139 THE APPLICATION OF WASTE SYNTHETIC FIBRES TO

Transkrypt

139 THE APPLICATION OF WASTE SYNTHETIC FIBRES TO
O C E A N O L O G IA N r 11 (1979)
139
JA N HUPKA
S T A N IS Ł A W M Y D L A R C Z Y K
G d ań sk T ech n ica l U n iv e r sity
In stitu te of In organ ic C h em istry and T ech n o lo g y
THE APPLICATION OF WASTE SYNTHETIC FIBRES TO REMOVE
OIL SPILLS FROM WATER SURFACES
C o n t e n t s : 1. E x p erim en ta l w ork , 2. R esu lts and d iscu ssio n , 3. C on clu sion ; S tr e sz ­
czen ie; R eferen ces.
The m ethod of rem oving oil spills from sea-w ater surfaces by means
of buoyancy sorbents is becoming increasingly significant as im proved
equipm ent is used in the counteracting of pollution. Of the m any substan­
ces used for this purpose unstru ctu red synthetic fibres should be singled
out. From among other substances they have several advantages such
as: th eir chemical composition and n atu ral surface properties which give
them high hydrophobic and low hydrophylic properties. Hence the fibres
do not require additional treatm en t to increase th eir oleophilic properties.
Synthetic fibres have a highly developed surface, and disintegration, to
give th eir stru ctu re very good absorbant properties, is easy. As the fibres
often constitute w aste m aterial, th eir use for the sorption of petroleum
products is advantageous from the economical point of view. By squeez­
ing out the absorbed oil, the fibres can be utilized several tim es w hereas
their sorption capacity rem ains as high as before. The oil is absorbed by
the fibres which are in the form of disintegrated particles, booms, belts
and mats. In each of these forms th e oil sorption capacity depends on
fibre packing density, oleophilic properties, density and viscosity of the
oil, the quantity of oil on the w ater surface, the tem perature at which
the process takes place. The sorption capacity w ill be influenced by all
these factors.
The sorbent m aterial is capable of holding the absorbed oil as the
result of tw o processes: adsorption and absorption. The adsorption capa­
city depends prim arily on th e chemical stru ctu re of the substances which
form the fibres, th a t is on the surface properties of the fibres. The absorp­
tion capacity is a function of the stru ctu re of the fibres in th eir sorbent
wads, the distances betw een them , the diam eter and cross section of each
filam ent. H itherto, m any investigators have attrib u ted the m ain role of
oil sorption to the process of adsorption w hile the process of absorption
has been underestim ated. On fibre sorbents, however, the oil is mostly
held due to th eir capillary forces, as w ell as to the existance of oil bridges
betw een the fibres. Obviously the absorption depends on adsorption pro­
cesses. Depending on the contact angle of the oil drop w ith respect to the
fibre surface the capillary forces are stronger or w eaker [1], The extent
to which crude oil is removed from artificial sea-w ater by m eans of dis­
integrated synthetic fibres has been investigated by Johnson et al. [4],
The sorption tests w ere conducted w ith good contact betw een the oil and
sea-w ater being m aintained. The influence of fibre surface properties on
the sorption capacity is considerable. Therefore, ap art from the sorption
yield value, the contact angle for th e oil on the sorbent is one of the basic
quantities needed in the characterization of the sorbent m aterial [7].
Zahid et al. [9] emphasis th a t the distance betw een the fibres and th eir
geom etry are an im portant factor in the sorbing capacity observed w hile
oil is removed from w ater surface by m eans of specially constructed
matrices. They also observed th a t the change of the fibres surface pro­
perties have little influence on the yields obtained. Both papers m en­
tioned quote literatu re concerning the process of deoiling of w ater. The
authors suggest various conceptions of oil sorption mechanisms. The p u r­
pose of this paper is to relate petroleum products sorption to fibre surface
properties and the stru ctu ral arrangem ent of fibres in the wads. A new
type of sorbent has been proposed.
