Tlen singletowy - Uniwersytet Jagielloński

Transkrypt

Tlen singletowy - Uniwersytet Jagielloński
Tlen: toksyczny pierwiastek życia
Wykład 1
Biochemia stresu oksydacyjnego
Literatura:
Grzegorz Bartosz „Druga twarz tlenu”
Barry Halliwell & John Gutteridge „Free radicals in biology and medicine”
Trochę o tlenie
Spośród kilkunastu izotopów tlenu trzy są stabilne:
16O
(>99%)
17O (0.04%)
18O (0.2%)
Konfiguracja elektronowa atomu tlenu
elektrony sparowane – są to dwa elektrony o przeciwnej orientacji spinów należące
do tego samego poziomu orbitalnego
elektron niesparowany – jest to elektron znajdujący się na poziomie orbitalnym, na
którym nie ma innego elektronu
reguła Hunda: jak najwięcej elektronów niesparowanych w danej podpowłoce
reguła Pauliego: dwa elektrony w jednym poziomie orbitalnym muszą mieć przeciwną orientację spinu
Paradoks tlenowy
Z wyjątkiem organizmów anaerobowych i aerotolerancyjnych, wszystkie zwierzęta,
rośliny i bakterie potrzebują O2 do produkcji energii. Z drugiej strony, tlen ze względu na
swoją konfigurację elektronową, jest potencjalnie toksyczny.
wytworzyć mechanizmy antyoksydacyjne = przetrwać w nieprzyjaznym środowisku tlenu
pomimo istnienia mechanizmów antyoksydacyjnych i naprawczych,
uszkodzenia oksydacyjne pozostają nieuniknioną konsekwencją życia
w warunkach tlenowych
Dawno, dawno temu…..
- Wczesna atmosfera była bogata w metan i wodór, czyli miała nadmiar czynników
redukujących.
- Pierwsze organizmy były heterotrofami zależnymi od abiotycznych źródeł związków
organicznych lub chemotrofami uzyskującymi energię z wodoru, siarkowodoru i
metanu, wykorzystującymi jako akceptory elektronów dwutlenek węgla lub
siarczany.
Dawno, dawno temu…..
- Beztlenowe bakterie fotosyntetyzujące (bakterie purpurowych i zielone bakterie
siarkowe) wykorzystywały związki siarki (siarkowodór, siarkę, tiosiarczan), wodór lub
kwasy organiczne do pozyskiwania energii. Prawdopodobnie były pierwszymi
organizmami fotosyntezującymi.
- Około 3.2-2.4 miliarda lat temu pojawiły się sinice, które mogły wykorzystywać
energię słoneczną do utleniania wody. Uwolniony wodór potrzebny był do
przeprowadzenia metabolicznych reakcji redukcji.
Reakcja utleniania wody
prowadziła do powstania jednej cząsteczki tlenu z dwóch cząsteczek wody w
procesie czteroelektronowego utlenienia.
Dawno, dawno temu…..
Miliony lat temu
3500
Promieniowanie słoneczne bombarduje powierzchnię Ziemi
Początki życia anaerobowego
>2500
Cyjanobakterie uwalniają O2:
1300
Poziom tlenu atmosferycznego osiąga 1%
Początek ewolucji eukarinotów
500
Poziom tlenu atmosferycznego osiąga 10%
Warstwa ozonowa pochłania wystarczająco dużo UV, aby umożliwić
wyjście organizmów na ląd
65
Pojawienie się naczelnych
5
Poziom tlenu atmosferycznego osiąga 21%
Pojawienie się człowieka
2H2O → O2 + 4H+ + 4e-
Zysk przejścia do życia tlenowego: efektywna produkcja energii
Dawno, dawno temu…..
Właściwości chemiczne tlenu
- Tlen stanowi ok. 1/4 masy Ziemi (53.8% atomów skorupy Ziemi to atomy tlenu) i
ok. 3/4 masy ciała ssaków.
- W dolnych warstwach atmosfery tlen stanowi 21% objętości (w 1 L powietrza jest
210 mL tlenu).
- Jest 5-8 razy lepiej rozpuszczalny w rozpuszczalnikach organicznych niż w wodzie
(uszkodzenia oksydacyjne w obrębie hydrofobowego środowiska membran
biologicznych)
- Po raz pierwszy został otrzymany w stanie czystym w 1774 roku przez Josepha
Priestleya z tlenku rtęci. W atmosferze tlenu:
* świeca płonęła bardziej jaskrawo,
* mysz zamknięta pod szczelnym kloszem żyła dłużej,
* Josephowi Priesley'owi oddychało się przyjemniej.
