Department of Biotechnology

Transkrypt

Department of Biotechnology
Department of Biotechnology
Project 1
Prof. dr hab. Antoni Banaś MWB UG I GUMed
Department of Biotechnology
Laboratory of Plant Biochemistry
Title:
The activity and substrate specificity of acyl-CoA:3-phosphoglycerol acyltransferase (GPAT) in developing
seeds of selected oilseed plants
Aktywność i specyficzność substratowa acylotransferaz typu GPAT (acyl-CoA:3-fosfoglicerol) w
rozwijających się nasionach wybranych roślin oleistych
Acylotransferazy typu GPAT są pierwszymi enzymami tzw. szlaku Kenediego; klasycznego szlaku biosyntezy
triacylogliceroli. Poznanie zmiam ich aktywności i specyficzności substratowej może przyczynic sie do
lepszego zrozumienia akumulacji triacylogliceroli w nasionach roslin oleistych. Jak do tej pory w Pracowni
badaliśmy pozostale dwa enzymy szlaku Kenediego: acylotransferazy typu LPAAT (acyl-CoA:kwas
lizofosfatydowy) i acylotransferazy typu DGAT (acyl-CoA:diacyloglicerol). Rozpoczecie badań nad enzymami
typu GPAT pozwoli nam na skompletowanie informacji dotyczacych zmian aktywnosci i specyficznosci
substratowej wszytkich enzymów szlaku Kenediego w rozwijających sie nasionach wybranych roślinoleistych.
Project 2
Prof. UG, dr hab. Aleksandra Królicka MWB UG I GUMed
Department of Biotechnology
Laboratory of Biologically Active Compounds
Title:
Therapeutic application of secondary metabolites from plants of Iris genus. (praca finansowana z programu
MNiSW Diamentowy Grant)
Terapeutyczne zastosowanie metabolitów wtórnych roślin z rodzaju Iris.
The project includes the investigation of biological activity of secondary metabolites produced in plants
tissue of Iris genus from Iridaceae family. These plants contain valuable secondary metabolites: isoflavones,
quinones, flavonoids and triterpens which all have biologically active properties. The project presupposes a
detailed activity analysis of substances isolated from Iris tissue (from in vitro and in vivo cultures,
transformed roots) for testing cytotoxic activity on human cancer cell lines: HeLa, MCF-7, HL-60 and human
skin cell line HaCaT. Also the antimicrobial activity will be tested on human, multidrug resistant pathogens:
Klebsiella pneumoniae, Escherichia coli, Enterococcus faecalis, Candida albicans including those forming
biofilm: Staphylococcus aureus and Pseudomonas aeruginosa. The application potential of extracts from Iris
plants with combination with silver nanoparticles (AgNPs) in fight against bacterial and fungal infections will
be tested as well. In the project a microfluidic device will be designed. This device will allow performing a
quick and precise analysis of antibacterial activity of whole extracts as well as extracts with combination with
silver nanoparticles, which underlines an interdisciplinary character of this project.
Project 3
Prof. dr hab. Ewa Łojkowska MWB UG I GUMed, promotor pomocniczy dr Robert Czajkowski,
MWB UG I GUMed
Department of Biotechnology
Laboratory of Plant Protection and Biotechnology
Title:
Identification, characterization and phylogenetic comparison of genes specifically up-regulated in Dickeya
solani during colonization of roots, stems and leaves of Solanum tuberosum L. and Solanum dulcamara L.