1. E X P E R IM E N T A L W O R K
Sorbing agent
In most experim ental w ork a sorbent m aterial obtained from the tyre
cord of spent autom obile tyres was used. The m anner of obtaining the
sorbent and its fundam ental physicochemical properties w ere described
in our previous paper [3], The sorbent consists of 60% viscose rayon
fibres, 38% polyamide fibres, the rem aining 2% being small rubber p ar­
ticles closely adhering to the ty re cord fibres. Tyre cord was disintegrated
to obtain fibres of suitable size.
The sorption of viscose and polyamide fibres, being a raw m aterial
used in ty re body production, viz. pu re and not w aste fibres was also
determ ined.
Oils
The sorption process was carried out for crude-oil and ”L ux 10”
engine-oil. As th e gradual evaporation of lighter fractions is alw ays taking
place in crude-oil spills, this process was sim ulated by w eathering the
crude-oil for 48 hours. In experim ental work, crude oil so devoid of lowboiling fractions was used.
An infrared spectrum of crude oil is shown in Fig. 1. The norm al
hydrocarbon absorption bands at 2925, 2849, 1455, 1375 cm-1 are observed.
In addition to these, arom atic bands absorption is represented by peaks
at: 869, 810, 745 and 1600 cm-1 [6], The density and viscosity of crude-oil
and „Lux 10” oil are given in Table 1.
Wave lengh [a *m l
D tugoić fa h [yum ]
Wave number Lcm ' V
L/czba falow a [cm '']
F ig. 1. In frared sp ectru m o f cru d e oil
R ye. 1. W idm o w p o d czerw ien i d la ropy n a fto w ej
Table
1
Tabela 1
C h aracteristics o f o il prod u cts u sed in sorp tion p rocesses
C h arak terysty k a p ro d u k tó w n a fto w y ch sto so w a n y ch w p ro cesie sorp cji
D en sity g /cm 5 20°C
K in em a tic v isc o sity
c S t 20°C
C rude oil
a) as received
b) after 48 h w ea th er in g
0.840
0.868
4.8
8.1
E n gine oil „L ux 10”
0.895
458
Oil
10 — O c e a n o lo g ia N r 11
Procedure
In order to exam ine the oil absorption capacity cylinder-shaped sor­
bent wads 25 m m in diam eter and 50 mm long w ere formed. By changing
the quantity of fibres in the same volume, the required packing density
was obtained. The cylinders w ere placed on the oil surface and the sorb­
ing tim e was m easured. By sorbing tim e is m eant the tim e which elapsed
betw een the m om ent the fibres came into contact w ith the oil and the
instant these fibres disappeared beneath the oil surface. Mention m ust
be made of the fact th a t the sorbing time does not conform to the oil satu­
ration of the cylinders as oil products of higher viscosity (e.g. „Lux 10”
oil) penetrate into the sorbent slower than the lighter fractions do. The
cylinders sink when the oil density and th a t of the fibre-oil-air m ixture
are equal, but some of the free spaces betw een the fibres is not occupied
by the oil for a certain time. A fter sinking, each cylinder was pulled out
by m eans of a m etal clamp and the excess oil was allowed to drip for
1 hour. The cylinders w ere weighed and the sorption capacity was calcu­
lated. The conglom erate of oil and sorbent was squeezed in a press in
such a m anner as not to dam age the cylinders and the absorption was
once m ore calculated. C ylinders from pu re viscose and polyamide fibres
w ere also form ed and identical experim ents w ere conducted. Two kinds
of sorbents w ere applied: sorbent I and sorbent II. Sorbent I, as well as
the viscose and polyamide fibres had an average filam ent of about 15 |o.m,
w hile sorbent II had about 50 ixm. The contact angles on the sorbent
fibres and polyam ide and viscose fibres for the oils used w ere measured.
M easurem ents w ere perform ed by m eans of a microscope [5], The contact
angles of 5—7 oil drops for each fibre-oil-artificial sea-w ater composition
w ere m easured and the results sum m arized in Table 2. A 3.5% solution
of NaCl in fresh w ater was used as artificial sea-w ater.
