Wydział Budownictwa - Karta przedmiotu - RB-S2-15-W23-24

Transkrypt

Wydział Budownictwa - Karta przedmiotu - RB-S2-15-W23-24
Z1-PU7
Edition N1
(faculty stamp)
COURSE DESCRIPTION
1. Course title: Advanced Engineering Structures
2. Course code: RB-S2-15-W23
3. Validity of course description: 2015
4. Level of studies: MSc programme
5. Mode of studies: intramural studies
6. Field of study: Civil Engineering
(FACULTY SYMBOL) RB
7. Profile of studies: general
8. Programme: SE-BR(1), SE-CIS(1), SE-GUS(1)
9. Semester:
10. Faculty teaching the course: Chair of Building Structures (RB2)
11. Course instructor: Katarzyna Domagała, Ph.D.
12. Course classification: common subjects
13. Course status: obligatory subject
14. Language of instruction: English
15. Pre-requisite qualifications:
Knowledge of the structural mechanics, design rules of concrete structures and design of metal structures in the range of
engineering studies.
16. Course objectives:
Design of advanced engineering structures made of concrete and identify of technical problems that require the use of nonstandard methods of analysis. Design of metal structures that require complex methods of calculation and the specific rules
of their formation. Acquaint students with some methods of corrosion diagnostic of building structures.
17. Description of learning outcomes:
No
1
2
3
4
5
6
7
8
9
10
11
12
13
Learning outcomes description
Method of assessment
Student knows the rules of analysis, design and statical-strength
calculations of members of advanced steel and reinforced concrete test, oral defense of project
structures.
Student knows the classification and scope of computer programs
oral defense of project,
supporting the analysis and design of structures and useful for
written project
planning of construction projects.
Student has extensive knowledge of the theoretical analysis,
calculations, construction optimization and design of advenced
test
reinforced concrete structures.
Student has a knowledge on advanced issues of steel structures
test
modelling and analysis.
Student knows the advanced methods of building physics in relation
test
to migration of heat and moisture in buildings.
Student can assess and prepare a load statement for variuos type
oral defense of project,
structures and actions.
written project
Student knows how to design elements and advanced RC structures. oral defense of project,
written project
Student can design components and advanced steel structures and
oral defense of project,
complicated structural details
written project
Student can perform classical statistical and stability analysis of the
oral defense of project,
bar structures
written project
Student can prepare a graphical documentation in the enviroment of
written project
some CAD programs
Student is responsible for accuracy of the results of his work and an
oral defense of project,
assessment of the work of subordinate team.
written project
Student is able to work independently and is responsible for the
written project
results of the work
Student can formulate and demonstrate opinions about advanced
oral defense of project,
steel structures
written project
Teaching methods
lecture
classes
lecture
lecture
lecture
project
project
project
project
project
project
project
project
Learning outcomes
reference code
K2A_W02++
K2A_W14++
K2A_W08+
K2A_W09+
K2A_W16++
K2A_W04++
K2A_W09++
K2A_W06++
K2A_U01+
K2A_U03++
K2A_U03++
K2A_U09++
K2A_U04++
K2A_U06++
K2A_U16++
K2A_K02++
K2A_K01++
K2A_K02++
K2A_K07++
K2A_K09+
18. Teaching modes and hours:
lecture: 40, classes: 5, project: 30,
19. Syllabus description:
Lecture: Concrete structures: Bending stiffness of reinforced concrete, the redistribution of bending moments, destruction
limit state - plastic analysis, static and kinematic approach, the method of plastic balancing moments applied to slabs and
beams, ultimate limit theory of slabs, principles of calculation, the method of virtual work and limit equilibrium, vaulted and
tension work of cross-reinforced slabs, estimating the ultimate limits of frames using a kinematic method, ultimate limit of
slab floor, twisted elements, beams monolithically connected with the slab, beams curved in plan, torsion stiffness of cracked
elements. Steel structures: Crane girders: shaping, loads, calculation, fatigue. Semi-rigid joints in steel bar structures,
design, modelling, classification, rotational stiffness. Influence of semi-rigidity on the behaviour of lattice structures. Welding
stress and strain, shaping principles of elements, types of welding distortion and methods to reduce them. Corrugated plates
as a part of bracing system, calculation, shaping and examples of design solutions. Repairing, rebuilding and strengthening
of the steel structures. Plate girders with corrugated web: shaping and design. Durability of structures: Fundamentals of
building structures durability. Durability of reinforced concrete according to EC2. The degradation of concrete in aggressive
environments (corrosion I, II and III group). The causes and course of the reinforcement corrosion in concrete (carbonation,
chlorides). Methods of corrosion diagnostic of building structures.