Identyfikacja, charakterystyka i filogenetyczne porównanie genów specyficznie nadeksprymowanych w
bakteriach Dickeya solani podczas kolonizacji korzeni, łodyg i liści Solanum tuberosum L. i Solanum
dulcamara L. (praca finansowania z projektu NCN SONATA 6)
This project aims to identify, characterize and phylogenetically compare the genes present in D. solani that
are specifically induced (up-regulated) during colonization of roots, stems and leaves of primary plant host
for D. solani – Solanum tuberosum (potato) and secondary (alternative) plant host – Solanum dulcamara
(bittersweet nightshade). It is assumed that plant colonization by bacteria is governed by a tight genetic
regulation in which particular genes are turn on and off during different colonization stages and depending
on colonized tissues (leaves, stems or roots) and plant host (S. tuberosum or S. dulcamara). The S. dulcamara
has been chosen as a model secondary plant host due to its relatively high genetic closeness to S. tuberosum
and because there are reports describing isolation of Dickeya spp. bacteria from symptomless S. dulcamara
plants under natural conditions. The expected results of the project will provide information on the
colonization of plant primary and secondary host tissues, specifically roots, stems and leaves by pectinolytic
bacteria. The results will allow a better understanding of the colonization of plants plant pathogenic. The
results will expend the general knowledge on plant – microbe interactions and will add additional
information to the model systems already existing.
Department of Molecular and Cellular Biotechnology
Project 4
Prof. dr hab. Jarosław Marszałek MWB UG I GUMed
Department of Molecular and Cellular Biology
Laboratory of Evolutionary Biochemistry
Title:
Hsp70 molecular chaperones in mitochondrial biogenesis of iron-sulfur clusters: functional analysis and
evolution
Białka opiekuńcze Hsp70 w mitochondrialnej biogenezie centrów żelazo-siarkowych: analiza funkcjonalna i
ewolucja.
Iron-sulfur clusters (FeS) are ancient prosthetic groups critical for function of proteins in many processes
essential for life, including electron transfer, catalysis, regulation of gene expression and environmental
sensing. Specialized protein machineries that facilitate FeS biogenesis are present in all domains of life. In
mitochondria, which play a central role in FeS biogenesis in eukaryotic cells, a dedicated chaperone system
consisting of a member of the Hsp70 molecular chaperone family and its J-protein co-chaperone partner are
critical for the transfer of the cluster to a recipient apoprotein. Our research focuses both on functional and
evolutionary analyses of involvement of molecular chaperones in FeS biogenesis. By combining these two
complementary approaches we answer questions relevant to both bio-medical aspects of chaperones
function and evolutionary mechanisms behind functional divergence of molecular chaperones originated by
gene duplication. We search for PhD students interested in molecular biology, biochemistry, cell biology and
molecular evolution. Beside regular PhD fellowships additional founds for PhD students are available from
"Maestro" and "Mistrz" projects funded by NCN and FNP respectively.
Project 5
Prof. dr hab. Jarosław Marszałek MWB UG I GUMed
Department of Molecular and Cellular Biology
Laboratory of Evolutionary Biochemistry
Title:
Hsp70 molecular chaperones in mitochondrial biogenesis of iron-sulfur clusters: functional analysis and
evolution
Białka opiekuńcze Hsp70 w mitochondrialnej biogenezie centrów żelazo-siarkowych: analiza funkcjonalna i
ewolucja.
Iron-sulfur clusters (FeS) are ancient prosthetic groups critical for function of proteins in many processes
essential for life, including electron transfer, catalysis, regulation of gene expression and environmental
sensing. Specialized protein machineries that facilitate FeS biogenesis are present in all domains of life. In
mitochondria, which play a central role in FeS biogenesis in eukaryotic cells, a dedicated chaperone system
consisting of a member of the Hsp70 molecular chaperone family and its J-protein co-chaperone partner are
critical for the transfer of the cluster to a recipient apoprotein. Our research focuses both on functional and
evolutionary analyses of involvement of molecular chaperones in FeS biogenesis. By combining these two
complementary approaches we answer questions relevant to both bio-medical aspects of chaperones
function and evolutionary mechanisms behind functional divergence of molecular chaperones originated by
gene duplication. We search for PhD students interested in molecular biology, biochemistry, cell biology and
molecular evolution. Beside regular PhD fellowships additional founds for PhD students are available from
"Maestro" and "Mistrz" projects funded by NCN and FNP respectively.