Table
2
T a b e 1a 2
C on tact a n g les for o il on sy n th e tic fib res in a r tific ia l sca -w a te r
K ąt zw ilża n ia w łó k ie n sy n te ty c z n y c h przez p rod u k ty n a fto w e w środ ow isk u
sztu czn ej w o d y m orsk iej
Fibres
S orb en t I
S o rb en t II
P o ly a m id e
fib res
V iscose
fib res
1.21 g /cm 3
1.21 g/cm 3
1.13 g /cm 3
1.26 g/cm 1
C rude oil
14.6°
12.3°
68.4°
79.1°
„L ux 10” en g in e oil
23.5°
22.8°
71.5°
82.5°
Oil
The sorption of sorbent I, polyamide and viscose fibres after satu ra­
tion w ith sea-w ater was also investigated. For this purpose, cylinders w ith
densities of 0.1; 0.2 and 0.3 g/cm3 w ere shaken w ith artificial sea-w ater
in a wide-necked, conical flask for 5 m inutes, after which the absorption
capacity was m easured in the same m anner as for the fibres not saturated
w ith w ater. All m easurem ents w ere carried out at 20 + 1°C.
F ig. 2. Oil sorp tion on sorb in g agen t I
1 — c r u d e o il
2 — „ L u x 10” o il
A
th e o re tic a l s o rp tio n c a p a c ity
Q
c r u d e o il
„ L u x 10” o il
e x p e r im e n ta l s o rp tio n c a p a c ity
•
-f
c r u d e o il
„ L u x 10’» o il
u n it s o rp tio n c a p a c ity
R yc. 2. C h łon n ość sorb en ta I
1 — ro p a n a fto w a
2 — o le j „ L u x 10”
^
Q
ro p a n a fto w a
o le j „ L u x 10”
%
-j-
ro p a n a fto w a
o le j „ L u x 10”
!
c h ło n n o ś ć t e o r e t y c z n a
j c h ło n n o ś ć w y z n a c z o n a d o ś w i a d c z a l n ie
J
c h ło n n o ś ć je d n o s t k o w a
2. R E S U L T S A N D D IS C U S S IO N
The volum e of the cylinders formed from fibres is known, hence for
each given packing density the theoretical absorption i.e. the q u antity of
the oil filling all the free spaces betw een the fibres can be calculated.
Figs. 2—4 give the values of the theoretical absorption, as w ell as the
experim ental absorption as a function of the fibre packing density. The
F ig. 3. O il sorp tion on v isco se fib res
i —c r u d e
o il
„ L u x 10” o il
th e o re tic a l s o rp tio n c a p a c ity
□
c r u d e o il
„ L u x 10” o il
e x p e r im e n ta l s o rp tio n c a p a c ity
+
c r u d e o il
,,L u x 10” o il
u n it s o rp tio n c a p a c ity
2
—
A
R ye. 3. C hłonność w łó k ie n w isk o zo w y ch
i —r o p a
2
A
□
—
n a fto w a
o le j „ L u x 10”
|
c h ło n n o ś ć t e o r e t y c z n a
ro p a n a fto w a
o le j ,,L u x 10”
|
c h ło n n o ś ć w y z n a c z o n a d o ś w i a d c z a l n ie
ro p a n a fto w a
o le j „ L u x 10”
|
c h ło n n o ś ć j e d n o s t k o w a
analysis of the diagram s shows th a t the theoretical and experim ental
absorption curves do not agree. The experim ental absorption for the small
and the high packing density is less than th a t calculated. The effect at
small packing density is m ore evident for crude-oil, while at g reater pack­
ing density — for „Lux 10” oil. In the case of small packing density the
distances betw een fibres are far too great to retain the absorbed oil. A t
G ę s t o ś ć u p a k o w a n ia w łó k ie n I g /crr>J]
F ig. 4. O il so rp tio n on p o ly a m id e fib res
1 — c r u d e o il
2 — „ L u x 10” o il
□
%
1
th e o re tic a l s o rp tio n c a p a c ity
c r u d e o il
„ L u x 10" o il
e x p e r im e n ta l s o rp tio n c a p a c ity
c r u d e o il
„ L u x 10” o il
u n it s o rp tio n c a p a c ity
R ye. 4. C h łon n ość w łó k ie n p o lia m id ow y ch
1 — ro p a n a fto w a
2 — o le j „ L u x 10”
I
c h ło n n o ś ć t e o r e t y c z n a
□
ro p a n a fto w a
o le j „ L u x 10”
c h ło n n o ś ć w y z n a c z o n a d o ś w i a d c z a l n ie
0
+
ro p a n a fto w a
o le j „ L u x 10”
c h ło n n o ś ć j e d n o s t k o w a
packing densities greater than a certain size, the petroleum products
m ay not fill the entire free space, particularly w hen th eir viscosity is too
high. The results obtained confirm the m easurem ent results published by
Zahid et al. [9], These investigations show th a t th e geom etrical arran g e­
m ent of the fibres and the oil bridges stretched betw een them suggest
the existence of a spacing betw een the fibres at which the am ount of
absorbed oil has a m axim um value.