Joseph Priestley
Dawno, dawno temu…..
Element patriotyczny ☺
prof. Karol Olszewski
Uzyskanie ciekłego tlenu:
29 marca 1883, Uniwersytet Jagielloński
prof. Zygmunt Wróblewski
Tlen: pierwiastek życia
Pojemność oddechowa:
- W spokojnym oddechu człowiek wdycha ok. 500 mL powietrza.
- Maksymalny wdech to ok. 3.5 L powietrza, pojemność życiowa to ok. 4.8 L.
- W spoczynku człowiek przepuszcza przez płuca ok. 6-8 L powietrza na minutę
(wentylacja minutowa). Podczas intensywnego wysiłku - do 120 L powietrza.
80
78 78
70
60
50
%
40
wdech
21 17
30
wydech
20
0,03 4
10
0,97 1
0
azot
tlen
dwutlenek
węgla
pozostałe
gazy
W.Z. Traczyk (red): Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej
Tlen: pierwiastek życia
Tlen: pierwiastek życia
Zawartość tlenu w tkankach i płynach ustrojowych:
- Ciśnienie parcjalne tlenu w krwi żylnej to 40 mm Hg (53.3 hPa, 53 µmol/L, 15.3%).
- Wewnątrz komórek istnieje gradient tlenu: najwyższe stężenie jest pod
plazmalemmą, najniższe w mitochondriach.
- Tlen jest ok. 5-8 razy lepiej rozpuszczalny w rozpuszczalnikach organicznych (także
w lipidach błon komórkowych) niż w wodzie.
Zawartość tlenu w narządach:
- Krew tętnicza: 20%
- Krew żylna: 15.3%
- Wątroba, serce, nerki: 4-14%
- Mózg: 0.5-7%
- Oko (siatkówka, ciało szkliste): 1-5%
- Szpik kostny: 0-4%
Ivanovic Z. J Cell Physiol 2009.
Tlen: pierwiastek życia
Tlenowce
- Organizmy wymagające do przeżycia tlenu:
* np. my
Beztlenowce względne
- Organizmy mogące żyć w atmosferze tlenowej i beztlenowej, w tym mikroaerofile
lepiej rosnące przy zmniejszonej zawartości tlenu:
* Campylobacter jejuni (wywołuje biegunki)
* Treponema pallidum (krętek blady - wywołuje kiłę)
Beztlenowce bezwzględne
- Organizmy mogące żyć wyłącznie w atmosferze beztlenowej
* Clostridium tetani (pałeczka tężca)
Terapia hiperbaryczna
Zgorzel gazowa
- Zgorzel gazowa jest gwałtownie postępującym zakażeniem
wywoływanym przez toksyny Clostridium perfringens, Clostridium
septicum, Clostridium histolyticum lub Clostridium novyi.
Clostridium perfringens
- Do najczęstszych czynników predysponujących należą ciężkie urazy penetrujące lub
zmiażdżenie tkanek z towarzyszącym upośledzeniem ukrwienia.
- Zgorzel gazowa może spowodować martwicę skóry, tkanki podskórnej i mięśni.
Występowanie fioletowych pęcherzy skórnych, oddzielanie się fragmentów
martwiczej skóry, znaczny obrzęk i objawy toksemii ogólnoustrojowej stanowią
wskazanie do natychmiastowej interwencji chirurgicznej. Jednocześnie stosuje się
leki przeciwbakteryjne.
rozwijająca się
zgorzel gazowa
komora hiperbaryczna
Terapia hiperbaryczna
Trudnogojące się rany
- Przykład leczenia - pacjenci:
* 94 pacjentów w wieku 33 do 76 lat (średnio 42 lata) z cukrzycą od 1.5 do 32 lat
powikłaną zespołem stopy cukrzycowej, poddanych hiperbarycznej terapii tlenowej (HBO).
* U 9.6% pacjentów rozpoznano przed terapią HBO znacznego stopnia zaburzenia
przepływu krwi w tętnicach nóg z powodu miażdżycy, z czego u 5 wykonano przed terapią
zabiegi naczyniowe (pomostowanie, stenty).
- Przykład leczenia - procedura:
*
*
*
*
wyrównanie cukrzycy i towarzyszących zaburzeń metabolicznych,
chirurgiczne opracowanie rany
hiperbaria tlenowa (od 2 do 60 ekspozycji)
terapia przeciwbakteryjna.