Classes: Concrete structures: Discussion of principles of the project concerning the reinforced concrete slabs and beams.
Steel structures: Discussion of the preliminary project of the hall with transport. Durability of structures: Discussion of the
methodology of the project concerning the reinforced concrete corrosion tests.
Project: Concrete structures: a) statical-strength calculations in range of elasticity analysis of reinforced beam and slab, b)
analysis of ultimate limit state of continuous RC beam, c) estimating the limit load of selected slabs with the bends lines.
Steel structures: Preliminary project of the hall with transport. Static-strength calculations of solid-web crane girder; design
drawing of crane girder. Durability of structures: The project concerns the assessment of corrosion risk of reinforced
concrete structures. The probability of the reinforcement corrosion and tests of the protective properties of concrete are
analyzed. Students form conclusions on the state of the structure.
20. Examination: no
21. Primary sources:
• Starosolski W.: „Konstrukcje żelbetowe według Eurokodu 2 i norm związanych. Tom. 1 i 2, wyd. 13”. Wydawnictwo
Naukowe PWN 2011
• Starosolski W.: „Konstrukcje żelbetowe według Eurokodu 2 i norm związanych. Tom. 3, wyd. 4”. Wydawnictwo Naukowe
PWN 2012
• Sobotka Z.: „Nośność graniczna płyt”. Arkady 1975
• Tichy M., Rakosnik J.: „Obliczanie ramowych konstrukcji żelbetowych z uwzględnieniem odkształceń plastycznych”. Arkady
1971
• Łubiński M., Żółtowski W.: „Konstrukcje metalowe. Część 1 i 2”. Arkady 2000
• Żmuda J.: „Konstrukcje wsporcze dźwignic”. Wydawnictwo Naukowe PWN 2013
• Praca zbiorowa: „Budownictwo ogólne. Tom 5. Stalowe konstrukcje budynków. Projektowanie według Eurokodów
z przykładami obliczeń”. Arkady 2010
• Rawska-Skotniczy A.: : „Obciążenia budynków i konstrukcji budowlanych według Eurokodów”. Wydawnictwo Naukowe
PWN 2013
• Rykaluk K.: „Zagadnienia stateczności konstrukcji metalowych”. Dolnośląskie Wydawnictwo Edukacyjne 2012
• Revie R. Winston: „Uhlig's Corrosion Handbook (2nd Edition)”. John Wiley and Sons 2000
22. Secondary sources:
• European Standard: „EN 1992-1-1: 2008 Eurocode 2. Design of concrete structures - Part 1-1: General rules and rules for
buildings”. European Committee for Standarization
• Sawczuk A.: „Nośność graniczna ram płaskich”. Arkady 1964
• Krztśpiak T.: „Konstrukcje stalowe hal”. Arkady 1976
• Praca zbiorowa: „Konstrukcje stalowe : przykłady obliczeń według PN-EN 1993-1. Cz. 1 i 2”. Oficyna Wydawnicza
Politechniki Rzeszowskiej 2011
• Zybura A., Jaśniok M., Jaśniok T.: „Diagnostyka konstrukcji żelbetowych. Badania korozji zbrojenia i właściwości
ochronnych betonu. t.2”. Wydawnictwo Naukowe PWN 2011
• Ściślewski Z.: „Ochrona konstrukcji żelbetowych”. Arkady 1999
23. Total workload required to achieve learning outcomes:
No
1
2
3
4
Teaching mode
Participation in lectures
Participation in exercises
Participation in project classes
Participation in additional consultations
Hours
contact
40
5
30
20
student workload
0
5
30
20
5
6
7
8
9
Own work of student on preparatory to exam, colloquium, etc.
Own work of student on preparatory to exercises
Own work of student on preparatory to project
Defense of the laboratory report, project etc.
Participation of the student in knowledge checking (exam, test, etc.)
Summary:
0
0
0
4
6
105
40
5
60
0
0
160
24. Total hours: 210
25. Number of ECTS credits: 7
26. number of ECTS credits allocated for contact hours: 4
27. number of ECTS credits allocated for in-practice hours: 6
28. Comments:
—
(date, Instructor's signature)
(date, the Director of Faculty Unit signature)