TJie yield curves in respect of 1 g of sorbent fibres (unit sorption
capacity) (Figs. 2—4), suggest th a t the sorption yield does not depend, in
practice, on the sorbent used w hile m aintaining the same thickness of
fibres. For packing density of 0.08 g/cm3 this value ranges betw een 1—
10 g/g and for 0.30 g/cm3 — 2.5 g/g. V ery often because of construction
F ig. 5. O il sorp tio n on sorb in g ag en t II
i — c r u d e o il
2
—
A
□
+
J
th e o re tic a l s o rp tio n c a p a c ity
c r u d e o il
„ L u x 10” o il
|
e x p e r im e n ta l s o rp tio n c a p a c ity
c r u d e o il
„ L u x 10” o il
j
u n i s o rp tio n c a p a c ity
„ L u x 10” o il
R ye. 5. C h łon n ość so rb en ta II
i — ro p a n a fto w a
j c h ło n n o ś ć t e o r e t y c z n a
2
—
o le j „ L u x 10”
□
r o p a n a fto w a
o le j „ L u x 10”
|
c h ło n n o ś ć w y z n a c z o n a d o ś w i a d c z a l n ie
ro p a n a fto w a
o le j „ L u x 10”
|
c h ło n n o ś ć j e d n o s t k o w a
+
A
and strength conditions the packing density of fibres in mats, booms or
belts is 0.3 g/cm 3. A t these packing density values there is much less oil
in 1 g of fibres than th a t m arked in commercial characteristics of sorbents,
which should be taken into account in calculations of oil-spill removal.
Curves of the sorption capacity in the case of crude-oil and „Lux 10” oil
are identical for all fibres. For packing density not g reater than
0.20 g/cm3 there is m ore oil than crude-oil per 1 g of fibres, w heres at
densities greater than 0.25 g/cm3 crude oil sorption is higher.
Fig. 5 shows sorption curves of oil for sorbent II which has thicker
filam ents. Unit sorption capacity for crude-oil and „Lux 10” oil is less
than in the case of sorbent I. The m axim um total sorption is attained at
a higher packing density. This corroborates the experim ental data pub­
lished by Zahid et al. [9]. They state th a t the sorption yield was inversely
proportional to the filam ent diam eter. The figures presented in this w ork
show th a t the lowest packing density was 0.08 g/cm3. At values of less
than 0.08 g/cm3 it was imposible to form cylinders th at would be resistant
to deform ations after being saturated by oil. A higher sorption than
11 g/g was not attained for a density of 0.08 g/cm3. Sorption values some­
times as high as 40 g/g [4] are found in several papers. In our case, a
sorption value higher than 40 g/g could be achieved for fibres w ith a pack­
ing density of the order of 0.02 g/cm3. In our experim ental system this
is impossible as the use of polypropylene fibres at the most advantageous
disintegration gives an average yield of about 15 g/g. How then can such
appreciable yields be achieved. F irst of all it is necessary to state precisely
w hether we are concerned w ith an agglom eration of oil on the w ater
surface, or w ith perm anent oil sorption in th e fibre mass. In the case of
an attem pt to remove a poorly bounded oil-sorbent conglomerate from
w ater, at least half the q u antity of oil would be lost. The bounding of
the oil on the w ater surface prevents the spread of the oil spill, but is not
sufficient to remove it. High sorption values can be obtained while using
disintegrated sorbent to elim inate heavy m ineral oil of high viscosity.
