broszura do pobrania

Transkrypt

broszura do pobrania
PROGRAM
PART I
CHAIRMAN: prof. dr hab. Józef Drabowicz
10.00
Klaus Banert
Nitrogen-Rich Binary CN Compounds as Highly Energetic Materials
11.00
Heinz Langhals
Molecular functional components for Materials Chemistry
Multichromophoric structures as building blocks for picotechnology
BREAK
12.00-12.15
PART II
CHAIRMAN: dr Wojciech Gruhn
Interdisciplinary
Scientific Session
12.15
Andrzej Wiśniewski
Nowa rodzina nadprzewodników – chalkogenki żelaza
(New family of superconductors – iron chalcogens)
JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA
CZESTOCHOWA, May 22 2013
INTERDISCIPLINARY SCIENTIFIC SESSION
ORGANIZERS:
Dean of the Faculty of Mathematics and Natural Sciences
Director of the Institute of Chemistry, Environmental Protection and
Biotechnology
Director of the Institute of Physics
Czestochowa Branch of the Polish Chemical Society
Czestochowa Branch of the Polish Physical Society
Jan Dlugosz University of Czestochowa
Armii Krajowej 13/15 Ave.
42-200 Czestochowa
lecture hall 1023
phone: 48 (34) 361 21 79
e-mail: [email protected]
May 22, 2013
NOTES
NOTES
Nitrogen-Rich Binary CN Compounds as Highly Energetic Materials
Klaus Banert
Chemnitz University of Technology, Organic Chemistry,
09111 Chemnitz, Strasse der Nationen 62, Germany
E-mail: [email protected]
Nitrogen-rich organic compounds have gained attention recently because of their high heats
1
of formation and possible applications as highly energetic materials. Especially, binary CN
compounds such as known polyazides 1, 2, and 3 have been discussed although they are
2
notorious for their extreme sensitivity towards friction and impact. We report here on the
3,4
synthesis and structure assignment of the very explosive title compounds 4, 5, and 6.
Furthermore, some interesting reactions of these polyazides and other nitrogen-rich CN
compounds are presented.
N3
N
N3
N3
N
N
N
N
N
N
N
1
N3
N3
N3
N
N
N
N
N3
N
N3
3
2
N3
C3N12
C6N20
N
N
C2N10
CN
N3
N3
N3
N
N
N3
N3
N3
N3
N3 N3
N3
N3
N3
4
5
CN
6
C2N14
CN12
C8N14
References
1. a) H. Gao, J. M. Shreeve, Chem. Rev. 2011, 111, 7377–7436. b) A. Hu, F. Zhang Shock, AIP
Conf. Proc. 2009, 1195, 809–812.
2. a) M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, R. Gilardi, Angew. Chem.
2004, 116, 5032–5036; Angew. Chem. Int. Ed. 2004, 43, 4924–4928. b) W. Zheng, N.-B.
Wong, X. Liang, X. Long, A. Tian, J. Phys. Chem. A 2004, 108, 840–847. c) M. H. V. Huynh,
M. A. Hiskey, J. G. Archuleta, E. L. Roemer, R. Gilardi, Angew. Chem. 2004, 116, 5776–
5779; Angew. Chem. Int. Ed. 2004, 43, 5658–5661. d) M. H. V. Huynh, M. A. Hiskey, D. E.
Chavez, D. L. Naud, R. D. Gilardi, J. Am. Chem. Soc. 2005, 127, 12537–12543. e) Y. Zhou, X.
Long, Y. Shu, Chin. J. Chem. 2010, 28, 2123–2129. f) E. Keßenich, T. M. Klapötke, J. Knizek,
H. Nöth, A. Schulz, Eur. J. Inorg. Chem. 1998, 2013–2016.
3. K. Banert, S. Richter, D. Schaarschmidt, H. Lang, Angew. Chem. 2013, 125, 3583–3586;
Angew. Chem. Int. Ed. 2013, 52, 3499–3502.
4. K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, H. Lang, Angew. Chem. 2007, 119, 1187–1190;
Angew. Chem. Int. Ed. 2007, 46, 1168–1171.
Molecular functional components for Materials Chemistry
Multichromophoric structures as building blocks for picotechnology
Nowa rodzina nadprzewodników – chalkogenki żelaza
(New family of superconductors – iron chalcogens)
Heinz Langhals
Andrzej Wiśniewski
Department of Chemistry, LMU University of Munich,
Butenandtstr. 13, D-81377 Munich, Germany
Instytut Fizyki Polskiej Akademii Nauk Warszawa
Functional components are becoming more and more important for Materials Science. A high
level of integration of functionalities is targeted and seems to progress until molecular
dimensions. As a consequence, the next generation of functional building blocks may reach
1
picometer dimensions where molecular technology will be required for Materials Science.
Electric interactions dominate highly integrated technology requiring suitable components.
Molecular electronics can be developed in analogy to conventional electronics where
conductors may be replaced by conjugated electronic systems with delocalizable electrons
and resonating circuits by the eigenvalues of molecular structures. Both requirements are
fulfilled by chromophores because of their special electronic structures and distinct lightabsorption. Highly stable chromophores would be ideal components for such applications.
2
The peri-arylenes including the perylene dyes as the most prominent class are very
promising candidates for molecular electronics because of their extraordinary chemical and
photochemical stability. Many synthetic methods are available and will be reported for the
adaptation of this class of compounds to the special requirements of Materials Chemistry.
Complex molecular architectures were established for multichromophoric systems with
special properties such as photo induced electron transfer (PET) and energy transfer (FRET)
for light collection and concentration. The investigation of model compounds indicate that
3
the established theory of FRET has to be altered; novel concepts will be as well presented as
materials with unusual optical properties.
References
1. Review: H. Langhals, Chromophores for picoscale optical computers in K. Sattler (ed.),
Fundamentals of picoscience, p. 1-50, Taylor & Francis Publisher, London 2013.
2. Reviews: (a) H. Langhals, Molecular devices. Chiral, bichromophoric silicones: Ordering
principles in complex molecules in F. Ganachaud, S. Boileau, B. Boury (eds.), Silicon Based
Polymers, p. 51-63, Springer, 2008, ISBN 978-1-4020-8527-7, e-ISBN 978-1-4020-8528-4.
(b) H. Langhals, Helv. Chim. Acta. 2005, 88, 1309-1343. (c) H. Langhals, Heterocycles 1995,
40, 477-500.
3. H. Langhals, A. J. Esterbauer, A. Walter, E. Riedle, I. Pugliesi, J. Am. Chem. Soc. 2010, 132,
16777-16782.
W roku 2008 odkryto nadprzewodnictwo w związku La[O1-xFx]FeAs. Zapoczątkowało to bardzo
intensywne prace, które doprowadziły do odkrycia nadprzewodnictwa w całej klasie
materiałów na bazie żelaza. Najprostszy nadprzewodzący związek z tej rodziny to
niestechiometryczny selenek żelaza FeSe. Częściowe podstawienie selenu tellurem prowadzi
do wzrostu temperatury krytycznej, Tc. W trakcie seminarium omówię wpływ mikrostruktury,
podstawień chemicznych i ciśnienia hydrostatycznego na właściwości nadprzewodzące
monokryształów FeSeTe.