Æ ÁÍ ÁÕ À Í Ä∗ ÚÙÞ† ×ØÛ ÜÝÖ Ò ÅË 0157.5 ¯ v Æ G ¶ ¤Ç ¯Æ G

Transkrypt

Æ ÁÍ ÁÕ À Í Ä∗ ÚÙÞ† ×ØÛ ÜÝÖ Ò ÅË 0157.5 ¯ v Æ G ¶ ¤Ç ¯Æ G
B 39 7 B 6 m
2016 h 11 |gg
Vol. 39 No. 6
ACTA MATHEMATICAE APPLICATAE SINICA
Nov., 2016
NJ_YIU[℄IqHYU[L
∗
vuz
(_fZ1hh3h
. 363000)
†
(E-mail:
[email protected])
stw
(LDp1hDh
y 200237)
(E-mail:
[email protected])
xyr
(Qg-
1hhKQg2S%)
(E-mail:
[email protected])
k f 4 =k3=BWV( '>4 =3H.NmJ7 = $
, n'_C4
H.4'E=L59V3H.N=4>_C4
;v4 bqDy+q,drT U;8=41
Q_C4
=3
H.N=qX`%o;L&W
OPG 3H.N
7
_C4
MR(2000) oZMS 05C50
n\MS 0157.5
G
G
ω
P Kn−ω,ω
Kω
1
n
P Kn−ω,ω
Pn−ω
P Kn−ω,ω
he
G ? n %56 ("z-), pIFÆ? V (G) = {v , v , · · · , v }, Æ?
E(G). R6 G *?F v ∈ V (G), N (v) (? N (v)) F v Æ6 G *?#O
F8)?ÆF v ?O? d(v) = |N (v)|.  e "6 G *? e ∈/ E(G), b
| G + e Æ6 G * e #<:?62mAR|rFÆ (Æ)W , ^
F 2012 i 5 22 }92016 i 10 24 }9beh
v5y;h* (11471077, 1379021, 11371372), 5y;h* (2014J01020, 2015J01018,
2016J01673) ~)v!;h* (2014M551831) 30Sd
/i=
1
G
∗
†
2
n
FJu`D-mJ7=H.4=9V3H.N
929
G − W  G + W Æ6 G *uG W *?F () #<:?[66 G
*?rl8 C "6 G ?rlF4Æ C, < C *| JlFM6 G ?8
? ω(G) (? ω), ?6 G *:28?IFlG*rYBKw?
b|<$ [1].
A(G)  D(G) ^ ?6 G ?O#4OR 46 G ?AlA4K
w? L(G) = D(G) − A(G). Nz L(G) rlK? R(?4s$?\r_
?_8? 0. #t 0 ?$?rl)!x. L(G) ?)! µ (G) (6 G ?Al
A)!) <tL℄jN?
6
m
i
µ1 (G) ≥ µ2 (G) ≥ · · · ≥ µn−1 (G) ≥ µn (G) = 0.
aMCXWAlA)! µ (G) ? 0 6s+6#R}?6 G "I0
?x. µ (G) p0%(?6 G ?4I0O? α(G).
y ∈ R ?r n NUK y y *R}6 G *F v ?^K?!,
|p(?R6 G IF?rl)d! s y (?R6 G ?d! x ? L(G) R}
)! α(G) ?5C)!UK.UK(?6 G ? Fiedler UK,VR|r
v ∈ V (G), tL)[*
Fiedler[2]
n−1
n−1
n
v
[3]
α(G)xv = d(v)xv −
X
xu .
(1.1)
u∈N (v)
Nz x e = 0, p* e ?r n wrNUKI℄tLt α(G) ?Æ
T
X
x, L(G)x
x) =
α(G) = (x
(xvi − xvj )2 =
vi vj ∈E(G)
y T L(G)y
y
.
yT y
y ∈Rn \{0
0}, yT ee=0
min
(1.2)
 Royle Æ n,M6W α(G) ?6?a&6W α(G) ?6?
js0!2?&6:er?#s2K?GOk1xKrY6C?4I
0O?W!H*~
oTt4I0O?'w<$ de Abreu ?6
GO .