- Przykład leczenia - wyniki:
*
*
*
*
u 27.7% pacjentów rany zagoiły się całkowicie,
u 39.4% doszło do znacznej poprawy stanu miejscowego.
w trakcie leczenia u 11.6% pacjentów wykonano amputacje
u wszystkich pacjentów poddanych leczeniu w komorze hiperbarycznej doszło do
redukcji objawów infekcji w ranie.
Polskie Towarzystwo Chirurgii Naczyniowej
Terapia hiperbaryczna
Zatrucie tlenkiem węgla
- W każdym przypadku zatrucia tlenkiem węgla pacjentowi powinien być podany
czysty tlen, tak szybko, jak to tylko możliwe.
- Główną zaletą terapii hiperbarycznej w leczeniu zatrucia tlenkiem węgla jest
zapobieganie długotrwałym efektom działania tlenku węgla takich jak: problemy z
pamięcią, utrzymaniem równowagi i koordynacją ruchów. Terapia może również
pomóc powrócić do zdrowia szybciej, niż w normalnych warunkach atmosferycznych.
W ciężkich przypadkach zatruć terapia ta ratuje pacjentom życie.
- W stanach zatrucia tlenkiem węgla tlen hiperbaryczny wspomaga usuwanie CO z
komórek i krwi drogą oddechową i redukuje uszkodzenia spowodowane przez tlenek
węgla. Zwiększone ciśnienie redukuje obrzęk w obszarze uszkodzonych tkanek.
Weaver at al. NEJM 2002
Tlen: pierwiastek życia
"Bary tlenowe"
- Lista korzyści, które właściciele barów tlenowych obiecują w swoich ulotkach reklamowych, jest
imponująca. Dzięki kuracji tlenowej – zapewniają – wzmocnisz swój system immunologiczny, dotlenisz
serce, zwiększysz sprawność fizyczną i psychiczną, odtrujesz organizm, zredukujesz skutki stresu, opóźnisz
starzenie. Kuracja taka działa też wspomagająco w stwardnieniu rozsianym, odchudzaniu, chorobach
niedokrwienia mózgu i siatkówki oka, obniża natężenie migren, jest niezastąpioną formą kosmetyki, chroni
przed zespołem przewlekłego zmęczenia, łagodzi dolegliwości związane z menopauzą i andropauzą oraz
zmienia punkt pracy komputera w mózgu (Polityka 48; 2002).
* pomarańczowy- usuwa zmęczenie i pomaga na depresję
* jabłkowy- jest cudownym lekiem na „kaca” oraz migrenę
* cytrynowy – walczy z przeziębieniem
* marchewkowy – poprawia nam koncentrację
Tlen: pierwiastek (krótkiego) życia
Właściwości chemiczne tlenu
- Czysty tlen (0.3 atm) zmniejsza długość życia Drosophila malanogaster. Przy
ciśnieniu 1 atm jest dla niej letalny.
- U ssaków oddychanie czystym tlenem przez kilkadziesiąt godzin powoduje:
* uszkodzenie i obrzęk pęcherzyków płucnych
* obumieranie nabłonka płucnego
* nasilone wytwarzanie kolagenu i włóknienie płuc
* pęcznienie mitochondriów i uszkodzenie miofibryli mięśnia sercowego
* pęcznienie mitochondriów w hepatocytach
* uszkodzenie kłębuszków nerkowych
- Rośliny naczyniowe rosnące w podwyższonym stężeniu tlenu wykazują:
* zahamowanie rozwoju chloroplastów
* zmniejszenie żywotności nasion i wzrostu korzeni
* nasilone opadanie liści
* zwiększona częstość anomalii wzrostu
Tlen: pierwiastek (krótkiego) życia
20h , 100% O2, 1 atm
40h , 100% O2, 1 atm
Barber, R. E., Lee, J. & Hamilton, W. K. 1970. Oxygen Toxicity in Man. NEJM
Tlen: pierwiastek (krótkiego) życia
Skutki hyperoksji u myszy
uszkodzenie płuc
przepuszczalność naczyń
zawartość kolagenu
obrzęk
naciek neutrofili
Sue et al. J Immunol 2004
Choroby wywoływane podwyższonym stężeniem tlenu
Retinopatia
Terry'ego)
wcześniaków
(zwłóknienie
pozasoczewkowe,
choroba
- Jest obustronną zmianą, która występuje u wcześniaków
trzymanych w inkubatorach z wysokim ciśnieniem tlenu.