O il-sorbent agglom eration occupies a considerably greater volum e than
freely arranged filam ents of the sorbent alone. Therefore 30—40 g of oil,
or even more, may be found per 1 g of fibres.
The sorption tim e as a function of packing density is shown in Fig. 6.
Oil sorption time for wads is considerably greater than th a t for „Lux
10” oil. The viscosity of the la tte r is much higher than th a t of crude-oil,
hence its much lower penetration speed. There are no great differences
betw een particular kinds of fibres. The change of sorption tim e w ith pack­
ing density increases 6—7 tim es for crude-oil and 1.5—2 tim es for „Lux
10” oil.
In field conditions the sorbent very often comes into contact w ith
w ater before coming into contact w ith oil. O ften both media are absorbed
sim ultaneously, but the contact spot differs for each one. The sorption
time, the contact surface and the surface proporties of the fibres, decide
w hether the sorption of w ater or th a t of the oil is greater. The oleophilic
properties of the fibres are specified by the contact angle for the oil on
the sorbent. The contact angle was m easured on fibres 0.5 mm in diam eter
F ig. 6. S orp tion tim e as a fu n ctio n of fib re p ack in g d en sity
□
V
s o rb in g a g e n t I
s o rb in g a g e n t II
v is c o s e f i b r e s
p o ly a m id e fib r e s
„ L u x 10" o il
^
O
%
A
s o rb in g a g e n t I
s o rb in g a g e n t II
v is c o s e f i b r e s
p o ly a m id e fib r e s
c r u d e o il
R ye. 6. C zas w c h ła n ia n ia w fu n k cji g ę sto śc i u p a k o w a n ia w łó k ien
□
V
X
+
^
O
•
A
so rb e n t
s o rb e n t
w łó k n a
w łó k n a
I
II
w is k o z o w e
p o lia m id o w e
o le j „ L u x 10”
so rb e n t
so rb e n t
w łó k n a
w łó k n a
I
II
w is k o z o w e
p o lia m id o w e
ro p a n a fto w a
obtained from plaiting sm all filam ents. Tab. 2 shows th a t the sorbent
obtained from disintegrated w aste tyre^body has higher oleophilic pro­
perties than the raw polyam ide and viscouse fibres which the sorbent
contains. The process of ty re production strongly influences the surface
properties of the fibres form ing the tyre-body, and makes them highly
oleophilic. Hence the conclusion is th a t prim arily, the sorbent should not
change its sorption properties in respect of oil, in the presence of an oilw ater m ixture. Experim ental data on the sorption properties of w atersaturated fibres are shown in Tab. 3.
