peramine - bioprotective secondary metabolites produced by fungal endophytes
Peramine and its derivatives are antifeedant agents which protect plants against pests by
discouraging feeding.56 Because of the great potential importance of peramine as a modern
52
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
and environmentally friendly plant protection agent, conformational analysis with
spectroscopic properties of these pyrrolopyrazine alkaloids was performed [H5, H6].57,58
On the basis of the stretching C=C and C=O modes and 1H NMR spectra of peramine derivatives
it has been found that pyrrolopyrazinone rings are conjugated [H5]. Furthermore, I found that
the oscillation modes of carbonyl and C=C groups are interrelated thus giving rise to C=O and
C=C absorption bands, a product of both vibrations (Fig. 18a). On the basis of theoretical
calculations the most stable rotamers were identified. Theoretically predicted IR and Raman
as well as electronic spectra for these selected rotamers were in excellent agreement with
experimental data. Using VEDA 4 (Vibrational Energy Distribution Analysis),59 analysis of the
predicted spectra with potential energy distribution of normal modes was performed.60
a)
b)
Figure 18. a) Experimental and calculated IR spectra of 3-(3-chloropropyl)-2-methylpyrrole[1,2-a]pyrazin-1(2H)-one. Atomic displacements of C=O and C=C in vibrational modes: ‘‘out-of-phase’’ and ‘‘in phase’’; b)
layered structure of 3-(3-chloropropyl)-2-methylpyrrole[1,2-a]pyrazin-1-(2H)-one viewed along the a axis.
This method was found to be useful in the analysis of vibrational properties of peramine and
its derivatives [H5, H6]. On the basis of both FT-IR and 1H NMR spectroscopy it is found that
pyrrolopyrazinone rings are conjugated. X-ray analysis reveals two rings arranged in one plane
and a side arm oriented in the ring plane (Fig. 18b). Dihedral angle N1–C6–C9–C10 between
53
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
the mean plane of the aliphatic chain and the pyrrolopyrazinone ring is 179.92° while he
calculated value is 179.99° [H5].
Along with vibrational spectroscopy, electron spectroscopy is a useful method for
studying ring coupling. Absorption spectra [H6] for electron transitions in the solid phase and
in solution reveal bands related to the * excitation of the pyrrolopyrazine ring system I
identified based on theoretical calculations using TD-DFT.
6. Main achievements of the habilitation dissertation:
The results obtained in the studies which constitute the habilitation thesis include physical
and chemical properties of 2-acylpyrroles:

I developed methodology for the identification of syn and anti conformers and cyclic
dimers in the liquid phase using vibrational spectroscopy, NMR and quantum-chemical
calculations [H1, H2, H7, H8].

The syn forms of 2-acylpyrroles are found to be more stable than the anti forms.

Based on the calculated indices of aromaticity I found that HOMA indices for syn
conformers are higher compared with those calculated for the anti conformers. For Nmethyl 2-acylpyrrole derivatives (R1=CH3) HOMA and NICS values are lower than for
those with R1=H [H8].

I explained the effect of substituents with various electronic properties on the
aromaticity of 2-acylpyrroles: electron-accepting substituents (R=CCl3, CHCl2, CH2Cl)
stabilize the pyrrole ring and increase aromaticity. Electron donating substituents, such
as R=OH, OCH3, NH2, destabilise the ring leading to lower -electron delocalisation
[H8].

As the first researcher, I suggested a relationship between the frequency of pyrrole
ring stretching vibrations and the HOMA aromaticity index. I postulate that pyrrole ring
stretching vibration frequency (N-H) could be a preliminary measure of the aromaticity
of 2-acylpyrroles considering the linear relationship between HOMA and pyrrole ring
stretching vibration frequency, C=C [H8].

I propose using the H5 chemical shift as a measure of -electron delocalisation over
the pyrrole ring. [H8].
54
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego

The study enabled the identification of different types of interactions in crystals:
N-H…O, O-H…O, C-H…O and C-Cl…O [H1, H2, H3, H4].

I found on the basis of spectroscopic and X-ray investigations that the syn
conformation of 2-acylpyrroles exists in the solid phase [H1, H2, H3, H4, H7, H9].

I found that hydrogen bonding, halogen bonds and C-H…O bonds play a crucial role in
stabilising the syn conformation of 2-acylpyrroles, and have an impact on the
arrangement of the molecules in the solid phase [H1-H4].