Project 6
Prof. UG, der hab. Jacek Piosik MWB UG I GUMed
Department of Molecular and Cellular Biology
Laboratory of Biophysics
Title:
Polyphenols isolated from raspberries as interceptors of food-borne mutagens.
Polifenole z malin jako związki przechwytujące mutageny obecne w żywności.
According to statistical data raspberries are a popular ingredient of everyday diet in the USA and Europe.
Consumption of fresh raspberry fruits is believed to have a beneficial relation to human health, and that is
why they have received much interest by both consumers and the researchers. Anthocyanins and
ellagitannins isolated from raspberries possess several biological activities, especially anticancer properties.
The exact mechanism of this chemopreventive action of anthocyanins and ellagitannins has not been
established yet. It is hypothesized that these polyphenols can act as an interceptor molecules, sequestering
aromatic mutagen molecules in stacking (π-π) complexes, contributing in this way to the decrease in its
bioavailability. The main aim of this project is to verify this hypothesis.
Within the project we want to establish the protective role of anthocyanins and ellagotannins from
raspberries against food-derived mutagens, knows as heterocyclic aromatic amines (HCAs). We intend to
investigate whether compounds mentioned above interact directly by the formation of stacking heterocomplexes. Moreover, we plan to establish to which extent such interactions may influence biological activity
of the mutagens. The results of the project will give a new insight into the mode of action of anthocyanins
and ellagotannins from raspberies as chemopreventive agents.
Department of Medical Biotechnology
Project 7
Prof. dr hab. Michał Obuchowski MWB UG I GUMed, kopromotor prof. UG, dr hab. Rajmund
Kaźmierkiewicz, MWB UG I GUMed
Department of Medical Biotechnology
Laboratory of Molecular Bacteriology
Title:
Construct a model of the GerA germination receptor
Skonstruowanie modelu receptora kiełkowania GerA (praca finansowana z projektu NCN HARMONIA 6)
The bacterial spore is a specific type of the cell designed to persist harsh environmental conditions. Beside of
the resistance for various conditions the spore need to continuously monitored environment. To achieve this
the spore is equipped with germination receptors which can initiate transformation of spore into vegetative
cell. The GerA receptor is activated by presence L-alanine or L-valine in the environment. However, the
molecular mechanisms of its action remain unknown. In a frame of this project we like to try unravel
molecular mechanisms of action of GerA receptors based on the molecular biology and molecular modelling
approach. This will allow us to identify the substrate-binding pocket region and the contact surfaces between
the subunits of the receptor, which will serve as guidelines for the construction of the group of mutants.
Analysis of spore behavior after introducing selected mutations into the B. subtilis cells should provide data
sufficient to propose a model describing the functioning of the receptor GerA in B. subtilis spore.
Project 8
Prof. dr hab. Michał Obuchowski MWB UG I GUMed
Department of Medical Biotechnology
Laboratory of Molecular Bacteriology
Title:
Mechanism of action of the Gera germination receptor of B. subtilis spore
Analiza mechanizmu działania receptora GerA przetrwalników B. subtilis (praca finansowana z projektu
NCN HARMONIA 6)
The bacterial spore is a specific type of the cell designed to persist harsh environmental conditions. Beside of
the resistance for various conditions the spore need to continuously monitored environment. To achieve this
the spore is equipped with germination receptors which can initiate transformation of spore into vegetative
cell. The GerA receptor is activated by presence L-alanine or L-valine in the environment. However, the
molecular mechanisms of its action remain unknown. In a frame of this project we like to try unravel
molecular mechanisms of action of GerA receptors based on the molecular biology and molecular modelling
approach. This will allow us to identify the substrate-binding pocket region and the contact surfaces between
the subunits of the receptor, which will serve as guidelines for the construction of the group of mutants.
Analysis of spore behavior after introducing selected mutations into the B. subtilis cells should provide data
sufficient to propose a model describing the functioning of the receptor GerA in B. subtilis spore.
Project 9
Prof. dr hab. Andrzej C. Składanowski MWB UG I GUMed
Department of Medical Biotechnology
Laboratory of Molecular Enzymology
Title:
Analyses of molecular mechanism of FGFR inhibitors-triggered changes in growth and aggressive behavior
of cancer cells – in vitro studies.