Table
3
T a b e 1a 3
Sorp tion ca p a city o f o ils and w a te r on sy n th e tic fib res (g /lg fibre)
W yd ajn ość sorp cji p ro d u k tó w n a fto w y c h i w o d y n a w łó k n a ch sy n te ty cz n y c h
(g /lg w łó k ien )
F ib res
pack in g
d en sity
g /cm 3
F i t r e s
Sorb in g a g e n t I
crude water
oil
„L ux
10”
oil
S o rb in g a g en t II
-
P o ly a m id e fib res
V isco se fib res
„L ux
„L ux
crude water „L ux crude water
crude water
10”
10”
10”
oil
oil
oil
oil
oil
o il
0.1
6.0
0.5
7.0
4.2
0.7
5.2
4.0
3.9
4.1
2.6
5.1
2.5
0.2
4.0
0.4
3.8
2.8
0.65
3.8
2.2
2.0
1.8
2.0
2.2
1.5
0.3
2.8
0.25
2.5
2.1
0.4
1.8
1.1
1.6
0.5
0.7
1.8
0.2
Experim ents w ere carried out for three fibre packing densities. The
quantity of w ater was m easured gravim etrically after shaking and being
left to drip. An analysis of the table 3 shows the m inim al loss of sorption
properties for sorbents I and II (comp. Figs. 2, 5). The q uantity of w ater
per 1 g of sorbent does not exceed 70% of the w eight of fibres for a pack­
ing density of 0.10 g/cm3 and is less by halt for 0.30 g/cm3. This pheno­
menon can be explained by th e g reater distances betw een particu lar
filam ents at a packing density of about 0.10 g/cm3 hence the m ore effec­
tive penetration of w ater inside the wads. C apillary depression occurs at
greater packing densities as for all practical purposes, the w ater is un­
able to w et the sorbent fibres. Contact angles for oil on polyam ide and
viscose fibres show th e ir low er hydrophobic properties, which is com patible
w ith the results obtained for sorption yields. In the case of low packing
densities 1 g fibres absorbs 2 g of w ater. At 0.30 g/cm3 the q u an tity of
w ater related to 1 g of sorbent drops to 1.6— 1.8 g, but there is a rapid
sim ultaneous decrease in the sorption properties of the „Lux 10” oil to
0.2—0.5 g/g. This is th e resu lt of com petitive w ater penetration inside
the sorbent bulk and the sim ultaneous hydraulic closure of the em pty
spaces existing inside of the cylinders. Hence the oil sticks only to the
surface layers of the fibres and is unable to force the w ater out. It should
be m entioned th a t very severe model conditions w ere assumed for the
contact of fibres w ith w ater. In practice, the sorbent is always in contact
w ith both oil and w ater — which results in the oil-covered fibres
becoming strongly hydrophobic, the sorption then being much higher.
P relim inary investigations on the possibility of re-use of the sorption
substance w ere carried out. An average of 75% of the crude-oil and 50%
of the „Lux 10” oil was recovered by the pressing method. The sorption
capacity of sorbent I and sorbent II cylinders rem ained unchanged for
both w ater and oil, w hereas in the case of polyamide and viscose fibres
the oil sorption capacity increased while th at of w ater decreased during
succesive sorption-desorption processes. T em perature has a substantial
effect on the viscosity of petroleum products and consequently on its pen­
etration into the sorbent bulk.
In sum m er the sorption of heavy oil products will be relatively easier
when using sorbing booms and endless belts.
D isintegrated fibres spread by an air blow-pipe and collected by
means of nets are an economical form of sorbent in w inter [2], This
method is also recom mended in the case of larger oil spills.
3. C O N C L U S IO N S
1. The capacity of fibre sorbent does not depend only on the stru c­
tu ral and geom etrical arrangem ent of fibres in the wads, but also on the
capacity to w et the fibres by oil removed from the w ater surface. The
data indicate th a t the surface properties of filam ents have a m arked
effect on the capacity observed w hen sea-w ater and oil can penetrate
into the sorbent bulk. W hen all the filam ents are in contact w ith the
petroleum products only, the capacity is determ ined by the sorbent struc­
ture. The effect on the capacity in relation to the surface properties of
the fibres is negligible in this case.
2. The best packing density of fibres in sorbing booms, m ats and
endless belts depends on the mechanical properties of the fibres and the
oil bonding force of the sorbent required. It is difficult to evaluate the
packing density of the sorbent in the form of p articular filam ents. W here
this density is too low, there is danger of an appreciable loss of oil when
rem oving the oil-sorbent m ix tu re from the w ater surface.
3. A lower fibre packing density facilitates more rapid penetration
of w ater inside the sorbent bulk, sim ultaneously decreasing the oil sorp­
tion capacity.
4. The most effective sorption capacity is achieved for the particle
form of the sorbent and oil products of m oderate viscosity.