I found on the basis of spectroscopy of peramine that pyrrole and pyrazine rings are
conjugated, and C=O and C=C vibrational modes are interrelated [H5, H6].
The results of the study provide new and important spectroscopic and structural information
which can be used in the design of bioactive 2-acylpyrrole-based systems and their
conformational analysis.
References (with the exception of work that is the subject of habilitation thesis)
1
V. Estévez, M. Villacampa, J.C. Menéndez, Chem. Soc. Rev.,43 (2014) 4633-4657.
V. Estévez, M. Villacampa, J.C. Menéndez, Chem. Soc. Rev. 39 (2010) 4402.
3 J.W. Blunt, B.R. Copp, R.A. Keyzers, M.H.G. Munro, M.R. Prinsep, Nat. Prod. Rep. 30 (2013)
237.
4 D. P. O’Malley, K. Li, M. Maue, A.L. Zografos, P.S. Baran, J. Am. Chem. Soc. 129 (2007) 4762.
5 J. Blunt, B.R. Copp, M.H.G. Munro, P.T. Northcote, M.R. Prinsep, Nat. Prod. Rep. (2011) 28
196
6C.C. Hughes, A. Prieto-Davo, P.R. Jensen, W. Fenical, Org. Lett. 10 (2008) 629.
2
7
8
D.L. Boger, C.W. Boyce, M.A. Labroli, C.A. Sehon, Q. Jin J. Am. Chem. Soc. 121 (1999) 54.
A. Arcamone, S. Penco, P. Prezzi, V. Nicolella, A. Pirelli, Nature, 203 (1964) 1064.
9
T. Kubota, A. Araki, T. Yasuda, M. Tsuda, J. Fromont, K. Aoyama, Y. Mikami, M.R. Wälchli, J.
Kobayashi, Tetrahedron Lett. 50 (2009) 7268.
10
T. Endo, M. Tsuda, T. Okada, S. Mitsuhashi, H. Shima, K. Kikuchi, Y. Mikami, J. Fromontand,
J. Kobayashi, J. Nat. Prod. 67 (2004) 1262.
11
F. Hong, J. Zaidi, Y.P. Pang, B. Cusac, E.J. Richelson, Chem. Soc. Perkin Trans. I (1997) 2997.
12
F. Liang, Y.Z. Liu, P. Zhang, RSC Adv. 3 (2013) 14910.
13
The Cambridge Structural Database, The 5.26 Version, November 2003 (updated January
2004).
14 F.H. Allen, W.D.S. Motherwell, Acta Cryst B58 (2002) 407-422.
55
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
15 Gaussian 09, Revision D.01, M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers,
K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant,
S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,
J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski,
and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
16 R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford,
1990.
17 IUPAC. Compendium of Chemical Terminology, the "Gold Book ". Compiled by A. D.
McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.
18 I. Alkorta, J. Elguero, J. Comput. Chem. 964 (2011) 25.
19 Computational Strategy for Spectroscopy, From small molecules to nano systems, Ed. V.
Barone, Wiley, 2012, New Jersey
20 D. Barton, Experienta, 6, (1950) 1950
21 W. J. Orville – Thomas, M. Redshow, Internal Rotations in Molecules, Willey-Interscience,
London 1974
22 M.V. Johnston, Trends in Analytical Chemistry, 3 (1984) 58.
23 Bioactive Conformation I, Topics in Current Chemistry, Ed. Thomas Peters, Springer-Verlag
Berlin Heidelberg 2007.
24 T. Itoh, N. Tanaka, H. Nishikiori, T. Fujii, Chem. Phys. Lett. 514 (2011) 247.
25 K. Mishiro, T. Furuta, T. Sasamori, K. Hayashi, N. Tokitoh, S. Futaki, T. Kawabata, J. Am.
Chem. Soc. 135 (2013) 13644.
26 X. Wang, B.I. Morinaka, T. F. Molinski, J. Nat. Prod. 77 (2014) 625.
27 Practical Aspects of Computational Chemistry I; An Overview of the Last Two Decades and
Current Trends, Ed. J. Leszczynski, M.K. Shukla, Springer, 2012.
28 M.P. Johansson, J. Olsen, J. Chem. Theory Comput. 4 (2008) 1460.
29 E.A. Camarillo, H. Flores, P. Amador, S. Bernes, Acta Cryst E6 (2007) o2593.