Analiza molekularnego mechanizmu wpływu inhibitorów FGF-R na wzrost i agresywność komórek
nowotworowych w badaniach in vitro. (praca finansowana z projektu NCBiR STRATEGMED)
W projekcie będzie porównywana skuteczność i selektywność inhibitorów FGFR uzyskanych z firmy
farmaceutycznej Celon Pharma wobec komórek pochodzących z płasko-nabłonkowego raka płuca, żołądka i
pęcherza moczowego. Zastosowane linie komórkowe będą pochodzić z nowotworów o zróżnicowanej
złośliwości oraz posiadających różne odmiany receptora FGF będące skutkiem zmian genetycznych i
epigenetycznych. Zasadnicze badania będą wykonywane w kulturach 3D sprzyjających zachowaniu
oryginalnego fenotypu a zatem symulujących natywne oddziaływania z macierzą zewnątrzkomórkową i
międzykomórkowe w środowisku.
Wzrost komórek wewnątrz struktur trójwymiarowych będzie
rejestrowany w czasie z użyciem systemu wideomikroskopowego. Badania kinetyczne wzrostu i ruchliwości w
różnych środowiskach będą przeprowadzanie w komorze Boydena i za pomocą testu zabliźniania rany.
Wzrost zależny i niezależny od kontaktu z podłożem będzie oceniany w płynnej agarozie. Wstępne
doświadczenia mają na celu taką selekcje linii komórkowych aby znaleźć odmiany o zróżnicowanej czułości na
zastosowane inhibitory FGFR. Kolejne etapy mają na celu analizę mechanizmu wpływu tych inhibitorów. W
tych liniach będą przeprowadzone szeroko zakrojone badania specyficznej sygnalizacji z udziałem FGFR.
Przeprowadzone będę też równoległe testy z udziałem białek efektorowych innych receptorów
zaangażowanych w progresję nowotworów.
Przeprowadzone badania dostarczą szeregu istotnych informacji o dotychczas nieznanych oddziaływaniach
zależnych od receptora FGF a stymulujących rozwój raka. Będą one częścią szeroko zakrojonych badań
klinicznych i przedklinicznych mających na celu rozwój funkcjonalnych leków na pewna określoną grupę
nowotworów.
Project 10
Dr hab. Anna Żaczek, MWB UG I GUMed; promotor pomocniczy dr Anna Markiewicz, MWB UG I
GUMed,
Department of Medical Biotechnology
Laboratory of Cell Biology
Title:
Clinical and biological significance of gene amplification and extranuclear form of estrogen receptor in
breast cancer.
Znaczenie kliniczne i biologiczne amplifikacji genu i pozajądrowej formy receptora estrogenowego w raku
piersi.
The presence of nuclear form of estrogen receptor (ER) in breast cancer cells is one of the most important
predictive factors for hormonal therapy (eg. tamoxifen). Interestingly, the amplification of estrogen receptor
gene (ESR1) has been found in primary tumors with and without nuclear form of estrogen receptor protein
and it was associated with poor prognosis. Given that gene amplification is one of the mechanisms leading to
protein overproduction, it is possible that ESR1 amplification leads to overexpression of ER, which
accumulates in the cytoplasm. Yet, cytoplasmic estrogen receptor is not analyzed in a standard
histopathological examination and literature data on its clinical and biological significance are scarce.
The goal of a PhD project is to investigate the relationship between ESR1 amplification and cytoplasmic ER
protein level in primary tumors of breast cancer and to assess the impact of ER cytoplasmic form on the
progression of breast cancer. The examined markers will be correlated with clinical and pathological data,
and survival of breast cancer patients, what should allow for verification of their clinical significance. In vitro
model will analyze the impact of cytoplasmic ER signaling on phenotype of breast cancer cells and the effect
of its inhibition by tamoxifen.