5. The sorption capacity of commercial products is m ostly given for
the particle form. It will be much lower for sorbing booms, m ats, pillows
or endless belts. This fact should be taken into account in calculations
related to oil spill removal.
6. Sorbent obtained from w aste car tyres can be economically compe­
titive as a sorption m aterial com parable even w ith such cheap ones as
straw or sawdust, because of their high sorption properties and regenera­
tion possibilities.
O C E A N O L O G IA N r 11 (1979)
152
JA N HUPKA
S T A N IS Ł A W M Y D L A R C Z Y K
P o litech n ik a G d ań sk a
In sty tu t C h em ii i T ech n o lo g ii N ieorgan iczn ej
ZASTOSOWANIE ODPADOWYCH WŁÓKIEN Z TWORZYW
SZTUCZNYCH DO USUWANIA ROZLEWÓW OLEJOWYCH
Z POWIERZCHNI WÓD
S treszczen ie
W a rty k u le p rzed y sk u to w a n o w y n ik i b ad ań m a ją cy ch n a ce lu o k reśle n ie p rzy ­
d a tn o ści o d p a d o w y ch w łó k ie n z tw o r z y w sztu czn y ch do u su w a n ia p ro d u k tó w n a f­
to w y c h z p o w ierzch n i w ó d m orsk ich . W yd ajn ość w c h ła n ia n ia o leju od n iesio n o do
w ła sn o śc i p o w ierzch n i w łó k ie n oraz stru k tu ry u ło żen ia w łó k ie n w k łęb u szk a ch sorb en ta. P rzyto czo n o p race in n y ch a u to ró w o m a w ia ją ce za g a d n ien ie za sto so w a n ia
so rb en tó w w łó k n isty c h do lik w id a c ji ro z le w ó w o lejo w y ch . W yk on an o szereg d o św ia d ­
czeń i rozw ażon o za leżn o ści m ię d z y w y n ik a m i ek sp e r y m e n ta ln y m i a o b liczen ia m i
teo rety czn y m i. W części d o św ia d cza ln ej sto so w a n o so rb en t o trzy m an y z o sn o w y
zu żytych opon sa m o ch o d o w y ch oraz w łó k n a w isk o z o w e i p o lia m id o w e. S p osób p rzy ­
g o to w a n ia so rb en ta oraz jeg o p o d sta w o w e w ła sn o śc i fizy k o -c h e m ic z n e pod an o w e
w cześn iejszej p racy [3], S orp cję p row ad zon o d la rop y n a fto w ej oraz o leju siln ik o ­
w eg o „L ux 10”.
W nioski:
1.
O trzym an e rez u lta ty w sk a zu ją n a fak t, że w ła sn o śc i p o w ierzch n i w łó k ie n
m ają zn aczn y w p ły w na za o b serw o w a n ą w y d a jn o ść w ó w cza s, gd y w o d a m orsk a i
olej p en etru ją razem w głą b m a sy sorb en ta. K ie d y zaś w sz y stk ie w łó k n a sty k a ją
się z o lejem , w y d a jn o ść w c h ła n ia n ia za leży od stru k tu ry sorb en ta. W p ły w zw ią za n y
z w ła sn o śc ia m i p o w ierzch n i w łó k ie n m ożn a w ty m w y p a d k u zan ied b ać. Ilość p o ­
ch ło n ięteg o o le ju w z ra sta z rosn ącą g ęsto ścią u p a k o w a n ia w łó k ie n , o siąg ając m a k si­
m u m w g ran ica ch 0.15— 0.30 g /cm 3 w za leż n o ści od rod zaju sorb en ta. J est ona m n ie j­
sza od w y d a jn o ści teo rety czn ej.
2 .N ajb ard ziej k o rzy stn a g ęsto ść u p a k o w a n ia w łó k ie n w zaporach sorb u jących ,
m atach, w stęg a c h za leż y od w ła sn o śc i m ech a n iczn y ch w łó k ie n i w y m a g a n ej siły
w ią za n ia o leju p rzez sorb en t. T rudno je st o cen ić g ęsto ść u p a k o w a n ia so rb en ta w
p ostaci w łó k ie n rozd rob n ion ych , p rzy czym g d y b ęd zie ona zb y t m ała, n a le ż y się
liczy ć ze zn aczn ym u w o ln ie n ie m o leju p rzy p o d ejm o w a n iu m ie sz a n in y so rb en t-o lej
z p o w ierzch n i w od y.