G
68 ω ?# n %I06q)?Æp* 2 ≤ ω ≤ n. B6
PK
(6 1) <w6 K ÆrFz,r-esU P
V<:?6N
z P K = P  P K = K . ÆnK8 ω ? n %I06 G *G>M
6:W4I0O?6?`D6 P K . 2R`D6 P K ?4I0O
?rYa&p<M'X
[4]
Godsil
[5−13]
[14]
n,ω
n−ω,ω
n−2,2
n
0,n
ω
n−ω
n
n,ω
n−ω,ω
Kw
n−ω,ω
vw
v1 vw +1 vw + 2
vn
v2
^ 1 A?5 P K
n−ω,ω
{ ~ f f 930
2
39
7
jElX
R6 G *?F v ∈ V (G), L (G) L(G) 0x uF v #R}?_NV
<:?44C ?R6 G *?F4Æ V ⊂ V (G), L (G) L(G) 0x^
u V *?#?F#R}?_NV<:?44 B  H ?Jl n %4
p* B L(P ) 0x uU P ?rlPF#R}?_NV#<:?
44V H L(P ) 0x^ uU P ?JlPF#R}?_NV#<
:?44
R[ M , τ (M ) ? M ?:W)! Φ(M ) = Φ(M ; x) = det(xI − M ) ? M
?)!TTÆ M = L(G), ?M[I℄ Φ(L(G); x)(6 G ?AlA)T
TÆ) ? Φ(G) Φ(G; x). tLJlzE.% B"6 G ?AlA)TT
Æ
iT 2.1 G = G u : vG ?I#6 G ?F u 6 G ?F v V<:?6
v
1
V1
1
n
n
n+1
n
n+1
n+2
[15]
n
n+2
1
2
1
2
Φ(L(G)) = Φ(L(G1 ))Φ(L(G2 )) − Φ(L(G1 ))Φ(Lv (G2 )) − Φ(L(G2 ))Φ(Lu (G1 )).
X
(1 [15, Lemma 8] RzE 2.1 ?a?C [YI℄<<:tLo?rÆ?'
iT 2.2 M =
??rl[?4p* A  B ^ ?
m × m  n × n 4 E ? m × n 4s+rl℄P?! 1 Æ (1, 1) C$
det(M ) = det(A) det(B) − det(A ) det(B ), * A  B ^ ? G A  B ?Cr_
CrNV<:?4
iT 2.3 R Φ(P ) = 0, Φ(B ) = 1, Φ(H ) = 1, A −E11
T
−E11
B
11
11
[7]
11
0
11
0
11
0
(1) xΦ(Bn ) = Φ(Pn+1 ) + Φ(Pn );
(2) xΦ(Hn ) = Φ(Pn+1 ) (n ≥ 1).
iT 2.4 G ?r n %6 G = G + e ?Æ6 G *+r[ e V<:6
6 G  G ?AlA)!</R 1 ≤ i ≤ n − 1, [16]
′
′
µi+1 (G′ ) ≤ µi (G) ≤ µi (G′ ).
zE 2.4, tL9XNz?
`W 2.5 G ?I06 v ? G *resF (O? 1 ?F). α(G) ≤ α(G − v).
tL"Æ0%(? Cauchy "ÆlKEp(?/KE .
iT 2.6 A ? n % Hermitian 4s6)! λ ≥ λ ≥ · · · ≥ λ . B ? A
?rl m (m ≤ n) %/46)! ρ ≥ ρ ≥ · · · ≥ ρ , R i = 1, 2, · · · , m, tL
"Æ)G
[16]
1
1
2
λn−m+i ≤ ρi ≤ λi .
zE 2.6, ' α(P ) = 4 sin
n
2 π
2n ,
I℄tL'X
m
2
n
FJu`D-mJ7=H.4=9V3H.N
931
iT 2.7  k > l ≥ 1, α(P ) > α(P ) s τ (B ) > τ (B ). 2τ (B ) = α(P ).