Prowadzi to do:
* skurczu naczyń siatkówki,
* zniszczenia komórek śródbłonka naczyń siatkówki
* następowego obrzęku tkanek
* zaniku funkcjonalnych naczyń
- Hyperoksja hamuje syntezę śródbłonkowego czynnika wzrostu (VEGF – vascular
endothelial growth factor) w niedojrzałych naczyniach siatkówki. Obniżenie poziomu
VEGF wywołuje apoptozę śródbłonka.
- Gdy noworodek zaczyna oddychać normalnym powietrzem, następuje:
* wzrost produkcji VEGF
* proliferacja naczyń w siatkówce
* bliznowacenie i odklejenia siatkówki
Choroby wywoływane podwyższonym stężeniem tlenu
Retinopatia wcześniaków
- Aktywna faza choroby zaczyna się zwykle między 10 a 28 dniem
życia – po okresie skurczu naczynia siatkówki ulegają poszerzeniu
i skręceniu.
- Po zaprzestaniu tlenoterapii w ogniskach uszkodzenia siatkówki
przez niedotlenienie dochodzi do neowaskularyzacji (obserwuje
się krwinkotoki i włóknienie).
- W miarę postępu choroby - siatkówka z nowo utworzonymi naczyniami i tkanką
włóknistą oddzielają się i przesuwają do przodu (do przestrzeni poza soczewką –
zwłóknienie pozasoczewkowe)
Możliwości terapeutyczne:
* retinopatia może ustąpić samoistnie
* aby zapobiec odklejeniu siatkówki może być
niezbędna krioterapia lub laseroterapia
* może wystąpić krótkowzroczność lub ślepota
(przy odklejeniu siatkówki)
Choroby wywoływane podwyższonym stężeniem tlenu
Retinopatia wcześniaków
Naczynia z widocznymi
ogniskami proliferacji (strzałki)
i akumulacją tkanki
mezenchymalnej (gwiazdka).
Odwarstwienie siatkówki
Co jest przyczyną toksycznego efektu tlenu?
Pierwsze sugestie wyjaśniające toksyczność O2 dotyczyły bezpośrednioego
hamowania enzymów komórkowych przez tlen cząsteczkowy, np. nitrogenazę (kompleks
enzymatyczny katalizujący reakcje wiązania azotu) u Clostridium pasteurianum.
Jednak u tlenowców większość enzymów pozostaje niewrażliwa na O2.
W 1954 roku Gershman i Gilbert
zaproponowali, że większość toksycznych
efektów O2 jest związanych z utworzeniem
rodników tlenowych, np. anionorodnik
ponadtlenowy hamuje enzymy cyklu
Krebsa: akonitazę i fumarazę.
Co to jest wolny rodnik?
Wolny rodnik to atom lub cząsteczka zdolna do samodzielnego istnienia,
mająca jeden lub więcej niesparowanych elektronów na orbicie
walencyjnej. Obecność niesparowanego elektronu powoduje, że wolne
rodniki są przyciągane (choć słabo) przez pole elektromagnetyczne wykazują właściwości paramagnetyczne.
Cząsteczka tlenu ma dwa niesparowane elektrony – jest birodnikiem.
Wolne rodniki charakteryzuje zwykle wysoka reaktywność: dążąc do
sparowania elektronów, zazwyczaj szybko wchodzą w reakcje.
Jak powstaje wolny rodnik?
1. Utrata pojedynczego elektronu przez nie-rodnik
X → e- + X˙+
2. Zyskanie pojedynczego elektronu przez nie-rodnik
Y + e- → Y˙3. Rozszczep homolityczny wiązania kowalencyjnego
A : B → A˙ + B˙
(każdy atom dostaje jeden elektron z wiązania kowalencyjnego)
Rozszczep homolityczny i heterolityczny wody
ROZSZCZEP HETEROLITYCZNY
jonizacja wody
H:O:H
H+
jeden elektron dla tlenu
jeden dla wodoru
ROZSZCZEP HOMOLITYCZNY
H˙
rodnik wodorowy
1 proton
1 elektron
(ładunek zerowy)
+
OH-
oba elektrony dla atomu tlenu (O)
Jon wodorowy
1 proton
0 elektronów
(ładunek dodatni)
radioliza
wody
+
OH˙
rodnik hydroksylowy
9 protonów
9 elektronów
(ładunek zerowy)
Jon hydroksylowy
9 protonów
10 elektronów
(ładunek ujemny)
Stres oksydacyjny
Definicja stresu oksydacyjnego
- Stres oksydacyjny to zaburzenie homeostazy
prowadzące do wzrostu stężeń reaktywnych form
tlenu. Prowadzi to do zaburzenia równowagi
prooksydacyjno-antyoksydacyjnej w kierunku reakcji
utlenienia.