Laboratory of Biopolymers Structure
Project 11
Prof. UG, dr hab. Stanisław OłdziejMWB UG I GUMed, kopromotor prof. dr hab. Krzysztof Łukaszuk,
INVICTA, MUG
Laboratory of Biopolymers Structure
Title:
Proteomic biomarkers of human embryo developmental potential in in-vitro fertilization culture media.
Biomarkery do określania potencjału rozwojowego ludzkich embrionów wydzielane do podłóż
stosowanych w zapłodnieniach in vitro.
The aim of the project is to identified proteomic biomarkers secreted by human embryo after in-vitro
fertilization procedure. Biomarkers will be used for prognosis of further embryo development. The first stage
of the project will involve isolation and chemical identification of substances secreted by human embryo to
culture media used in in-vitro fertilization procedure. Further identified compounds, their concentration,
secretion kinetics will be correlated with after implantation embryo development. The main technique used
in the project will be mass spectrometry coupled with high performance liquid chromatography.
Project 12
Prof. UG, dr hab. Stanisław Ołdziej MWB UG I GUMed, promotor pomocniczy dr Wioletta
Żmudzińska MWB UG I GUMed
Laboratory of Biopolymers Structure
Title:
Phosphate and pyrophosphate binding motifs in proteins – structure and catalytic properties.
Białkowe motywy wiążące fosforany i pirofosforany – struktura i własności katalityczne.
The aim of the project is to identified short peptide sequences which are able to form stable threedimensional structure and binds phosphates or phyrophosphates and eventually catalyze reaction of
phyrophosphate hydrolysis. Research will involve i) bioinformatic analysis of protein sequences to identify
polypeptide sequences which are involved in phosphate and phyrophosphate binding; ii) chemical peptide
synthesis, purification and structure determination using NMR spectroscopy; iii) for selected peptide
assessing their phosphate or phyrophospahte binding abilities using HPLC, NMR, CD spectroscopy and mass
spectrometry.
Laboratory of Virus Molecular Biology
Project 13
Prof. dr hab. Krystyna Bieńkowska-Szewczyk MWB UG I GUMed, promotor pomocniczy dr Andrea
Lipińska MWB UG I GUMed
Laboratory of Virus Molecular Biology
Title:
Identification of cellular proteins involved in the activity of bovine herpesvirus 1-encoded)
UL49.5/glycoprotein M complex.
Identyfikacja białek komórkowych uczestniczących w mechanizmie działania kompleksu
UL49.5/glikoproteina M bydlęcego herpeswirusa 1 (praca finansowana z projektu NCN SONATABIS 4)
The general project objective is to search for cellular proteins involved in the molecular mechanism of
activity of alphaherpesvirus-encoded gM/gN (UL49.5) proteins, which act as key immune evasion molecules
during infection of several alphaherpesviruses. The research models will include bovine herpesvirus 1 (BHV1), and to a lesser extent, protein homologs of herpes simplex HSV-1 and varicella-zoster virus VZV. gN
(UL49.5) represents the major immunomodulatory protein inhibiting the activity of cytotoxic T lymphocytes
during infection of BHV-1 and related alphaherpesviruses. gN interferes with the antigen presentation
pathway via MHC class I molecules by blocking the TAP transporter. Complex formation with viral
glycoprotein M (gM) regulates the activity of gN. In HSV-1-infected cells gM is internalized from the cell
membrane by endocytosis and at the same time it can bind and internalize some cellular proteins, including
the host restriction factors which belong to the components of innate immunity, like – tetherin/BST2/CD317. Despite long tract of research on gM/gN homologs, the molecular mechanism of its activity
remains elusive. To understand how gN/gM complex works we will apply broad multidirectional analyses,
aiming at: identification of cellular proteins involved in the degradation of TAP by lentivirus shRNA library
screen and mass spectrometry analysis, elucidation of gM/gN role in internalization of tetherin and the
mechanisms controlling this process, finally – finding if the activity of alphaherpesvirus gM/gN homologs is
evolutionary conserved or pointing out differences.