trwałość użytkowa i stabilność oksydacyjna

Transkrypt

trwałość użytkowa i stabilność oksydacyjna
4-2014
TRIBOLOGIA
33
Jolanta DRABIK*
TRWAŁOŚĆ UŻYTKOWA I STABILNOŚĆ
OKSYDACYJNA MODYFIKOWANYCH SMARÓW
PLASTYCZNYCH
LUBRICATION STABILITY AND OXIDATION STABILITY
OF MODIFIED GREASES
Słowa kluczowe:
smar plastyczny, modyfikatory jakości, stabilność oksydacyjna, temperatura,
trwałość użytkowa
Key words:
grease, modifiers quality, oxidation stability of greases, temperature, stability
of greases
Streszczenie
W niniejszym artykule przedstawiono wyniki badań stabilności oksydacyjnej
oraz trwałości użytkowej opracowanych smarów plastycznych bez i z dodatkiem modyfikatorów jakości. Skuteczność działania zastosowanych dodatków
w smarze plastycznym oceniono na podstawie stabilności oksydacyjnej wyznaczonej metodami analizy termicznej. W celu zbadania zdolności smarów do
zabezpieczenia właściwego smarowania w dłuższym czasie przeprowadzono
*
Instytut Technologii Eksploatacji – PIB, ul. K. Pułaskiego 6/10, 26-600 Radom, Polska, e-mail:
[email protected].
34
TRIBOLOGIA
4-2014
standardowy testy łożyskowy przy zadanym obciążeniu wzdłużnym, wysokich
obrotach oraz w danej temperaturze, co umożliwiło wyznaczenie trwałości
użytkowej smarów w warunkach zbliżonych do rzeczywistych warunków pracy. Stwierdzono pozytywny wpływ zastosowanych dodatków zarówno na stabilność oksydacyjną, jak i na trwałość użytkową smarów plastycznych.
WPROWADZENIE
Jednym z ważniejszych aspektów oceny przydatności eksploatacyjnej smarów
plastycznych jest ich trwałość użytkowa oraz odporność na degradację pod
wpływem wymuszeń mechanicznych i cieplnych. Zmiany zachodzące
w smarach podczas eksploatacji związane są przede wszystkim z warunkami
pracy węzłów tarcia, a w szczególności z oddziaływaniem czynników utleniających, temperatury oraz wymuszeń mechanicznych. Działanie wysokich obciążeń, prędkości obrotowych, wstrząsów, wibracji, jak również obecność metali
katalizujących utlenianie, wody czy zanieczyszczeń substancjami chemicznymi
stanowi główną przyczynę pogorszenia jakości eksploatowanych środków smarowych i w konsekwencji może prowadzić do uszkodzenia współpracujących
elementów trących.
W procesie tarcia współpracujących elementów łożysk w strukturze materiałów występują istotne zmiany spowodowane warunkami eksploatacji. Zjawiska fizykochemiczne zachodzące na powierzchni tarcia pod wpływem temperatury i nacisków kształtują warstwę wierzchnią, która ulega zmianie w czasie
eksploatacji i pod wpływem stosowanych środków smarowych [L. 1, 2].
W procesie tarcia prowadzonego w atmosferze powietrza następuje degradacja
środka smarowego poprzez utlenianie oleju bazowego i dodatków oraz niejednokrotnie obserwowane jest katalityczne oddziaływanie żelaza pochodzącego
z powierzchni tarcia na proces utleniania [L. 3, 4]. Warunki współpracy występujące w styku tarciowym oraz zmiany jakości środków smarowych mają istotny wpływ na zużycie tribologiczne i decydują o trwałości eksploatacyjnej węzła
tarcia. Utlenianie środków smarowych prowadzi do utworzenia warstw tlenkowych i powoduje mniejsze zużycie tribologiczne niż przy reakcji tlenu z żelazem pochodzącym z powierzchni tarcia, co skutkuje tworzeniem organicznych
połączeń żelaza [L. 3, 8].
