(Cottus poecilopus Heckel) IN THE POPRAD

Transkrypt

(Cottus poecilopus Heckel) IN THE POPRAD
Acta Sci. Pol., Piscaria 4(1-2) 2005, 17-24
IMPACT OF EVIRONMENTAL FACTORS ON
THE DISTRIBUTION AND DENSITY OF THE SIBERIAN
SCULPIN (Cottus poecilopus Heckel) IN THE POPRAD
RIVER BASIN
Leszek Augustyn1, Andrzej Witkowski2, Piotr Epler3
1
Professional and Vocational College, Nowy Sącz, Poland
Wrocáaw University, Wrocáaw, Poland
3
Agricultural University, Kraków, Poland
2
Abstract. Distribution of the Siberian sculpin (Cottus poecilopus) was studied based on data
collected from 138 sites in the Poprad River catchment area (the Vistula basin, southern Poland).
The population density was found to range from 3 to 203 inds·100 m-2. Large differences in fish
density were found between the streams and between sites within a stream. The Siberian sculpin
were significantly more abundant at shallow sites: densities of up to 50 inds·100 m-2 were
recorded at sites of mean depth <15 cm. In low gradient stream sections (<25 m·km-1) with
numerous pools (>50% bed surface area), the density exceeded 50 inds·100 m-2.
The species density was statistically significantly, negatively correlated with the distance
from the stream origin (r = -0.7453), stream bed gradient (r = -0.8652), and mean depth
(r = -0.7078). On the other hand, a significant negative correlation was found between the
pools sections and the density (r = -0.7496). The relationships between the density and
the environmental factors analysed are presented in the form of multiple regression.
Key words: Cottus poecilopus, density, distribution, environmental factors, mountain streams
INTRODUCTION
The Siberian sculpin (Cottus poecilopus Heckel) is a Eurasian species. In Central
Europe, it is found only in mountain streams of the Carpathians and the Sudety
Mountains where it inhabits stream sections closest to the stream origins, i.e., the upper
part of the brown trout domain [Starmach 1965, 1972, ýihaĜ 1969]. Outside that area,
a few lacustrine sites of the species have been reported [Duncker 1925, Witkowski
1984, 2001, Kotusz et al. 2004].
Corresponding author – Adres do korespondencji: dr Leszek Augustyn, OkrĊg PZW Nowy Sącz,
ul. Inwalidów Wojennnych 14, 33-300 Nowy Sącz, e-mail: [email protected]
18
L. Augustyn, A. Witkowski, P. Epler
Besides taxonomy [Starmach 1972, Witkowski 1979] and genetics [PaĞko and
MaĞlak 2003], research on C. poecilopus focusws on its interactions with the brown trout
[Olsen and Vøllestad 2001, 2003, Hesthagen and Heggenes 2003, Holmen et al. 2003,
Hesthagen et al. 2004 a,b].
The Siberian sculpin is a demersal species: during the day, the fish stay hidden
under boulders and fallen trees [Witkowski 2005], which – in connection with their
cryptic coloration [Zalewski 1986] and specific resistance to electric field [Barrett and
Grossman 1988] – renders them hard to catch by electrofishing. This is the reason why
papers on distribution of C. poecilopus along a stream profile as well as on density,
biomass, and habitat preferences in streams and lakes are scant [Holmen et al. 2003,
Kotusz et al. 2004].
The present study was aimed at identifying the environmental factors controlling
the highest densities of C. poecilopus in streams of the Poprad River basin (southern Poland).
MATERIAL AND METHODS
The present study on the Siberian sculpin was conducted within the framework of
the monitoring of the River Poprad basin fish fauna [Augustyn 2004]. A total of 138 sites,
each 100-m long, were surveyed in 17 streams. The sites were located in 5 firstorder
streams (Baraniecki, Izwor, Rohacz, Wapiennik, and Maáa àomnica), in 6 secondorder
streams (Máodowski, Maáa Wierchomla, CzerteĪ, Potasznia, Kokuszka, and Szczawniczek), and in 6 third- and fourth-order ones (Maáa Roztoka, Wielka Roztoka, Rzeczanowski, Przysietnicki, Szczawnik, and àomniczanka) (Table 1; Fig. 1). The streams drain
of the Radziejowa (1.262 m asl) and Jaworzyna Krynicka (1.114 m asl) mountain ranges in
the Beskid Sądecki area. The major ranges are accompanied by lower hills (650-800 m asl)
resembling a high piedmont area; they slope down, step-wise, towards the Poprad valley.