Stres oksydacyjny
ROS i RNS
Reaktywne formy tlenu:
- anionorodnik ponadtlenkowy (O2.-)
- nadtlenek wodoru (H2O2)
- rodnik hydroksylowy (.OH)
- tlen singletowy (1O2)
- rodnik peroksylowy (LOO.)
- rodnik alkoksylowy (LO.)
- wodoronadtlenek lipidowy (LOOH)
- nadtlenoazotyn (ONOO-)
- kwas podchlorawy (HOCl)
- ozon (O3)
Reaktywne formy azotu:
- tlenek azotu (.NO)
- nadtlenoazotyn (ONOO-)
- dwutlenek azotu (.NO2)
Endogenne źródła ROS i RNS:
- oksydazy NADPH
- mitochondria (łańcuch transportu elektronów i oksydazy)
- oksydoreduktaza ksantynowa
- cytochromy P450
- syntazy tlenku azotu
- peroksysomy
Tlen i jego pochodne
σ*2p
π*2p
π2p
σ2p
σ*2s
σ2s
σ*1s
σ1s
delta
sigma
O22tlen
trypletowy
anionorodnik
ponadtlenkowy
jon
nadtlenkowy
rodnik
hydroksylowy
tlen
singletowy
tlen
singletowy
Reaktywność tlenu
Tlen trypletowy i tlen singletowy
Stan singletowy, czyli stan bez niesparowanych elektronów, nie jest w przypadku
tlenu O2 stanem podstawowym, lecz wzbudzonym, o wyższej energii, natomiast
stanem podstawowym jest stan trypletowy.
Jest to układ odwrotny niż dla większości cząsteczek chemicznych.
Dlaczego tlen trypletowy jest mało reaktywny?
Aby tlen trypletowy utlenił inną cząsteczkę i uległ dwuelektronowej redukcji, musi przyjąć od niej dwa elektrony.
Zgodnie z prawami mechaniki kwantowej, oba te elektrony muszą mieć równoległe spiny, antyrównoległe w stosunku do
spinów niesparowanych elektronów w cząsteczce tlenu => utleniana cząsteczka też musi być w stanie trypletowym (o co
nie jest łatwo) lub musi nastąpić odwrócenie spinu jednego z elektronów takiej cząsteczki (co wymaga energii). Dlatego
tlen trypletowy jest mało reaktywny.
Tlen trypletowy i tlen singletowy
•
Tlen singletowy powstaje w wyniku
wzbudzenia
cząsteczki
tlenu
trypletowego.
•
Dostarczona energia musi wystarczyć
na przegrupowania elektronów w
cząsteczce (wypadkowy spin = 0).
•
Wzbudzenie cząsteczki do stanu
singletowego może nastąpić po
zaabsorbowaniu
kwantu
promieniowania nadfioletowego (lub
promieniowania o wyższej energii) lub
w
wyniku
niektórych
reakcji
chemicznych.
•
TLEN
SINGLETOWY
MOŻE
ŁATWO REAGOWAĆ Z INNYMI
CZĄSTECZKAMI
SINGLETOWYMI
tlen singletowy Σ
157 kJ/mol
tlen singletowy ∆
94 kJ/mol
tlen trypletowy
Redukcja tlenu
- Całkowita redukcja tlenu to przyłączenie do cząsteczki tlenu 4 elektronów i 4
protonów, w wyniku czego powstają 2 cząsteczki wody:
O2 + 4e- + 4H+
2H2O
Reakcja jest egzoergiczna, a powstająca woda jest nieaktywna względem
składników komórki.
- Powyższa reakcja nie zachodzi jednak łatwo (kłopot ze znalezieniem partnerów
do reakcji dwuelektronowych). Dlatego tlen trypletowy reaguje ze związkami
jednoelektronowo, a produktem jest anionorodnik ponadtlenkowy.
O2 + e- → O2˙-
Redukcja tlenu
- Tlen tripletowy może reagować z wieloma związkami jednoelektronowo. Powstaje
wówczas:
.