G ? n ≥ 2 %I06 v ?6 G ?rlF G (k ≥ l ≥ 1) (6 2) 6 G
ÆF v z,J-&^ ? k  l ?esU P = v(v )v · · · v v  Q = v(u )u · · · u u
V<:?p* v , v , · · · , v  u , u , · · · , u rY."P2?[IFR
6
m
l
k
l
k
2n+1
n
k,l
k+1
1
2
1
k
2
2 1
k
l+1
2 1
l
l
Gk+1,l−1 = Gk,l − u1 u2 + v1 u1 ,
(6 G
6 G 0x#r-V<:? (6 2).
k+1,l−1
k,l
v
G
ul
u2
u1
vk
vk -1
v2
v1
u3
u2
vk vk -1
v2
v1
u1
Gk +1,l -1
Gk ,l
^ 2 "
iT 2.8 G  G
? Fiedler UK
[17]
ul
v
G
k,l
(k ≥ l ≥ 1)
k+1,l−1
^ ?^#Kw?6 x ?6 G
k,l
α(Gk,l ) ≥ α(Gk+1,l−1 ).
,r# x 6= 0 x 6= 0, t"Æ?jk?
iT 2.9 u  v I06 G *?Jl"2?F H (k ≥ l ≥ 1) 6 G
^ ÆF u  v z,&? k  l ?esU P = vv · · · v v  Q = uu · · · u u V<:
?p* v , v , · · · , v  u , u , · · · , u rY."P2?[IFR x ?6 H ?
Fiedler UK
v1
[7]
u1
k,l
k
1
2
1
k
2
l
2 1
l
k,l
′
Hk+l
= Hk,l − vvk + u1 vk ,
x
2 1
′′
Hk+l
= Hk,l − uul + v1 ul .
α(H ) ≥ min {α(H ), α(H )}.
iT 2.10 G ? n %I06 v , · · · , v (s ≥ 2) ?6 G *?rY.
[PI?FsY7 N (v ) = · · · = N (v ). R G 6 G ÆF v , . . . , v + t
(0 ≤ t ≤
) -V<:?[6 α(G) 6= d(v ), α(G) = α(G ).
iT 2.11 µ ?6 G ?rlAlA)!pR}?)!UK? x. 
x = x , µ p6 G ?rlAlA)!pR}?)!UKp? x, p* G
Æ6 G * (6 G *[ uv ) uG (6 G * uv ) e = uv V<:?
6
iT 2.12 e = uv ?6 G ?r-s x ?6 G ? Fiedler UK x 6= x ,
α(G) > α(G − e).
{ Æ (1.2), I℄ α(G) = x L(G)xx > x L(G − e)xx ≥ α(G − e). v1 xu1
≥ 0,
′
k+l
k,l
′′
k+l
[12]
1
1
s
s
t
s(s−1)
2
1
1
s
t
[3]
u
v
′
′
u
T
T
v
{ ~ f f 932
3
39
7
pgQV
MI℄)rY&n :?rYb| G (2 ≤ ω ≤ n) 8 K
 ω :^ #Æ8 K ?\lFV^)?#I06q)?ÆNz G ∈ G ,
G rl<w6 K (pIF"\? v , v , · · · , v )  ω : T , T , · · · , T (|V (T )| ≥
|V (T )| ≥ · · · ≥ |V (T )| ≥ 1) ^ #ÆF v , v , · · · , v Vq)aN |V (T )| + |V (T )| +
· · · + |V (T )| = n. ,VR|r G ∈ G , I℄<t G ? G = K (T , T , · · · , T ).
?M[I℄p<t G = K (P , P , · · · , P ) ? G = K (l , l , · · · , l ),
p* l ≥ l ≥ · · · ≥ l ≥ 0 s l + l + · · · + l + ω = n. l l = 0, [q
K (l , · · · , l , 0, 0, · · · , 0) ? K (l , · · · , l ). Nz K (n − 2) = P K = P ,
+
n,ω
ω
+
n,ω
ω
ω
2
ω
2
1
ω
1
2
ω
l1 +1
ω
ω
2
1
2
1
ω
2
i−1
P Kn−ω,ω = Kω (n − ω) ∈
ω
ω
1
ω
G+
n,ω
lω +1
2
1
ω
l2 +1
1
ω
1
+
n,ω
ω
1
1
2
1
ω
2
ω
i
2
i−1
n−2,2
n
⊂ Gn,ω .
iT 3.1 6 ω ≥ 3, α(K (k, l)) > α(P K ), p* k ≥ l ≥ 1 s k + l + ω = n.
