Instytut Chemii Fizycznej Polskiej Akademii Nauk

Transkrypt

Instytut Chemii Fizycznej Polskiej Akademii Nauk
Instytut Chemii Fizycznej
Polskiej Akademii Nauk
adres:
tel.:
fax/tel.:
email:
WWW:
ul. Kasprzaka 44/52
01-224 Warszawa
+48 22 3432000
+48 22 3433333, 6325276
[email protected]
http://www.ichf.edu.pl/
Warszawa, 8 września 2010
Molekularne „śmigła” mogą wirować bardzo wolno
W eksperymentach w Instytucie Chemii Fizycznej PAN, przeprowadzonych
na supercienkich warstwach ciekłych kryształów utworzonych na powierzchni wody,
udało się zaobserwować zaskakująco wolny i trwały ruch obrotowy cząsteczek,
zgodnie rotujących w sposób możliwy do zaobserwowania niemal gołym okiem.
W utworzonych na powierzchni wody ciekłokrystalicznych warstwach grubości
pojedynczych nanometrów cząsteczki mogą wirować z niezwykle małą prędkością, zaledwie
jednego obrotu na kilka minut – ustalili naukowcy z Instytutu Chemii Fizycznej PAN. Tak wolne
rotacje to spore zaskoczenie, ponieważ spodziewano się, że ruch obrotowy zostanie szybko
zaburzony przez fluktuacje termiczne. „Spowolnienie rotacji cząsteczek nie jest niczym niezwykłym
w ciekłych kryształach złożonych zwykle z tysięcy warstw. W naszych doświadczeniach mamy
jednak warstwy monomolekularne i niemal gołym okiem możemy obserwować efekty bardzo
wolnego wirowania cząsteczek chemicznych” – podkreśla prof. Robert Hołyst z Instytutu Chemii
Fizycznej PAN (IChF PAN).
Eksperyment przeprowadzony w IChF PAN jest daleką pochodną słynnych doświadczeń
Benjamina Franklina, związanych z uspokajaniem wzburzonej wody metodą rozlewania oleju.
Podczas jednej z prób Franklin zauważył, że plama oleju na powierzchni stawu w pewnym
momencie staje się tak cienka, że przestaje się powiększać. „Robimy coś podobnego, ale na
mniejszą skalę: na powierzchnię wody wylewamy mikrolitry ciekłych kryształów. Formują one
warstwę monomolekularną, a więc taką, której grubość odpowiada jednej cząsteczce” – wyjaśnia
dr inż. Andrzej Żywociński z IChF PAN.
Cząsteczki badanych ciekłych kryształów są amfifilowe – część hydrofilowa łańcucha
przyczepia się do powierzchni wody, nad którą wystaje część hydrofobowa, uniemożliwiająca
rozpuszczenie – i swobodnie przemieszczają się po powierzchni wody, zachowują się więc jak gaz
w przestrzeni dwuwymiarowej. Badaczy interesowało jednak zachowanie ciekłych kryształów w
fazie ciekłej. Gaz można przekształcić w ciecz lub ciało stałe wskutek zmian temperatury lub
ciśnienia. Jeśli korzystamy z tego drugiego parametru, do zestalenia dochodzi przy dużych
ciśnieniach, rzędu przynajmniej kilkudziesięciu atmosfer. Na szczęście w przypadku warstw
monomolekularnych odpowiednio duże ciśnienie można łatwo uzyskać za pomocą przyrządu
zwanego wagą Langmuira. Jest to wanienka wypełniona wodą, z dwiema hydrofilowymi
barierkami, pomiędzy którymi znajduje się warstwa ciekłych kryształów grubości kilku nanometrów.
„Wystarczy zmniejszyć odległość między barierkami, aby wzrost ciśnienia powierzchniowego
doprowadził do przejścia ciekłego kryształu w stan ciekły lub nawet stały” – mówi doktorantka
Patrycja Nitoń z IChF PAN.
Powierzchnię warstwy ciekłokrystalicznej w fazie ciekłej obserwowano za pomocą
mikroskopu kąta Brewstera przy stosunkowo niewielkim powiększeniu. Kąt Brewstera to kąt, pod
którym światło padające na powierzchnię dielektryka odbija się całkowicie spolaryzowane liniowo,
co oznacza, że drgania składowej pola elektrycznego zachodzą w jednej płaszczyźnie. Jeśli na
drodze tak spolaryzowanego światła ustawi się filtr polaryzujący w płaszczyźnie poprzecznej,
zatrzyma on całe odbite światło i pod mikroskopem Brewstera czysta woda będzie wyglądała na
czarną. Jeśli jednak na powierzchni wody znajdzie się coś, co skręca płaszczyznę polaryzacji,
pojawią się jasne refleksy.
W doświadczeniach przeprowadzonych w Instytucie Chemii Fizycznej PAN analizowano,
jak zachowuje się na powierzchni wody monomolekularna warstwa ferroelektrycznego ciekłego
kryształu typu smektyk C*. Smektyki C* charakteryzują się tym, że cząsteczki samoczynnie
układają się w nich w warstwy, przy czym kolejne warstwy są względem siebie nieco obrócone.