* anionorodnik ponadtlenkowy 02 , wolny rodnik będący anionem
.
superoxide radical anion
O2 + e
O2
- Anionorodnik ponadtlenkowy w roztworze wodnym może też przyłączyć proton,
tworząc obojętny:
* rodnik ponadtlenkowy (rodnik wodoronadtlenkowy)
.
.
O2 + H+
hydroperoxyl radical
HO2
- Przyłączenie kolejnego elektronu do anionorodnika ponadtlenkowego daje (po
dołączeniu do produktu reakcji protonów):
* nadtlenek wodoru H2O2, mniej reaktywny od większości rodników, ale
bardziej reaktywny niż tlen cząsteczkowy. Jest produktem dwuelektronowej redukcji
.
tlenu.
+
O2 + e- + 2H+
hydrogen peroxide
O2 + 2e + 2H
H2O2
- Przyłączenie trzech elektronów do cząsteczki tlenu daje:
* rodnik hydroksylowy, jedną z najbardziej reaktywnych cząstek w układach
.
biologicznych
H O + e - + H+
H O + OH
2
2
2
hydroxyl radical
Redukcja tlenu
·
·
2e2H+
Reaktywne formy tlenu są produktami kolejnych stopni redukcji cząsteczki tlenu.
Produkty redukcji i wzbudzenia tlenu są bardziej reaktywne niż tlen trypletowy.
Reaktywne formy tlenu – lepsza nazwa, niż wolne rodniki tlenowe, gdyż tlen sigletowy
(bardzo reaktywny) i nadtlenek wodoru (reaktywny) nie są rodnikami.
Reaktywne formy tlenu reagują ze składnikami organizmów żywych.
Reakcje wolnorodnikowe
- Są z reguły szybkie, ale mało specyficzne (zwykle im szybsze tym mniej
specyficzne)
- Reakcje wolnorodnikowe obejmują:
* Reakcje inicjacji
* Reakcje propagacji
* Reakcje terminacji
Reakcje inicjacji
Reakcje, w których z cząsteczek nie będących wolnymi rodnikami powstają wolne
rodniki. Zachodzą w wyniku:
* Homolizy
* Radiolizy
* Fotolizy
* Sonolizy
* Jednoelektronowych reakcji redoks
Reakcje wolnorodnikowe
Homoliza
- Rozpad cząsteczek zawierających słabe wiązania, w którego wyniku z dwu
elektronów zaangażowanych w utworzenie wiązania powstające fragmenty
otrzymują po jednym.
A B
.
.
A + B
- W temperaturze fizjologicznej tylko związki o bardzo słabych wiązaniach mogą
ulegać homolizie.
- Homoliza inicjatorów nie ma znaczenia jako fizjologiczne źródło wolnych rodników.
- Rozpad homolityczny może być wykorzystywany do uzyskiwania wolnych rodników
w pracach doświadczalnych. Np.
* AAPH (2,2'-azo-bis(2-amidynopropan)
* AMNV (2,2'-azo-bis(2,4-dimetylowaleronitryl)
Ich rozpad daje rodniki alkilowe R , które w reakcji z tlenem tworzą rodniki
nadtlenkowe ROO .
.
.
Reakcje wolnorodnikowe
Radioliza
- Rozpad cząsteczek po wpływem promieniowania jonizującego.
Fotoliza
- Rozpad cząsteczek związku chemicznego wywołany absorbcją fotonu.
Sonoliza
- Rozpad cząsteczek związku chemicznego pod wpływem ultradźwięków.
Jednoelektronowe reakcje redoks
- Zredukowane formy wielu związków niskocząsteczkowych (RH2) reagują z tlenem
ulegając jednoelektronowemu utlenieniu, co prowadzi do powstania anionorodnika
ponadtlenkowego i wolnego rodnika:
RH2 + O2
˙RH + H+ + O2-˙
- Reakcje tego typu są główną drogą powstawania rodnika ponadtlenkowego w
komórkach.