Beds of the streams surveyed incise the flysch of the Magura nappe made up by thickbedded sandstones intersected by shale bands. The small (2-3 km2), totally (100%)
forested, drainage areas of the streams suffer no flood surges. Therefore the beds feature
boulders and fallen trees forming numerous (3-6·m-2) refuges utilised by the fish. At all
the sites, C. poecilopus occurred sympatrically with the brown trout (Salmo trutta
m. fario) [Augustyn et al. 1996, Augustyn 1999].
The Siberian sculpin were electrofished with an IUP-12 device, two harvesting
operations being conducted at each site. The fish density was calculated using the CarleStrub method [Cowx 1983]. The following variables were determined at each site:
distance from the stream origin (km); gradient (m·km-1); altitude (m asl); pool index,
i.e., pool surface expressed as a percentage of the total stream surface (%); mean width
and depth (cm); and the Siberian sculpin density (inds 100 m2) (Table 1).
Acta Sci. Pol.
Impact of evironmental factors…
19
Table 1. Site characteristics in individual streams
Tabela 1. Charakterystyka stanowisk w poszczególnych potokach
Number
Nr
Stream name
Nazwy potoków
Distance
from origins
OdlegáoĞü
od Ĩródeá
km
m · km-1
m
%
m
cm
001-100
011-200
21-26
27-36
37-46
47-56
57-61
62-71
72-78
79-88
89-91
092-101
102-104
105-114
115-124
125-128
129-138
Szczawniczek
Szczawnik
Baraniecki
Maáa Wierchomla
Potasznia
Izwor
Wapiennik
àomniczanka
CzerteĪ
Maáa àomnica
Rohacz
Kokuszka
Máodowski
Maáa Roztoka
Wielka Roztoka
Rzeczanowski
Przysietnicki
1.9-2.9
5.8-6.8
1.5-2.5
3.1-4.1
5.9-4.9
1.7-2.7
2.4-2.9
3.0-4.0
2.1-2.8
2.6-3.6
2.9-2.6
0.8-1.8
3.0-3.3
3.9-4.9
4.9-5.9
3.5-6.6
2.7-3.7
065-110
045-850
090-145
35-45
05-30
070-155
075-110
115-175
090-110
50-70
095-100
115-135
75-95
25-75
65-95
060-115
45-80
750-685
670-625
640-550
590-555
535-515
630-560
550-480
725-610
690-600
570-520
635-620
750-635
595-520
555-510
654-500
560-440
575-530
13-67
10-47
01-37
00-84
00-51
07-29
02-20
09-33
13-39
00-28
04-24
04-33
02-52
05-43
20-61
12-84
11-61
0.91-1.98
2.17-3.31
0.72-1.98
1.30-2.10
2.03-3.20
0.83-1.98
0.71-1.34
2.06-3.02
1.61-1.98
1.49-2.02
0.71-1.49
0.71-1.38
1.51-1.98
1.72-2.91
2.03-2.96
1.10-2.00
1.17-2.11
07.8-21.1
29.1-37.4
06.1-23.5
20.0-22.3
19.6-47.6
06.1-17.4
08.0-12.9
27.0-32.5
19.3-26.6
12.5-23.4
10.6-24.4
08.0-22.8
18.0-30.0
20.4-40.7
25.8-33.4
17.9-23.2
14.8-26.2
. ...
c z an ows k I
ze
125-128
.
... ..
.. .....
.
....
.
.
.... ... ....
..
92-101
k
a
72-78
79-88
.
.
2
.
.
4
.
.
6 km
Fig. 1. Location of sampling sites in the Poprad River system
Rys. 1. Lokalizacja stanowisk w dorzeczu Popradu
cz e k
I
..
. ..
.
d
S
1-10
w
n
I
k
zc
z a wn
11-20
o p ra
P
S L
OV
A K
I A
.
.
0
27-36
la
om
h
rc
I e
21-26
W
za
89-91
m
37-46
Szc
ào
62-71
a
nk
47-56
za
57-61
lIk
z
k
n Ic
c
er
Cz
o
I
...
M
u sz
.......
t oka
o z
R
115-124
105-114
..
Piscaria 4(1-2) 2005
Mean
Mean
width
depth
ĝrednia
ĝrednia
szerokoĞü gáĊbokoĞü
Ċ Īy
K
Pr
e t nI c kI
sI
129-138
R
....
K sI
102 - 104
Site
Pool
index
WskaĨnik
plos
ec
Pop r a d
n
zy
D
u
aj
Mean
altitude
PoáoĪenie
n. p. m.