„My mamy tylko jedną warstwę, którą można sobie wyobrażać jako las cząsteczek, zgodnie
nachylonych pod pewnym kątem” – opisuje dr inż. Żywociński. Gdy cząsteczki wody parują,
uderzają w różnej wielkości grupy atomów, połączone w każdej cząsteczce ciekłego kryształu z
asymetrycznym (chiralnym) atomem węgla. Asymetria powoduje, że wystające nad powierzchnię
wody fragmenty cząsteczek ciekłych kryształów działają jak śmigła napędzanego wiatrem wiatraka
i zaczynają kolektywnie się obracać (efekt ten po raz pierwszy zaobserwował prof. Hiroshi
Yokoyama z Japonii). Aby cząsteczka wykazywała zdolność do rotacji, musi być w odpowiedni
sposób skonstruowana. Grupa polarna, która trzyma ją przy powierzchni wody, nie powinna być za
duża, ponieważ byłaby zanurzona za głęboko i hamowałaby rotację wywołaną przez asymetryczną
grupę chiralną, w którą uderzają cząsteczki parującej wody. Z kolei grupa chiralna musi
utrzymywać się wyraźnie nad powierzchnią.
Rotujące cząsteczki zmieniają płaszczyznę polaryzacji odbitego światła i w polu widzenia
mikroskopu Brewstera, obejmującym kilkadziesiąt milimetrów kwadratowych, pojawiają się obszary
o cyklicznie zmieniającej się jasności. Najszybszy zarejestrowany w ten sposób czas obrotu
cząsteczek wynosił pięć sekund, najdłuższy aż osiem minut. Prawdopodobnie można uzyskać
obroty jeszcze wolniejsze, jednak nie poprzez obniżanie temperatury (ciekły kryształ przechodzi
wówczas do fazy stałej), lecz nasycając powietrze parą wodną, co obniżyłoby szybkość parowania,
a zatem i częstotliwość zderzeń cząsteczek wody ze „śmigłami” ciekłych kryształów.
Wolno rotujące cząsteczki ciekłych kryształów mogą znaleźć zastosowanie przy budowie
nanourządzeń. „Można skonstruować cząsteczkę, w której pełniąca rolę śmigła grupa atomów
byłaby czymś w rodzaju nanourządzenia napędowego. Stworzylibyśmy wtedy prawdziwy
molekularny nanosilnik napędzany strumieniem pary wodnej” – mówi dr inż. Żywociński i dodaje,
że naukowcy pracują obecnie nad możliwością przeniesienia kolektywnego ruchu obrotowego
pojedynczych cząsteczek na większe obiekty.
Instytut Chemii Fizycznej Polskiej Akademii Nauk (http://www.ichf.edu.pl/) został powołany w 1955 roku jako jeden z pierwszych
instytutów chemicznych PAN. Profil naukowy Instytutu jest silnie powiązany z najnowszymi światowymi kierunkami rozwoju chemii
fizycznej i fizyki chemicznej. Badania naukowe są prowadzone w 9 zakładach naukowych. Działający w ramach Instytutu Zakład
Doświadczalny CHEMIPAN wdraża, produkuje i komercjalizuje specjalistyczne związki chemiczne do zastosowań m.in. w rolnictwie
i farmacji. Instytut publikuje około 300 oryginalnych prac badawczych rocznie.
KONTAKTY DO NAUKOWCÓW:
prof. dr hab. Robert Hołyst
Instytut Chemii Fizycznej Polskiej Akademii Nauk
tel. +48 22 3433123
email: [email protected]
dr inż. Andrzej Żywociński
Instytut Chemii Fizycznej Polskiej Akademii Nauk
tel. +48 22 3433247
email: [email protected]
POWIĄZANE STRONY WWW:
http://www.ichf.edu.pl/
Strona Instytutu Chemii Fizycznej Polskiej Akademii Nauk.
http://www.ichf.edu.pl/press/
Serwis prasowy Instytutu Chemii Fizycznej PAN.
MATERIAŁY GRAFICZNE:
IChF100901b_fot01s.jpg
HR: http://ichf.edu.pl/press/2010/09/IChF100901b_fot01.jpg
Dr inż. Andrzej Żywociński wraz z doktorantką Patrycją Nitoń przy wadze Langmuira, za pomocą której badają monomolekularne
warstwy ciekłych kryształów na powierzchni wody. (Źródło: IChF PAN, Grzegorz Krzyżewski)
IChF100901b_fot02s.jpg
HR: http://ichf.edu.pl/press/2010/09/IChF100901b_fot02.jpg
Efekty rotacji cząsteczek ciekłego kryształu w warstwie molekularnej. Zaznaczony obszar przechodzi cyklicznie z ciemnego w jasny, w
zależności od tego, jak rotujące cząsteczki skręcają płaszczyznę polaryzacji odbitego światła. Kolory sztuczne. (Źródło: IChF PAN)
MATERIAŁY FILMOWE:
IChF100901c_mov01.avi
HR: http://ichf.edu.pl/press/2010/09/IChF100901c_mov01.avi
640x480, 3.58 MB
Film wykonany w Instytucie Chemii Fizycznej PAN przedstawia powierzchnię wody pokrytą warstwą monomolekularną ciekłego
kryształu. Rotujące cząsteczki zmieniają płaszczyznę polaryzacji odbitego światła i wywołują cykliczne zmiany jasności, widoczne
szczególnie dobrze w spirali u dołu ekranu. Pole widzenia ma rozmiary 4,8 x 6,4 mm. (Źródło: IChF PAN)