Reakcje wolnorodnikowe
Jednoelektronowe reakcje redoks
- Szczególnie ważne w komórkach są tego typu reakcje z udziałem:
* zredukowanej ryboflawiny
* zredukowanych nukleotydów flawinowych (FMNH2 i FADH2)
* katecholamin (DOPA, adrenalina, noradrenalina)
* tetrahydrobiopteryny
* cysteiny
* glutationu
* glukozy
Jednoelektronowe utlenianie ksenobiotyków
- Wytwarzanie reaktywnych form tlenu wewnątrz komórek jest efektem działania:
* herbicydów (np. parakwat, dikwat)
* fungicydów (np. mykotoksyna, sprydesmina)
* insektycydów (np. rotenon)
* leków przeciwnowotworowych (np. bleomycyna)
* składników pożywienia (np. kwas kofeinowy, kwas chlorogenowy)
Derys trujący (Paraderris ecliptica)
Rotenon
- Powszechnie dostępne wskazówki jak unikać niedobrej chemii i wykorzystywać
rozwiązania ekologiczne:
”To i owo czyli bardzo ziołowo”
”…W ochronie ziół przed chorobami i szkodnikami
najczęściej używa się metod ekologicznych, unika
się stosowania środków chemicznych...”
”…Możemy zastosować organiczne środki owadobójcze np. Rotenon używając je przeciw:
- przędziorkom,
- gąsienicom motyli i ciem,
- larwom pilarzy i mszycom,
- pchełkom ziemnym….”.
- rybom,
- neuronom dopaminergicznym
Derys trujący
(Paraderris ecliptica)
Anionorodnik ponadtlenkowy
- Powstaje w wyniku jednoelektronowej redukcji tlenu.
.
O2 + e
O2
- Jego aktywność jako czynnika utleniającego jest niewielka, częściej działa jako
czynnik redukujący.
- Może utleniać:
* centra siarkowo-żelazowe enzymów (np. akonitazy) – ich utlenienie prowadzi
do utlenienia żelaza i inaktywacji enzymów;
* NO – powstaje nadlenoazotyn
- W roztworach wodnych znajduje się w równowadze ze swą uprotonowaną formą,
rodnikiem wodoronadtlenkowym
.
.
+
HO
O2 + H
2
- W pH=7.4 ok. 0.2% anionorodników ponadtlenkowych jest w formie uprotonowanej,
łatwiej przenikającej przez błony niż obdarzony ładunkiem anionorodnik
ponadtlenkowy.
Anionorodnik ponadtlenkowy
- Stężenie bazalne anionorodnika ponadtlenkowego w typowej komórce to ok. 10-11
mol/L, w chloroplastach ok. 10-9 mol/L.
- W obecności żelaza reaguje z nadtlenkiem wodoru dając rodnik hydroksylowy
(reakcja Habera-Weissa)
Lub:
(reakcja Fentona)
- Anionorodnik ponadtlenkowy reaguje z większą liczba substancji i zwykle znacznie
szybciej niż tlen. Może też reagować sam ze sobą.
- Ulega spontanicznej dysmutacji do nadtlenku wodoru i tlenu; reakcja ta jest
katalizowana przez dysmutazy ponadtlenkowe (SOD)
Nadtlenek wodoru
- Powstaje w wyniku spontanicznej lub katalizowanej przez SOD transmutacji
anionorodnika ponadtlenkowego.
- Nie jest silny utleniaczem, ale może bezpośrednio utleniać:
* grupy siarkowo-wodorowe (SH) enzymów, prowadząc do zahamowania
aktywności np. fosfataz.
- W stanie czystym jest niebieskawym, lepkim płynem, wrzącym w temperaturze
+150C, absorbującym światło w zakresie UV.
- Jest stosunkowo stabilny, ale w obecności metali przejściowych może ulegać
dysproporcjonowaniu:
H2O2 + H2O2
H2O + O2
Nadtlenek wodoru
- Jest źródłem rodnika hydroksylowego powstającego w obecności żelaza w reakcji
Fentona lub w obecności miedzi Cu+:
Fe2+ + H2O2
Cu+ + H2O2
'OH + OH- + Fe3+
'OH + OH- + Cu2+
- Reaguje z jonem chlorkowym Cl- tworząc kwas podchlorawy w reakcji
katalizowanej przez mieloperoksydazę (zwłaszcza w fagocytach):
- Jest rozkładany do wody przez:
* katalazy
* peroksydazy glutationowe
* peroksyredoksyny
Nadtlenek wodoru
- Stężenie H2O2 w typowej komórce to ok. 10-8 mol/L.
- Skrajnie wysokie stężenia obserwuje się w zdrowych soczewkach oka ludzi - ok. 1025 µmol/L.