{ I℄l 6 3 ?|[Æ^ R K (k, l)  P K ?F,_|
ω
n−ω,ω
ω
vw
v1
uk
n−ω,ω
u1
u2
Kw
Kw
v2
w2
wl
vw
v1 uk
u2 u1 wl
w2 w1
v2
w1
PK (n - w , w )
Kw ( k , l )
^ 3 5 K (k, l) } P K
ω
n−ω,ω
>HE{
zE 2.1 <<
Φ(Kω (k, l)) = Φ(P Kk,ω )Φ(Pl ) − Φ(P Kk,ω )Φ(Bl−1 ) − Φ(Lv2 (P Kk,ω ))Φ(Pl ),
Φ(P Kn−ω,ω ) = Φ(P Kk,ω )Φ(Pl ) − Φ(P Kk,ω )Φ(Bl−1 ) − Φ(Lu1 (P Kk,ω ))Φ(Pl ).
,V
Φ(Kω (k, l)) − Φ(P Kn−ω,ω ) = Φ(Pl ) Φ(Lu1 (P Kk,ω )) − Φ(Lv2 (P Kk,ω )) .
(1C RzE 2.1 ?a[YI℄<<
[15]
Φ(Lu1 (P Kk,ω )) = Φ(Kω )Φ(Bk−1 ) − Φ(Kω )Φ(Hk−2 ) − Φ(Lv1 (Kω ))Φ(Bk−1 ).
2v: Φ(K ) = x(x − ω)
ω
ω−1
, Φ(Lv1 (Kω )) = Φ(Lv2 (Kω )) = (x − 1)(x − ω)ω−2 ,
ω−3
Φ(L{v1 ,v2 } (Kω )) = (x − 2)(x − ω)
(3.3)
R [4]). Q:zE 2.3 << xΦ(B
(
k−1 )
−
6
m
xΦ(Hk−2
FJu`D-mJ7=H.4=9V3H.N
) = Φ(P ). ,VzE 2.2, [* (3.3) <?
933
k
Φ(Lu1 (P Kk,ω )) =(x − ω)ω−1 (xΦ(Bk−1 ) − xΦ(Hk−2 )) − Φ(Lv1 (Kω ))Φ(Bk−1 )
=(x − ω)ω−1 Φ(Pk ) − Φ(Lv1 (Kω ))Φ(Bk−1 ),
C ?I℄
Φ(Lv2 (P Kk,ω )) =Φ(Lv2 (Kω ))Φ(Pk ) − Φ(Lv2 (Kω ))Φ(Bk−1 ) − Φ(L{v1 ,v2 } (Kω ))Φ(Pk )
=(x − ω)ω−3 [x2 − (ω + 2)x + ω + 2]Φ(Pk ) − Φ(Lv2 (Kω ))Φ(Bk−1 ).
x.
Φ(Kω (k, l)) − Φ(P Kn−ω,ω ) = (ω − 2)(ω + 1 − x)(x − ω)ω−3 Φ(Pl )Φ(Pk ).
R α = α(P K ), µ ≥ µ ≥ · · · ≥ µ ≥ µ = 0 ?6 K (k, l) ?AlA)
!zE 2.4 << α < α(P ) s α < α(P ). ,V ω + 1 − α > 0. Q:zE 2.4 <<
α≤µ
(P K
−u w )=µ
(K (k, l) − v w ) ≤ µ
(K (k, l)). x.