30 R.A. Davis, A.R. Carroll, R.J. Quinn, P.C. Healy, A.R. White, Acta Cryst E63, (2007) o4076.
31 M.K. Cyrański, Chem. Rev., 105 (2005), 3773.
32 J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 1972, 3839.
33 T.M. Krygowski, M.K. Cyrański, Tetrahedron 52 (1996) 1713.
34 T.M. Krygowski, H. Szatyłowicz, O.A. Stasiuk, J. Dominikowska, M. Palusiak, Chem. Rev. 114
(2014) 6383.
35 P. v. R. Schleyer et al, J.Am.Chem.Soc., 118 (1996) 6317
36 S. Shaiki, A. Shurki, D. Danovich, P.C. Hiberty, Chem. Rev. 101 (2001) 1501.
37 J.I. Kauppinen, D.J. Moffat, H.H. Mantsch, D.G. Cameron, Anal Chem. 53 (1981) 1454.
56
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
38
I. Karaamancheva; T. Staneva, J. Pharm. Biomed. Anal. 21 (2000) 1161
P. Klaeboe, Vibrational Spect. 9 (1995) 3.
40 Q. Liu, X. Xu, W. Sang, Spectrochim Acta A, 59 (2003) 471..
41 S.A.Richards, J.C. Hollerton, Essential Practical NMR for Organic Chemistry, John Wiley &
Sons, Ltd, 2011, Chichester.
42 S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
43 U. Koch, P.L.A. Popelier, J. Phys. Chem. 99 (1995) 9747.
44 I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154.
45 M.C. Etter, Acc. Chem. Res. 1990, 23, 120.
46 S.J. Grabowski, R.G. Delaplane, I. Olovsson, J. Mol. Struct. 2001, 597, 67.
47 G. Gilli, P. Gilli, J. Mol. Struct., 552 (2000) 1.
48 I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A. 102 (1998) 9925.
49 .V. Belkova, E.S. Shubina, L.M. Epstein, Acc. Chem. Res. 38 (2005) 624.
50 S.J. Grabowski, J. Phys. Chem. A, 105 (2001) 10739.
51 A. Bondi, J. Phys. Chem. 68 (1964) 441.
52 J.M. Dumas, L. Gomel, M. Guérin, Molecular Interactions involving Organic Halides. The
Chemistry of Functional Groups, supplement D;, Wiley, New York, 1983, pp. 983–1020.
53 P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem., Int. Ed. 47
(2008) 6114.
54 D.D. Rowan, D.L. Gaynor, J. Chem. Ecol. 12 (1986) 647.
55 H.W. Zanhg, Y.Ch. Song, R.X. Tan, Nat. Prod. Rep. 23 (2006) 753.
56 E. Dubis, A.T. Dubis, J. Nawrot, Z. Winiecki, J. Popławski, Proceedings of the 1st
International Conference on Insects, Insects—Chemical, Physiological and Environmental
Aspects, Ladek-Zdroj, Poland, University of Wrocław, 1995.
57A.T. Dubis, A. Łapiński, Progress in Plant Protection, 48(2008) 715.
58A. Łapiński, A.T. Dubis, Progress in Plant Protection, 48 (2008) 730.
59 M.H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
60 G. Fogarasi, X. Zhou, P.W. Taylor, P. Pulay, J. Am. Chem. Soc. 114 (1992) 8191
39
57
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
DISCUSSION OF OTHER RESEARCH ACHIEVEMENTS
Recently, I started co-operation with Professor Krzysztof Winkler of the Institute of
Chemistry, University of Białystok and his group in the design and investigation of novel
carbon-based materials to be potentially used as biosensors in photovoltaics. My contribution
to the research involved analysis of the spectroscopic properties of carbon nano-onions. I
analysed small derivatised carbon nano-onions (CNOs) using IR spectroscopy with DRIFTS
diffused reflectance and HATR total internal reflection. Owing to the reflection methods,
valuable data on the derivatisation of nanomaterials have been obtained [P3, P4, P5, P7]
For a number of years, I was also involved in the design, synthesis and analysis of asarone derivatives with blood cholesterol reducing effects. The research was carried out in
co-operation with Pharmaceutical Research Institute in Warsaw and it resulted in four patents