Istotna jest ocena zdolności smarów do zapewnienie właściwego smarowania w dłuższym czasie, tzn. wówczas, gdy łożyska kulkowe pracują w warunkach obciążeń, wysokich prędkości oraz danej temperaturze. Badania prowadzone w takich warunkach umożliwiają wyznaczenie trwałości smaru w trudnych warunkach środowiska pracy. Zagadnieniem oceny trwałości eksploatacyjnej smarów plastycznych zajmowali się między innymi H. Kröner i E. Kleinlein [L. 5] oraz D. Loderer [L. 6], którzy do oceny trwałości smarów polimocznikowych stosowali metodykę z wykorzystaniem stanowiska badawczego FAG
FE9 [L. 7]. Natomiast W. Ward i S. Capitosti przedstawili wyniki badań trwa-
4-2014
TRIBOLOGIA
35
łości użytkowej smarów plastycznych wyznaczone według znormalizowanych
metodyk, przy zadanym obciążeniu wzdłużnym, wysokich obrotach oraz
w warunkach izotermicznych, w zadanej temperaturze [L. 8].
Podczas eksploatacji środek smarowy, spełniając w układzie smarowania
swoje podstawowe funkcje, narażony jest przede wszystkim na działanie wysokiej temperatury, stąd poszukiwane są sposoby jego zabezpieczania. Jedną
z metod zapobiegania procesowi utleniania zarówno olejów bazowych, jak
i środków smarowych jest dobór odpowiednich dodatków uszlachetniających,
co gwarantuje uzyskanie wymaganej zastosowaniem stabilności oksydacyjnej
tychże środków [L. 10, 11, 12, 13]. Metodami, które pozwalają sprawdzić zachowanie się środka smarowego pod wpływem temperatury w atmosferze różnych gazów (obojętnego lub utleniającego) są metody analizy termicznej.
Zapewnienie odpowiedniej do warunków użytkowania jakości jest jednym
z ważniejszych kryterium przy wyborze metod oceny właściwości funkcjonalnych smarów plastycznych. Wymaga to przeprowadzenia testów w zróżnicowanych zadanych warunkach i zastosowania wielu metod do identyfikacji zachodzących zmian jakościowych pod wpływu czynników destrukcyjnych.
W tym kontekście zasadne jest podejmowanie badań dotyczących oceny kinetyki zmian jakości nowo opracowanych smarów plastycznych zachodzących
pod wpływem wymuszeń cieplnych i mechanicznych oraz dążenie do wyznaczenia ich trwałości w modelowych układach trących [L. 10, 11, 13].
W niniejszym opracowaniu oceniono stabilność oksydacyjną oraz trwałość
użytkową opracowanych smarów plastycznych, bez i z dodatkiem modyfikatorów jakości.
METODYKA BADAŃ
Przedmiotem badań był smar plastyczny opracowany na bazie atestowanego białego oleju mineralnego z zagęszczaczem mydlanym (stearynian litu LiSt), modyfikowany dodatkiem polimerowym i nanostrukturami węglowymi. Polimer (T)
zastosowano jako dodatek przeciwzatarciowy i przeciwzużyciowy, natomiast
nanostruktur węglowych (F) użyto jako dodatek poprawiający właściwości smarne i jednocześnie odporność oksydacyjną smaru plastycznego. Badaniom stabilności oksydacyjnej oraz testom łożyskowym poddano smar bez dodatku (smar P)
oraz zawierający 5% (m/m) polimeru T (smar PT), 0,5% (m/m) nanostruktur węglowych (smar PF) oraz 4,5% polimeru i 0,5%(m/m) nanostruktur węglowych
(smar PTF).