1
n−ω,ω
2
n−1
l
n−2
1
n−ω,ω
n
ω
k
l
n−2
2
ω
l
n−2
ω
Φ(Kω (k, l); α) − Φ(P Kn−ω,ω ; α) =α(α − µn−1 ) · · · (α − µ1 )
=(ω − 2)(ω + 1 − α)(α − ω)ω−3 Φ(Pl ; α)Φ(Pk ; α),
α(µn−1 − α) · · · (µ1 − α)
=(−1)4 α2 (ω − 2)(ω + 1 − α)(ω − α)ω−3
l−1
Y
(µi (Pl ) − α)
i=1
|
µ
k−1
Y
(µi (Pk ) − α) > 0,
i=1
{z
}|
>0
{z
}
>0
KT 3.2 R G (2 ≤ ω ≤ n) *?#6p4I06?:W!=r?6
PK
0:
{ R|r K (T , T , · · · , T ) ∈ G , R |V (T )| = l + 1, i = 1, 2, · · · , ω, p*
l ≥ l ≥ · · · ≥ l ≥ 0 s l + l + · · · + l = n − ω.
~ l = 0 s K (T , T , · · · , T ) P K "2qzE 2.8 <<R
l i (1 ≤ i ≤ n − 2), α(K (T , T , · · · , T )) ≥ α(K (i)), p* K (i) ~6 4 #
x ?6 K (i) ? Fiedler UK x 6= 0 x 6= 0 (aÆ (1.1) <<
x = x
= ··· = x
= x = 0. ,VzE 2.11 < α(K (i)) K ?rl
AlA)!"<g?x? α(K (i)) ≤ 1 ( [2]). ,VzE 2.8 <<
α(K (i)) > α(P K
). 'X)G
~ l 6= 0, zE 2.8 < α(K (T , T , · · · , T )) ≥ α(K (l , l , · · · , l )). ,r
n−1
> α.
+
n,ω
n−ω,ω
ω
1
2
1
1
ω
2
2
ω
2
1
2
ω
1
+
ω
vω+1
i
n−ω,ω
2
+
ω
ω
vn
vn−1
i
ω
ω
v1
+
n,ω
ω
+
ω
vn−1
+
ω
vn
ω
+
ω
+
ω
n−ω,ω
2
ω
1
2
ω
ω
1
2
ω
934
#zE 2.9  3.1 <<
{ ~ f f 39
7
α(Kω (l1 , l2 , · · · , lω )) ≥α(Kω (l1 + l3 + · · · + lω , l2 ))
>α(Kω (l1 + l2 + · · · + lω )) = α(P Kn−ω,ω ).
'X)G
Kw
vw
v1 vw +1 vw + 2
vn
vn -1
vi
v2
^ 4 5K
+
ω (i),
o( i = 1, ω + 1, · · · , n − 2.
KT 3.3 6 ω ≤ n − 1, min
n (ω + 1) − p(ω + 1)2 − 4
2
o
, α(P2(n−ω)−1 ) ≤ α(P Kn−ω,ω ) ≤ α(Pn−ω+2 ).
{ ω ≤ n − 1, zE 2.10 < α(P K ) = α(P S ), p* P S (
6 5) I#U P ?rlPF℄6?*\V<:?6,V9X 2.5 <<
n−ω,ω
n−ω,ω
n−ω,ω
n−ω
α(P Sn−ω,ω ) ≤ α(P Sn−ω,ω − {v3 , · · · , vω }) = α(Pn−ω+2 ).
vw
v1
v3
vw +1 vw + 2
vn
v2
^ 5 5 PS
Q:zE 2.6 << τ (L
n−ω,ω .
vω+1 (P Kn−ω,ω ))
≤ α(P Kn−ω,ω ),
p* v ~6 5 #
ω+1
Lvω+1 (P Kn−ω,ω ) = LV1 (P Kn−ω,ω ) ⊕ Bn−ω−1 ,
p* ⊕ 4? V
1
= {vω+1 , · · · , vn },
Φ(LV1 (P Kn−ω,ω )) = (x − ω)ω−2 [x2 − (ω + 1)x + 1],
n (ω + 1) − p(ω + 1)2 − 4
o
τ (Lvω+1 (P Kn−ω,ω )) = min
, τ (Bn−ω−1 ) .
2
m
FJu`D-mJ7=H.4=9V3H.N
935
,VzE 2.7 << τ (B ) = α(P
), 'X)G
iT 3.4 6 ω ≤ n − 1, R|v e ∈/ E(P K ), α(P K ) < α(P K + e).