[P10-P13] and a publication [P1] on the analysis of intramolecular hydrogen bonds in novel
hypolipemic -asarone derivatives.
PUBLICATIONS AND PATENTS AFTER BEING GRANTED THE PHD DEGREE
(NOT RELATED TO THE HABILITATION THESIS)
P1. S.J. Grabowski, A. Pfitzner, M. Zabel, A.T. Dubis, M. Palusiak
Intramolecular H...H Interactions for the Crystal Structures of [4-((E)-But-1-enyl)-2,6dimethoxyphenyl]pyridine-3-carboxylate and [4-((E)-Pent-1-enyl)-2,6dimethoxyphenyl]pyridine-3-carboxylate; DFT Calculations on Modeled Styrene
Derivatives.
J. Phys. Chem. B. 108 (2004) 1831-1837.
IF = 3,834
TC =32
P2. A.J. Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski, J. Nawrot-Modranka
Intramolecular Hydrogen Bond in Crystals of Thiophosphorylbenzopyrane Derivatives
– X-Ray and FT-IR Studies.
Chem. Phys. 320 (2006) 247-258.
IF = 1,984
TC =19
P3. J. Luszczyn, M.E. Płonska-Brzezinska, A. Palkar, A.T. Dubis, A. Simionescu,
D.T. Simionescu, B. Kalska-Szostko, K. Winkler, L. Echegoyen.
Small Noncytotoxic Carbon Nano-Onions: First Covalent Functionalization with
Biomolecules.
Chem. Eur. J. 16 (2010) 4870-4880.
58
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
IF = 5,476
TC =12
P4. M.E. Plonska-Brzezinska, A.T. Dubis, A. Lapinski, A.Villalta-Cerdas, L. Echegoyen
Electrochemical Properties of Oxidized Carbon Nano-Onions: DRIFTS FT-IR and
Raman Spectroscopic Analyses.
ChemPhysChem, 12 (2011) 2659-2668.
IF = 3,412
TC =2
P5. M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A.Villalta-Cerdas, K.
Winkler, L. Echegoyen
The synthesis and characterization of carbon nano-onions produced by solution
ozonolysis.
Carbon, 49 (2011) 5079-5089.
IF = 5,378
TC =6
P6. B. Kalska-Szostko, M. Rogowska, A.T. Dubis, K. Szymańki
Enzymes Immobilization on Fe3O4-goldnanoparticles.
Appl. Surf. Sci. 258 (2012) 2783-2787.
IF = 2,103
TC =12
P7. M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis,
L. Echegoyen
Preparation and Characterization of Composites that contain Small Carbon NanoOnions and Conducting Polyaniline.
Chem. Eur. J. 18 (2012) 2600-2608.
IF = 5,47
TC =11
P8. B. Łozowicka , P. Kaczyński , T. Magdziarz , A.T. Dubis.
Synthesis, antifeedant activity against Coleoptera and 3D QSAR study of alphaasarone derivatives.
SAR QSAR Environ Res. 2014;25(3):173-88.
IF = 1,92
TC =1
P9. B. Kalska-Szostko, M. Rogowska, A.T. Dubis, A. Basa
Enzyme immobilization on Fe3O4-Silver Nanoparticles.
J. Surf. Interfac. Mater. 2 (2014) 69-73.
IF = 1,404
TC =0
P10. J. Popławski, A.T. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk,
W. Szelejewski, G. Grynkiewicz, 31.03.2005, PL 188701 B1, Sposób otrzymywania
/E/-1,2,3-trimetoksy-5-/1’-propenylo/benzenu.
59
załącznik 2B
dr Alina T. Dubis – Autoreferat do wniosku o nadanie stopnia naukowego doktora habilitowanego
P.11. J. Popławski, A.T. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk,
W. Szelejewski, S.Witkowski, 31.03.2005, PL 188702 B1, Sposób otrzymywania
/E/-1,2,5-trimetoksy-3-/1’-propenylo/benzenu.
P12. J. Popławski, A.T. Dubis, B. Lachowska, B. Łozowicka, J. Cybulski, Z. Chilmończyk,
W. Szelejewski, S.Witkowski, 31.03.2005, PL 188703 B1, Sposób otrzymywania
/E/-1,2,4-trimetoksy-3-/1’-propenylo/benzenu.
P.13. J. Popławski, A.T. Dubis, B. Lachowska, B. Łozowicka, K. Kita, S. Kobes,
Z. Chilmończyk, J. Cybulski, S. Adamski, 31.10.2006, PL 192464 B1, Nowe pochodne
-asaronu i zawierające je środki farmaceutyczne o działaniu hipolipemicznym.
60

Podobne dokumenty