Stabilność oksydacyjną przygotowanych smarów plastycznych wyznaczono metodami analizy termicznej, prowadząc pomiary w warunkach izotermicznych, w atmosferze utleniającej. Do badań zastosowano dwie metody analityczne, a mianowicie różnicową kalorymetrię skaningową (DSC) oraz stosując
szybki test stabilności oksydacyjnej Petrooxy. Pomiary DSC wykonano za po-
36
TRIBOLOGIA
4-2014
mocą aparatu LABSystem TG DSC firmy Setaram, a test Petrooxy z użyciem
aparatu PetroOXY Rapid Oxidation Tester firmy Petrotest Instruments.
Metoda DSC umożliwiła wyznaczenie czasu indukcji utleniania (OIT) badanych smarów w temperaturze 120oC, 140oC, 150oC i 155oC. Pomiary prowadzono w warunkach izotermicznych w obecności tlenu, przy czym do osiągnięcia temperatury badania próbka ogrzewana była w atmosferze gazu inertnego
w celu uniknięcia wcześniejszego jej utleniania. Czas działania czynnika utleniającego był jednakowy dla wszystkich próbek i wynosił 120 minut.
W metodzie Petrooxy badania prowadzono w temperaturze 120oC i 140oC, przy
ciągłym działaniu tlenu. Czas indukcji utleniania badanych próbek wyznaczono
na podstawie spadku ciśnienia w komorze pomiarowej o 10%.
Trwałość użytkową smarów plastycznych pracujących w łożysku (typ SAE
No 204) wyznaczono zgodnie z normą ASTM D 3336, przy zadanym niskim
obciążeniu (obciążenie wzdłużne 22+/-2N), wysokich obrotach (10 tys.
obr/min) oraz w warunkach izotermicznych, w temperaturze 100, 120 i 150oC.
Badanie prowadzono w cyklu dobowym (20 godzin pracy/4 godziny przerwy)
aż do wystąpienia warunków zakończenia testu, a mianowicie 3-krotnego wzrostu oporów toczenia bądź wzrostu temperatury o ponad 15oC lub niemożliwości
uruchomienia stanowiska po postoju. Dla każdego smaru wyznaczono czas
trwania testu, który świadczy o trwałości użytkowej smaru w warunkach testu
i jego skuteczności w przeciwdziałaniu awarii łożyska.
WYNIKI BADAŃ
Stabilność oksydacyjną smarów plastycznych wyznaczono na podstawie testu
przyspieszonego utleniania metodą Pertooxy, wyznaczając na podstawie uzyskanych wykresów spadku ciśnienia w funkcji czasu utleniania (Rys. 1) czas
indukcji utleniania (Rys. 2) świadczący o odporności na proces utleniania badanych smarów.
Analizując uzyskane wyniki, można stwierdzić, że dodatek polimeru do
smaru plastycznego nie wpływa na zmianę stabilności oksydacyjnej wyznaczonej w warunkach testu Petrooxy. Natomiast jednoczesne wprowadzenie dodatku
polimerowego i nanostruktur węglowych do gotowego smaru plastycznego daje
bardzo dobry efekt spowalniania procesu utleniania. Zaobserwowano, że niewielka ilość nanostruktur węglowych 0,5% m/m w połączeniu z dodatkiem
polimeru (Smar PTF) korzystnie wpływa na wydłużenie czasu utleniania badanego smaru plastycznego, co skutkuje aż 3-krotnym wzrostem stabilności oksydacyjnej wyznaczonej w warunkach izotermicznych w temperaturze 120oC
w stosunku do niestabilizowanego smaru (Smar P).
W metodzie DSC wyznaczono czas indukcji utleniania (OIT) badanych
smarów, prowadząc pomiary w temperaturze 120, 130, 140, 150 i 155oC,
w obecności tlenu. W metodzie tej z uzyskanych w warunkach izotermicznych
krzywych DSC (Rys. 3) wyznaczano czas indukcji utleniania (Rys. 4).