{  ω = n−1, R|v e ∈/ E(P K ), α(P K ) = 1 < α(P K +e) =
2, ,V'X)GtL9V ω < n − 1 ?t/ e = v v , p* i, j = 1, 2, · · · , n s i < j.
I℄l 6 1 #?[ÆR6 P K ,_|
 i = 1 s j = ω + 2, · · · , n i = 2, 3, · · · , ω s j = n, 2v: P K + v v −
v
v
∈G
s P K + v v − v v P K "2qzE 2.4 K
E 3.2 <<
6
n−ω−1
2(n−ω)−1
n−ω,ω
n−ω,ω
1,n−1
n−ω,ω
1,n−1
1,n−1
i j
n−ω,ω
n−ω,ω
+
n,ω
ω+1 ω+2
n−ω,ω
i j
ω+1 ω+2
i j
n−ω,ω
α(P Kn−ω,ω + vi vj ) ≥ α(P Kn−ω,ω + vi vj − vω+1 vω+2 ) > α(P Kn−ω,ω ).
 i, j = ω + 1, · · · , n, C ?[Y<<
α(P Kn−ω,ω + vi vj ) ≥ α(P Kn−ω,ω + vi vj − vi+1 vi+2 ) > α(P Kn−ω,ω ).
 i = 2, 3, · · · , ω s j = ω + 2, · · · , n − 1, C ?[Y<<
α(P Kn−ω,ω + vi vj ) ≥ α(P Kn−ω,ω + vi vj − v1 vω+1 ) > α(P Kn−ω,ω ).
i = 2, 3, · · · , ω s j = ω + 1. x ?6 P K
6= x ( x
6= x ), zE 2.12 << α(P K
n−ω,ω
xvω+1
vi
(
n−ω,ω
vω+1
v1
+ vi vω+1
n−ω,ω
? Fiedler UK
+ vi vω+1 ) > α(P Kn−ω,ω )
α(P K + v v ) > α(P K + v v − v v ) = α(P K )), 'X)G
 x = x , x = x s α(P K + v v ) = α(P K ), zE 2.4 <
< α(P K ) ≤ µ (P K − v v ) = α(P ). Q:2v: x = x
s x = x , ,VzE 2.11 << α(P K + v v ) = α(P K ) p6
PK
−v v
= K ∪P
?rlAlA)! α(P K + v v ) =
α(P K
) = α(P
). ,VKE 3.3 << α(P
) ≤ α(P
), α(P
)>
α(P
) (sÆzE 2.7 ) ?ZS
).
iT 3.5 R|v 3 ≤ ω ≤ n, α(P K ) > α(P K
{ 6 ω = n, u α(P K ) = n > α(P K ) = 1. 6 3 ≤ ω < n, z
E 3.4  2.4 << α(P K
) < α(P K
+ e) ≤ α(P K
), p* e ∈
/
E(P K
). x.'X)G
KT 3.6 RÆ G (2 ≤ ω ≤ n) *?#6p4I0O?:W!6
PK
=r0:
{  ω = n, +rl<w6 K ∈ G  ω = n − 1, zE 3.4 <<'X)
G ω = 2, 2v: [12] sM# n %I06*p4I0O?:W!U P
=r0:'X)GtLI℄9V 2 < ω < n − 1 ?t/
G ∈ G s G P K "2qKE 3.2 <'X)G
G ∈ G s G ∈/ G . G Æ6 G * GrY< G ∈ G
V<:?[6 G ∼= P K , zE 3.4 'X)G G P K "2
qKE 3.2 <'X)G
vω+1
vi
i ω+1
vω+1
n−ω,ω
vω+1
n−ω,ω
n−ω,ω
v1
n−2
i ω+1
n−ω,ω
n−ω,ω
i ω+1
1 ω+1
v1
ω
n−ω,ω
n−ω,ω
n−ω
n−ω,ω
1 ω+1
n−ω,ω
1 ω+1
vω+1
i ω+1
n−ω,ω
n−ω
n−ω,ω
n−ω
n−ω
vi
i ω+1
n−ω+2
n−ω
n−ω+2
n−ω,ω
0,n
n−ω+1,ω−1
1,n−1
n−ω+1,ω−1
n−ω+1,ω−1
n−ω,ω
n−ω+1,ω−1
n,ω
n−ω,ω
0,n
n
n
+
n−ω,ω
n−ω,ω
′
n−ω,ω
+
n−ω,ω
n−ω,ω
′
′
′
n−ω,ω
+
n−ω,ω
936
{ ~ f f 2v:zE 3.5 KE 3.6, I℄<<tLs'X
`W 3.7 # n %I06*p4I0O?:W!U P =r0:
39
7
n
md G>Ri{A?"71+\?fZ
F R a b
[1] Bondy J, Murty U. Graph theory with applications. New York: MacMillan, 1976
[2] Fiedler M. Algebraic connectivity of graphs. Czech. Math. J., 1973, 23: 298–305
[3] Merris R. Laplacian graph eigenvectors. Linear Algebra Appl., 1998, 278: 221–236
[4] Godsil C, Royle G. Algebraic Graph Theory. GTM, Springer-Verlag, 2001
[5] Fallat S, Kirkland S. Extremizing algebraic connectivity subject to graph theoretic constraints. Electron. J. Linear Algebra, 1998, 3: 48–74