Gradient
Spadek
L. Augustyn, A. Witkowski, P. Epler
20
Statistical analytical techniques were used to identify the environmental variables
most important for the occurrence and the maximum density of the Siberian sculpin in
the streams surveyed. The distribution of C. poecilopus in the Poprad basin streams was
modelled by means of multiple regression.
RESULTS
The Siberian sculpin density in the Poprad basin streams surveyed was found to vary
over a wide range of 3-63 individuals per 100 m2 (Table 2). It was only in once case, at a
site located in the Maáa Roztoka, that a record-breaking density of 203 inds per 100 m2
was recorded. The highest within-stream density variations were observed in the:
Kokuszka, Izwor, Maáa àomnica, and Maáa Roztoka.
Table 2. Siberian sculpin density ranges in individual streams
Tabela 2. Zakresy zagĊszczeĔ gáowaczy w poszczególnych potokach
Number
Numer
Stream
Potok
Density
ZagĊszczenie
n·100 m-2
01-10
11-20
21-26
27-36
37-46
47-56
57-61
62-71
72-78
79-88
89-91
092-101
102-104
105-114
115-124
125-128
129-138
Szczawniczek
Szczawnik
Baraniecki
Maáa Wierchomla
Potasznia
Izwor
Wapiennik
àomniczanka
CzerteĪ
Maáa àomnica
Rohacz
Kokuszka
Máodowski
Maáa Roztoka
Wielka Roztoka
Rzeczanowski
Przysietnicki
11-27
07-19
17-24
08-27
07-13
07-39
3-7
12-24
09-31
24-49
11-16
18-63
07-13
025-203
11-22
07-11
03-21
Statistical analyses showed non-linear regressions (Fig. 2) to provide the best fit to
the relationship between the C. poecilopus distribution in the Poprad tributaries and the
environmental variables taken into account. In the first-order streams, the Siberian
sculpin densities averaged 80, 35, 20, and 10 inds 100 m-2 at a distance of 1, 2, 3, and 5
km away from the stream origins, respectively. The density-distance correlations were
statistically significant (r = -0.7453; p<0.0001). Correlations between density and
stream gradient were reverse as well: the highest densities (>30 inds·100 m-2)
accompanied low (<25 m·km-1) gradients, while high gradients (on the order of
100 m·km-1) were associated with densities <10 inds·100 m-2 (r = -0.8652; p<0.00001).
Stream sections with shallow pools taking up >50% bed area (r = -0.7496; p<0.0001)
Acta Sci. Pol.
Impact of evironmental factors…
21
and water depth<10 cm (r = -0.7078; p<0.0001) proved optimal for the Siberian sculpin
persistence. On the other hand, no such significant effect on density was produced by
the stream altitude (r = -0.4181; p<0.01).
Density – ZagĊszczenie, n·100 m-2
Distance – OdlegáoĞü, km
Gradient – Spadek, m·km-1
Altitude, m above sea level
WysokoĞü, m n.p.m
Pool index – WskaĨnik PLOS, %
Width – SzerokoĞü, m
Depth – GáĊbokoĞü, m
Fig. 2. Relationships between mean Siberian sculpin density and mean values of the environmental variables analysed: A – distance from stream origin; B – gradient; C – altitude; D – pool
index; E – bed width; F – depth.
Rys. 2. ZaleĪnoĞci statystyczne miĊdzy zagĊszczeniami gáowaczy prĊgopáetwych a Ğrednimi wartoĞciami analizowanych parametrów: A – odlegáoĞü od Ĩródeá, B – spadków,
C – wysokoĞci n.p.m., D – wskaĨnik plos, E – szerokoĞci koryt, F – gáĊbokoĞci.
The multiple regression analysis produced a regression equation below, describing
the C. poecilopus density in the Poprad basin streams in terms of the environmental
variables considered; the density proved highly correlated (R = 0.9179; p<0.00001) with
those variables. The regression equation is as follows:
Piscaria 4(1-2) 2005
L. Augustyn, A. Witkowski, P. Epler
22
D = 20.79 – 0.2s + 0.361p – 0.88d,
SE ± 4.5 (inds·100 m-2),
where :
D, density (inds·100 m-2),
s, gradient (n·km-1),
p, pool index (%),
d, mean depth (cm).
DISCUSSION
Similarly to the wide density ranges of the Siberian sculpin in this study, wide ranges
were reported also from the streams RogoĨnik (0.6-50 inds·100 m-2), [Solewski 1963] and
Biaáka TatrzaĔska (1.3-15 inds·100 m-2) [Solewski 1965] as well as in the Beskidy
tributaries of the Wag: the Lušova (5-211 inds·100 m-2) and Brodská (15-302 inds·100 m-2)
[Helan et al. 1973].