4-2014
TRIBOLOGIA
37
W temperaturze 120oC badane smary były odporne na proces utleniania, zróżnicowanie stabilności oksydacyjnej obserwowano dopiero w wyższych temperaturach (Rys. 4).
Dodatek nanostruktur węglowych do smaru plastycznego w zakresie ocenianych temperatur spowodował zmianę przebiegu krzywej DSC, co świadczy
o tym, że przemiany związane z procesem utleniania smaru niestabilizowanego
1100
1000
a 900
P
k, 800
ie
n
e
i 700
n
śi
C
600
Warunki testu Petrooxy:
Temperatura: 140oC Atmosfera: O2 Ciśnienie napełnienia 700 kPa
500
400
0
20
40
60
80
100
Czas, min
P
PT
PTF
Rys. 1. Wpływ dodatków na stabilność oksydacyjną smarów – metoda Petrooxy
Fig. 1. Influence of the additives of oxidation stability greases according to Petrooxy
600
in 500
m
, a
i
n
ai 400
n
le
t 300
u
ji
ck
u 200
d
in
s
az 100
C
503,4
T=120oC
T=140oC
168
156
93
37
38,7
0
P
PT
PTF
Warunki testu Petrooxy:
Temperatura: 120oC; 140oC Atmosfera: O2 Ciśnienie napełniania: 700kPa
Rys. 2. Stabilność oksydacyjna smarów plastycznych wyznaczona metodą Petrooxy
Fig. 2. Oxidation stability of the greases according to Petrooxy
TRIBOLOGIA
38
4-2014
0,4
P
0,2
W 0
m
, a
ł ‐0,2
p
e
ic
‐0,4
yw
ł
p
e
zr ‐0,6
P
‐0,8
PF
PTF
Warunki metody DSC:
Temperatura 140oC , Czas 120min, Atmosfera O2
‐1
5
20
35
50
65
80
95
110
125
140
Czas, min
Smar P
Smar PF
Smar PTF
Rys. 3. Izotermy smarów w temperaturze 140oC wyznaczone metodą DSC
Fig. 3. Example greases isotherms determined at 140oC according to DSC
zachodzą w niższych temperaturach niż dla smarów stabilizowanych preparatem zawierającym nanostruktury węglowe. Dodatek do smaru plastycznego
nanostruktur węglowych w połączeniu z dodatkiem polimerowym wpłynął na
zmianę stabilności oksydacyjnej smaru. Wyznaczone czasy indukcji utleniania
modyfikowanych smarów plastycznych są wyższe niż dla smaru bazowego
(Smar P), Rys. 4.
140
n
i
m
,T 120
I
O
a 100
i
n
ai 80
n
le
t
u
ji 60
ck
u 40
d
in
s
az 20
C
0
Warunki metody DSC:
Temperatura: 130oC, 140o C, 150 oC, 155o C Czas: 120 min
Atmosfera: O2
>120
85
74
52
35
32
18
15
0
130
140
150
155
Temperatura, oC
P
PF
PTF
Rys. 4. Stabilność oksydacyjna smarów plastycznych wyznaczona metodą DSC
Fig. 4. Oxidation stability of the greases according to DSC
4-2014
TRIBOLOGIA
39
Przeprowadzone testy analizy termicznej wykazały, że działanie nanostruktur węglowych w połączeniu z dodatkiem polimerowym w zakresie przeciwdziałania utlenianiu jest bardzo skuteczne.
Jednak najlepszym sposobem sprawdzenia wytrzymałości smaru w wysokiej temperaturze jest przeprowadzenie badań w standardowych łożyskach pracujących przy zadanych obciążeniach i prędkościach, w warunkach podwyższonych temperatur [L. 9]. W związku z tym modyfikowane smary plastyczne
charakteryzujące się najwyższą stabilnością oksydacyjną poddano badaniom
w łożysku pracującym w temperaturze 100, 120, 150oC (Rys. 5). W warunkach
testu oprócz wymuszeń cieplnych na smar oddziaływały również obciążenie
67 N oraz prędkość obrotowa 10 000 obr./min.
Trwałość smarów testowanych w temperaturze 100oC była jednakowa,
a test zakończono po 930 godzinach pracy, gdyż nic nie wskazywało na wystąpienie symptomów świadczących o awarii łożyska. Stwierdzono, że smary pracujące w tej temperaturze, zarówno smar PT, jak i smar PTF, spełniają swoją
funkcję i skutecznie chronią łożysko przed zatarciem.
