Technologia i inzynieria materialowa w ochronie zdrowia

Transkrypt

Technologia i inzynieria materialowa w ochronie zdrowia
Jednostka prowadząca
LICZBA PUNKTÓW ECTS
06.7-08-12-D/14
5
TECHNOLOGIA I INśYNIERIA MATERIAŁOWA W OCHRONIE
ZDROWIA
Instytut Fizyki
Kierunek studiów
Fizyka, studia stacjonarne I stopnia, specjalność medyczna
Kod przedmiotu
Nazwa przedmiotu
Rok, semestr,
formy zajęć i liczba godzin
Kierownik i realizatorzy
Przedmioty wprowadzające i
wymagania wstępne
Ramowy program przedmiotu
Formy zajęć
Rok
Semestr
wykład
III
VI
30
Prof. dr hab. Yurij Zorenko
Konwersatorium laboratorium
ćwiczenia
30
-
Punkty
ECTS
5
Znajomość podstawowych zagadnień z podstaw fizyki, fizyki i elektroniki ciała
stałego
Wykład:
1. Milestone of electrotechnics and electrotechnical materials in medicine
and protection of health
2. Technology of growth of single crystals and single-crystalline films
3. Powder and nano-powder electrotechnical materials
4. Computer tomography (CT). Type of CT. Positron-emission tomography
(PET).
5. Scintillators for CT. Oxide and alkali-halide compounds: advantages and
disadvantages.
6. Microtomography: imaging with scintillators. Single crystalline films
for visualization of X-ray images
7. Physical principle of working of digital roentgenography
8. Phosphors in digital roentgeno-graphy
9. Interaction of ionization radiation with organic non-organic materials.
Radiation hardness and radiation protection
10. Physical principles of dosimetry.
11. Fluoride and oxide materials for dosimetry.
12. Material for lighting in medicine and biology. Creation of daylight.
13. Physical principle of creation of solid state white light. Engineering of LED
emission: blue-emitting GaN and SiC-based materials and luminescence
converter (YAG:Ce and TbAG:Ce).
14. Material for solid-state lighting in raster scanning optical microscopy
15. Lasers in medicine. Materials for lasers.
16. Materials for ultrasonic diagnostic. Piezoelectric crystal. Materials for
emitter and receivers.
Konwersatorium
1. Roentgenography, electrocardiogram (ECG), ultrasound diagnostic, computer
tomography (CT), digital roentgenography, lighting, microscopy, lasers, etc.
Materials for these applications and their forms
2. Czochralski and Bridgman methods, thermal-vacuum deposition, liquid
phase epitaxy (LPE), molecular-beam epitaxy
3. Principles of solid-state reaction and sol-gel technique
4. Principle of CT working. Physical principle of PET.
5. Main characteristics of scintillators: emission spectrum, light yield,
decay time, density, effective atomic number.
6. Energy and special resolution of scintillating screens. Diffraction limit.
7. Imaging and recording stage in simple zone scheme; e/h transport in
these stages.
8. Comparison the properties of powders and needle-shaped image plate
(on the example BaFBr:Eu and CsBr:Eu phosphors)
9. Peculiarities of absorption of α-, β- , X-ray and γ-quanta. Remission of
X-ray and γ-radiation by different materials
10. Exposition and registration stages in dosimetry in simple zone scheme,
e/h transport in these stages.
11. Classification of light sources (electric bulb, luminescent lamp, LEDbased sources): advantages and disadvantages.
12. Construction of LED. Principle of LED engineering.
13. Absorption and reflection of light on the border of two materials.
14. Principle of laser working in the simple zone scheme.
15. Reflection of sound on the border of two materials. Physical principles
of ultra-sonic diagnostic (Sono, Echo, Doppler).
Forma zaliczenia zajęć
Wykład – egzamin,
Konwersatorium – zaliczenie na ocenę.
Metoda dydaktyczna
Wykład - ustna plus demonstracje multimedialne.
Konwersatorium w formie pogadanki i rozwiązywania zadań tekstowych
Literatura
1.
2.
3.
4.
5.
6.
Rüdiger
Kramme.
Medizintechnik:
Verfahren
Systeme
Informationsverarbeitung, 2002. 740 p
A. C. Kak, M. Slaney Principles of Computerized Tomographic imaging.
IEEE Press, NY. 1988.
S. Tavernier, B. Grinyov. Radiation detectors for medical applications.
Springer. 2006. - 315 p.
K. A. Gschneidner, J.-C. G. Bünzli, V. K. Pecharsky. Handbook on the
physics and chemistry of rare earths. 2007.
P. A. Rodnyi. Physical processes in inorganic scintillators. Science. 1997.219 p.
M. Globus, B. Grynev, Inorganic Scintillation Crystals, ISBN 966-7021-22-
X, Kharkov, AKTA, 2000.
7. Phosphor Handbook. Edited by Shigeo Shionoya and William M. Yen. CRC
press. NY.1999.
8. Phosphor Handbook (Laser and Optical Science and Technology) by William
M. Yen, Shigeo Shionoya, Hajime Yamamoto (Editors).- 2006. CRC press
on line.
9. A. Winnacker. X-ray Imaging with Photostimulable Storage Phosphors and
Future Trends. Physica Medica – Vol. IX, No. 2-3 (1993).
10. A. A. Kaminsky, Laser Crystals, Dordrecht: Kluwer, 1990.
11. Herman Klejman. Lasery. 1974. 473 p.
12. Fuxi Gan. Laser materials. 1995. 354 с.
13. Frank H. Introduction to radiological physics and radiation dosimetry. Attix.
- 1986 - 607 p.
14. Jozef Sabol, Pao-shan Weng . Introduction to radiological physics and
radiation dosimetry.- 1995 - 300 p.
15.M. Bruchez Jr., et al., Semiconductor Nanocrystals as Fluorescent Biological
Labels, Science 281.-1998.
16. D.J. Robbins. On Predicting the Maximum Efficiency of Phosphor Systems
Excited by Ionizing Radiation, J. Electrochem. Soc. (1980) 127, No.12,
p.2694– 2702.