[6] Fallat S, Kirkland S, Pati S. Minimizing algebraic connectivity over conncted graphs with fixed girth.
Discrete Math., 2002, 254: 115–142
[7] Guo J M. A conjecture on the algebraic connectivity of connected graphs with fixed girth. Discrete
Math., 2008, 308: 5702–5711
[8] Guo J M, Shiu W C, Li J. The algebraic connectivity of lollipop graphs. Linear Algebra Appl., 2011,
434: 2204–2210
[9] Li J, Guo J M, Shiu W C. The smallest values of algebraic connectivity for unicyclic graphs. Discrete
Appl. Math., 2010, 158: 1633–1643
[10] Li J, Guo J M, Shiu W C.
The orderings of bicyclic graphs and connected graphs by algebraic
connectivity. Electronic J. Comb., 2010, 17: #R162
[11] Li J, Guo J M, Shiu W C. The smallest values of algebraic connectivity for trees. Acta Math. Sinica,
2012, 28: 2021–2032
[12] Shao J Y, Guo J M, Shan H Y.
The ordering of trees and connected graphs by their algebraic
connectivity. Linear Algebra Appl., 2008, 428: 1421–1438
[13] Shiu W C, Guo J M, Li J.
The minimum algebraic connectivity of caterpillar unicyclic graphs.
Electron. J. Linear Algebra, 2011, 22: 838–848
[14] d e Abreu N. Old and new results on algebraic connctivity of graphs.
Linear Algebra Appl., 2007,
423: 53–73
[15] Guo J M. On the second largest Laplacian eigenvalue of trees.
Linear Algebra Appl., 2005, 404:
251–261
[16] Cvetković D, Doob M, Sachs H. Spectra of Graphs. New York: Academic Press, 1980
[17] Guo J M. The algebraic connectivity of graphs under perturbation. Linear Algebra Appl., 2010, 433:
1148–1153
6
m
FJu`D-mJ7=H.4=9V3H.N
937
The Minimum Algebraic Connectivity of
Graphs with a Given Clique Number
LI Jianxi
(School
of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China)
(E-mail:
[email protected])
GUO Jiming
(Department
of Mathematics, East China University of Science and Technology, Shanghai 200237, China)
(E-mail:
[email protected])
SHIU Wai Chee
(Department
of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China)
(E-mail:
Abstract
[email protected])
The algebraic connectivity of a graph G is the second smallest eigenvalue of
its Laplacian matrix. In this paper, it is shown that among all connected graphs with the
clique number ω, the minimum value of the algebraic connectivity is attained for a kite
graph P Kn−ω,ω , obtained by appending a complete graph Kω to an end vertex of a path
Pn−ω . Moreover, some properties for P Kn−ω,ω are discussed.
Key words
algebraic connectivity; clique number; kite graph
MR(2000) Subject Classification 05C50
Chinese Library Classification 0157.5