Podwyższając temperaturę pracy łożyska do 120oC, stwierdzono, że w tych
warunkach nastąpiło już znaczne zróżnicowanie czasu pracy badanych smarów.
Trwałość smaru PTF była 1,5 razy wyższa niż smaru PT, co świadczy
o skutecznym działaniu zastosowanych dodatków. Jeszcze większe zróżnicowanie w trwałości smarów zaobserwowano, gdy zwiększono temperaturę testu
do 150oC (Rys. 5).
1200
1000
>930
800
h
,
u
ra
600
m
s ćś
400
ło
a
w
rT 200
Test trwałości wg ASTM D 3336
Łożysko: typ SAE No 204 n=10 tys. obr/min
289,3
184,9
56,3
107,7
0
100
120
Temperatura pracy łożyska, oC
smar PT
150
smar PTF
Fig. 5. Trwałość smarów plastycznych w łożysku pracującym w wysokiej temperaturze
Fig. 5. Result of high-temperature bearing durability test
Przeprowadzony test łożyskowy w warunkach dynamicznych, porównywalnych do rzeczywistych warunków pracy występujących podczas eksploata-
40
TRIBOLOGIA
4-2014
cji, umożliwił wyznaczenie i ocenę wpływu zastosowanych modyfikatorów
jakości na trwałość użytkową smarów plastycznych. Zaobserwowano istotne
wydłużenie czasu pracy łożyska smarowanego smarem zawierającym dodatek
nanostruktur węglowych i polimeru, co świadczy o synergii ich działania.
Stwierdzono, że współdziałanie dodatków przyczyniło się do utworzenia na
powierzchni tarcia warstwy pośredniej o dużej trwałości i dobrych właściwościach smarnych. Wyjaśnienie mechanizmu smarowania smarem plastycznym
zawierającym dodatek nanostruktur węglowych i polimeru będzie przedmiotem
dalszych badań eksperymentalnych związanych z oceną powierzchni śladów
tarcia. Podjęte zostaną prace dotyczące szczegółowej analizy struktury chemicznej związków zaadsorbowanych na powierzchni z wykorzystaniem skaningowej mikroskopii elektronowej (SEM) z dyspersją energii (EDS) oraz rentgenowskiej spektroskopii fotoelektronów XPS. Zastosowane techniki umożliwią dostarczenie informacji o stanie warstwy wierzchniej utworzonej w procesie tarcia.
Przeprowadzone badania analizy termicznej, jak również testy tribologiczne
wykazały, że nanostruktury węglowe wraz z dodatkiem polimerowym wpływają
korzystnie na stabilność oksydacyjną, jak również trwałość użytkową smaru plastycznego. Stwierdzono, że wyższa stabilność oksydacyjna modyfikowanych
smarów plastycznych przekłada się na wyższą wytrzymałość podczas eksploatacji, co potwierdził test łożyskowy prowadzony w warunkach izotermicznych.
PODSUMOWANIE
Zastosowanie wybranych metod badawczych umożliwiło uzyskanie informacji
o odporności na utlenianie oraz trwałości użytkowej smarów plastycznych
i wpływie na nią zastosowanych modyfikatorów.
Dynamika zmian jakości smarów plastycznych jest silnie skorelowana
z rodzajem dodatków modyfikujących i wpływa na warunki tarcia. Zastosowane
dodatki uszlachetniające modyfikują warstwę wierzchnią, tworząc na powierzchni trącej warstwę graniczną odporną na działanie obciążeń dynamicznych i temperaturowych.