In the Poprad tributaries, C. poecilopus prefer stream sections close to stream origins
(1-3 km away from the springs), with a relatively low gradient (15-40 m·km-1), narrow
beds (<1.5 m), and showing domination of riffles (>70%) over pools, which most
probably is a result of restricted interference competition-like interactions with the brown
trout [Olsen and Vøllestad 2003, Hesthagen and Heggenes 2003, Holmen et al. 2003].
Such conditions are met both by the first-order (Kokuszka) and fourth-order (Maáa
Roztoka) streams the beds of which incise rock formations making up the terraces of
the high Beskid Sądecki piedmont.
REFERENCES
Augustyn L., 1999. Effectiveness of autumn stocking brown trout fry (O+) (Salmo trutta m. fario L.)
into streams of the Poprad River system [EfektywnoĞü zarybieĔ podchowanym narybkiem
jesiennym (O+) pstrąga potokowego (Salmo trutta m. fario L.) w potokach dorzecza Popradu].
Rocz. Nauk. PZW 12, 61-80 [in Polish].
Augustyn L., 2004. Ichthyofauna of the Polish part of the Poprad River [Ichtiofauna polskiej
czĊĞci dorzecza Popradu]. Arch. Pol. Fish. 12 (Supl. 2), 64-72. [in Polish].
Augustyn L., Skóra S., Wáodek J.M., 1996. Ichthyofauna of the Poprad drainage area [Ichtiofauna
dorzecza rzeki Poprad]. Rocz. Nauk. PZW 9, 5-22. [in Polish].
Barrett J.C., Grossman G.D., 1988. Effects of direct current electrofishing on the Mottled Sculpin.
N. Am. J. Fish. Manag. 8(1), 112-116.
ýihaĜ J., 1969. Taxonomical and ecological notes on Cottus gobio L., 1758 and Cottus poecilopus
Heckel, 1836 (Osteichthyes: Cottidae). Acta Soc. Zool. Bohem. 33, 102-110.
Cowx J.G., 1983. Review of the methods for estimating population size from survey removal
data. Fisheries Manage. 14, 67-82.
Acta Sci. Pol.
Impact of evironmental factors…
23
Duncker G., 1925. Ichthyologische Notizen. 2. Die Verbreitung von Cottus gobio L. und C.
poecilopus Heck. in Nord und Mitteleuropa. Pallasia 2, 201-205.
Helan J., Kubiþek F., Sedlak E., Zelinka M., 1973. Production conditions in the trout brooks of
the Beskidy Mountains. Fol. Sc. Nat. Univ. Purk. Brun. 19, Biol. 38, 4.
Hesthagen T., Heggenes J., 2003. Competitive habitat displacement of brown trout by Siberian
sculpin: the role of size and density. J. Fish Biol. 62(1), 222-236.
Hesthagen T., Hegge O., Skurdal J., Dervo B.K., 2004a. Age and growth of Siberian sculpin
(Cottus poecilopus) and young brown trout (Salmo trutta) in subSiberian Norwegian river.
Hydrobiologia. 521(1-3), 107-115.
Hesthagen T., Saksgård R., Hegge O., Dervo B.K. Skurdal J., 2004b. Niche overlap between
brown trout (Salmo trutta) and Siberian sculpin (Cottus poecilopus) in subSiberian Norwegian
river. Hydrobiologia. 521(1-3), 117-125.
Holmen J., Olsen E.M., Vøllestad L.A., 2003. Interspecific competition between stream-dwelling
brown trout and Siberian sculpin. J. Fish Biol. 62(6), 1312-1325.
Horowitz R.J., 1978. Temporal variability patterns and the distributional patterns of stream fishes.
Ecol. Monogr. 48, 307-321.
Kotusz J., Krappe M., Kusznierz J., Popioáek M., Riel P., Waterstraat A., Witkowski A., 2004.
Distribution, density and habitat of Cottus poecilopus (Heckel, 1836) in Lake HaĔcza
(NE Poland) as compared with the situation in the Luzin lakes (E. Germany). Verh.
Deutschegesellsch. Ichthyol.
Olsen E.M., Vøllestad L.A., 2001. Within-stream variation in early life-history traits in brown
trout. J. Fish Biol. 59(6), 1579-1588.
Olsen E.M., Vøllestad L.A., 2003. Microgeographical variation in brown trout reproductive traits:
possible effects of biotic interactions. Oikos 100(3), 483-492.