3. M n iejsza g ęsto ść u p a k o w a n ia w łó k ie n u m o żliw ia szyb szą p en etra cję w o d y w
głąb m asy sorb en ta, ob n iżając jed n o cześn ie ch łon n ość p rod u k tów n a fto w y ch .
4. N a jw y ż sz e ch ło n n o ści u zy sk u je się d la so rb en ta rozd rob n ion ego i dość lep k ich
p rod u k tów n a fto w y ch .
5. W yd ajn ość so rp cji su b sta n c ji h a n d lo w y ch p o d a je się z r e g u ły d la p o sta ci roz­
drob nionej. W ydajn ość b ęd zie zn a czn ie m n iejsza w p rzyp ad k ach w y stę p o w a n ia tej
su b sta n cji w p o sta c i zapór so rb u ją cy ch , m at, pod u szek czy w stę g . F a k t ten n a leży
w zią ć pod u w a g ę w cza sie o b liczeń d o ty czą cy ch lik w id a c ji ro zle w ó w o lejo w y ch .
6. S orb en t u zy sk a n y z o sn o w y zu ży ty ch opon sa m o ch o d o w y ch m oże sta n o w ić
k o n k u ren cy jn y m a ter ia ł w ią ż ą c y n a w e t d la tak tan ich so rb en tó w , ja k sło m a czy
tro cin y, m .in. ze w z g lę d u na w y so k ie w ła sn o śc i ch ło n n e oraz m o żliw o ść reg en era cji.
C h arak teryzu je się on zn a czn ie w y ższ y m i w ła sn o śc ia m i ch łon n ym i, w z g lę d e m p ro ­
d u k tó w n a fto w y ch , od su r o w y ch w łó k ie n p o lia m id o w y ch i w isk o zo w y ch .
R EFEREN CES
L IT E R A T U R A
1. A d a m s o n A.W ., Chem ia fizyczn a pow ierzchni, W arszaw a 1983.
2. D illingham plan a ttacks oil spill cleanup problem , Chem . Eng. N e w s, 1970, 48,
s. 34— 37.
3. H u p k a J., M y d 1 a r c z y k S., U suw anie p ro d u k tó w n aftow ych z p o w ierzch n i
w o d y p rzy pom ocy śro d k ó w sorbujących, S tu d ia i M a teria ły O cean ologiczn e, 14:
C hem ia m orza, 1975, 2, s. 115— 140.
4. J o h n s o n R .F., M a n j e k a r T.G ., H a l l i g a n J.E., R em oval of oil fro m
w a te r surfaces by sorption on u n stru ctu red fibres, E n viron . S ci. T ech n o l., 1973,
7, s. 439— 443.
5. K a u f m a n S . , Surface ch em istry param eters in ecological cleanup of oily w a s te ­
w ater, E nviron . S ci. T ech n ol., 10, 1976, 2, s. 168— 173.
6. K a w a h a r a F.K ., Iden tification and d ifferen tia tio n of h ea vy residu al oil and
asph alt pollu tan ts in surface w a ters by co m p a ra tive ratios of in frared absor­
bances, E nviron. S ci. T ech n ol., 3, 1969, 2, s. 150— 153.
7. S pilled oil absorbents, Z osen , 17, 1972, 4, s. 52— 54.
8. W a l k u p P.C., W ater pollu tion b y oil spillage, W PCF J., 43, 1971, 6, s. 1069— 1080.
9. Z a h i d M .A., Oil slick rem oval using m atrices of p o lyp ro p ylen e fila m en ts,
Ind. Eng. C hem ., P ro cess D es. D ev elo p ., 11, 1972, 4, s. 550— 555.

Podobne dokumenty