Trwałość eksploatacyjna układów trących oraz smarów plastycznych zależy między innymi od rodzaju dodatków funkcjonalnych, których zadaniem jest
ochrona przed nadmiernym zużyciem powierzchni roboczych. Identyfikacja
sposobu oddziaływania komponentów aktywnych z roboczą powierzchnią tarcia
umożliwi odpowiedni dobór ilościowy i jakościowy dodatków do środków smarowych zdeterminowany rodzajem wymuszeń panujących w warunkach eksploatacji.
Praca naukowa wykonana w ramach realizacji Programu Strategicznego
pn. „Innowacyjne systemy wspomagania technicznego zrównoważonego rozwoju gospodarki” w Programie Operacyjnym Innowacyjna Gospodarka.
4-2014
TRIBOLOGIA
41
LITERATURA
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Lundberg J., Hoglund E.: A new method for determining the mechanical stability
of lubricating greases. Tribology International – 33/2000, 217–223.
Kajdas Cz., Al-nozili M.: Charakterystyka przeciwzużyciowa i reakcje
tribochemiczne estrów alifatycznych. Tribologia, nr 3, 2002, s. 861.
Hiratsuka K., Kajdas Cz.: Wear and chemical reaction. Tribology Science and
Application, Monographs eds. F. Franek, Cz. Kajdas, Vienna (2004), 71–90.
Pranesh A., Krupal P., Sunit M., Elsenbaumer R.L.: Developmend of a high
performance low molybdenum disulfide grease. NLGI Spokesman Vol. 70, No 11,
24–32, 2007.
Kröner H., Kleinlein E.: Forecasting lifetime expectancy of grease – lubricated
roller bearings by using FE 9 test equipment. NLGI Spokesman, 63, 3, 8–14, 1999.
Loderer D.: Lifetime Lubrication of Bearings at High Temperatures. NLGI
Spokesman Vol. 63, 7, 12–15, 1999.
DIN 51 821: 1989 Testing of lubricants; test using the FAG roller bearing grease
testing apparatus FE9; general working principles.
Ward W.C., Capitosti S.M.: Ashless multifunctional additive technology for rolling
element bearing grease. NLGI Spokesman Vol. 77, No. 6, 27–38, 2014.
ASTM D 3336:2010 Standard Test Method for Life of Lubricating Greases in Ball
Bearings at Elevated Temperatures.
Drabik J.: Wymuszenia cieplne w testach tribologicznych a skuteczność działania
nietoksycznych smarów plastycznych. Tribologia nr 4 (2012), s. 49–58.
Reyes-Gavilan J., Odorisio P.: Evaluation of the thermal-oxidative characteristics
of grease by pressurized differential scanning calorimetry. NLGI Spokesman, Vol.
67, 2004, pp. 20–27.
Drabik J., Trzos M.: Improvement of the resistance to oxidation of the ecological
greases by the additives. J Therm Anal Calorim (2013) 10.1007/s10973-013-3090-7.
Bystrzejewski M., Huczko A., Lange H., Drabik J., Pawelec E.: Influence of C60
and fullerene soots on the oxidation resistance of vegetable oils. Fullerenes,
Nanotubes and Carbon Nanostructures (2007), 15:6, pp 427–438.
Summary
This article presents the results of the oxidation stability and service life of
greases prepared with and without the addition of modifiers. The
effectiveness of the additives used in the grease was calculated based on the
oxidative stability determined by thermal analysis methods. To test the
ability of lubricants to provide protection through proper lubrication over
a longer period of time, standard tests were carried out at a given load
bearing, high speed, and elevated temperatures, allowing the determination
of the service life of lubricants in conditions similar to real operating
conditions. A positive effect of the additives on the oxidation stability and
lubrication stability of greases was found.

Podobne dokumenty