PaĞko à., MaĞlak R., 2003. Genetics of the peripheral populations of the Siberian sculpin, Cottus
poecilopus (Scorpaeniformes, Cottidae) in Poland. J. Zool. Systemat. & Evolut. Res. 41(3),
196-204.
Solewski W., 1963. Brown trout (Salmo trutta m. fario L.) in the RogoĨnik stream. Acta
Hydrobiol. 4, 353-366 .
Solewski W., 1965. The ichthyofauna of the Biaáka TatrzaĔska stream with special respect to
the characteristics of brown trout ( Salmo trutta m. fario L.). Acta Hydrobiol. 7, 197-224.
Starmach J., 1965. Koppen in der Karpathenflüssen. II. Antreten und Charakteristik der
Buntflossenkoppe (Cottus poecilopus Heckel) und weisslossigen Koppe (Cottus gobio L.) in
Raba flussgebiet. Acta Hydrobiol. 7, 109-140.
Starmach J., 1972. Charakterystyka gáowaczy: Cottus poecilopus Heckel i Cottus gobio L. Acta
Hydrobiol. 14, 67-102.
Witkowski A., 1979. A taxonomic study on fresh-water sculpins of genus Cottus Linaneus, 1758
(Cottus gobio L. and Cottus poecilopus Heck.) in Poland. Acta Univ. Wratisl., Prz. Zool. 10, 1-95.
Witkowski A., 1984. Morphological variability in lake and river populations of Cottus poecilopus
Heckel, 1836 (Pisces: Cottidae). Acta Ichthyol. Piscat. 14(1-2), 43-57.
Witkowski A., 2001. Cottus poecilopus Heckel, 1936. [In: Polska Czerwona KsiĊga Zwierząt].
Ed. Z. GáowaciĔski. PWRiL, Warszawa, 318-319.
Witkowski A., 2005. Cottidae: Cottus poecilopus Heckel. Scorpaeniformes, vol. 7, The Freshwater
Fishes of Europe, Aula Verlag, Wiesbaden.
Zalewski M., 1986. Factor affecting the efficiency of electrofishing in rivers. Hydrobiologia
(Sofia) 27, 56-69.
Piscaria 4(1-2) 2005
24
L. Augustyn, A. Witkowski, P. Epler
WPàYW CZYNIKÓW ĝRODOWISKOWYCH NA ROZSIEDLENIE
I ZAGĉSZCZENIE GàOWACZA PRĉGOPàETWEGO (Cottus poecilopus
Heckel) W DORZECZU POPRADU
Streszczenie. W dorzeczu Popradu (dorzecze Wisáy, Polska Poáudniowa) na 138 stanowiskach zbadano rozsiedlenie gáowacza prĊgopáetwego (Cottus poecilopus). ZagĊszczenie
gáowacza prĊgopáetwego w poszczególnych potokach wynosiáo od 3 do 203 ryb˹100m-2.
Stwierdzono duĪe róĪnice zagĊszczeĔ miĊdzy róĪnymi potokami, a nawet w tych samych
potokach miĊdzy róĪnymi stanowiskami. Gáowacz prĊgopáetwy najliczniej (>50 ryb˹100m-2)
wystĊpowaá w páytkiej wodzie (<15 cm gáĊbokoĞci), w odcinkach z maáym spadkiem
(<25 m·km-1) z przewaga bystrzy nad plosami (>50%). Z przeprowadzonej analizy wynika,
Īe istotnie statystycznie ujemny wpáyw na zagĊszczenie gáowaczy w potokach wywieraáy:
odlegáoĞci od Ĩródeá (r = -0,7453) i ĞciĞle skorelowane z nimi spadki podáuĪne koryt
(r = -0,8652), a takĪe Ğrednie gáĊbokoĞci koryt (r = -0,7078). Ponadto statystycznie istotny
ujemny wpáyw wywierają odcinki plos (r = -0,7496). Natomiast nie odnotowano wpáywu
szerokoĞci koryt potoków i ich poáoĪenia nad poziomem morza. W oparciu o analizowane
czynniki Ğrodowiskowe przedstawiono zaleĪnoĞü w postaci regresji wielokrotnej miĊdzy ich
wartoĞciami a zagĊszczeniem C. poeciliopus.
Sáowa kluczowe: Cottus poecilopus, czynniki Ğrodowiskowe, rozmieszczenie, zagĊszczenie
Accepted for print – Zaakceptowano do druku: 15.04.2005
Acta Sci. Pol.

Podobne dokumenty