- Wysokie stężenia są również w moczu (ok. 100 µmol/L - efekt antyseptyczny),
zwłaszcza po wypiciu kawy i herbaty - czarnej lub zielonej (i kawa i herbata
zawierają dużo H2O2 - ok. 100 µmol/L).
- Sporo H2O2 jest też w miodzie (efekt antyseptyczny).
Rodnik hydroksylowy
- Powstaje w wyniku:
* jednoelektronowej redukcji nadtlenku wodoru (najważniejsze źródło rodnika
hydroksylowego w komórkach)
.
H2O2 + e- + H+
H2O + OH
* homolizy wody pod wpływem promieniowania promieniowania jonizującego
* homolizy nadtlenku wodoru pod wpływem światła UV
* reakcji kwasu podchlorawego z anionorodnikiem ponadtlenkowym (reakcja
istotna zwłaszcza w fagocytach)
Rodnik hydroksylowy
- Jest jednym z najbardziej reaktywnych utleniaczy i może reagować praktycznie ze
wszystkimi substancjami w komórce.
- Reakcje są bardzo szybkie i mało specyficzne - ˙OH utleni prawdopodobnie
pierwszą cząsteczkę organiczną (lub jon metalu), którą napotka.
Rodnik hydroksylowy
- Powstaje w wyniku:
* rozkładu kwasu nadtlenoazotawego (powstającego w wyniku protonowania
nadtlenoazotynu)
* reakcji wzbudzonego dwutlenku azotu z wodą:
- Ze względu na reaktywność jest bardzo nietrwały.
- Stężenia rodnika hydroksylowego w komórkach są tak małe, że nie można go
wykryć metodami bezpośrednimi
Tlen singletowy
- Tlen singletowy jest wzbudzoną formą tlenu cząsteczkowego, nie jest wolnym
rodnikiem.
- Powstaje w wyniku:
* reakcji fotouczulania, w której endogenny fotouczulacz (PS) (np. porfiryna) jest
wzbudzany (PS*) pod wpływem światła. Energia wzbudzenia przekazywana jest
następnie na tlen, przekształcając go w tlen singletowy. Fotouczulacz powraca
natomiast do stanu podstawowego.
* wybuchu tlenowego w fagocytach, kiedy w trakcie reakcji zapalnej powstaje
kwas podchlorawy, reagujący z nadtlenkiem wodoru.
* peroksydacji lipidów – reakcji dwóch rodników peroksylowych (z jednoczesnym
tworzeniem alkoholu (LOH) i ketonu (LO):
Tlen singletowy
- Tlen singletowy oddziałuje z innymi cząsteczkami poprzez:
* przekazanie energii wzbudzenia (przechodzi przy tym w stan tripletowy; jest to
tzw. gaszenie tlenu singletowego)
* wejście w rekcję chemiczną
- Tlen singletowy jest silnym utleniaczem. Reaguje z:
* lipidami (prowadząc do peroksydacji)
* białkami (prowadząc do utleniania łańcuchów bocznych, inaktywacji, złego
fałdowania, nasilonej degradacji w proteasomach)
* kwasami nukleinowymi (prowadząc do modyfikacji zasad i pęknięć nici)
- Najbardziej podatne na uszkodzenie przez tlen singletowy są:
* reszty histydyny
* reszty metioniny
* reszty tryptofanu
* reszty tyrozyny
* reszty cysteiny
* guanina
- Tlen singletowy reaguje z antyoksydantami. Inaktywowany jest również przez
karotenoidy (z marchewek) i lykopen (z pomidorów).
Terapia fotodynamiczna
Opryszczka
- Wiele maści przeciwko opryszczce zawiera barwnik
uczulający (czerwień obojętną, proflawinę). Wnikają one
do komórek i wiążą się z DNA. Po naświetleniu uszkadzają
DNA.
Łuszczyca
- Jednymi z leków stosowanych w łuszczycy są
psoraleny. Psoraleny są wzbudzane światłem UV (320400 nm), co jest podstawa terapii PUVA (psoralen +
ultrafiolet A).
Tlenek azotu
- Tlenek azotu jest wolnym rodnikiem (ma niesparowany elektron).
- Odgrywa kluczową rolę w prawidłowym funkcjonowaniu układu krążenia, układu
nerwowego i i układu odpornościowego:
* jest wazodylatorem
* jest neurotransmiterem
* jest czynnikiem toksycznym dla patogenów
- Produkowany jest:
* przez syntazy tlenku azotu (NOS)
* z azotanów i azotynów
- Tlenek azotu reaguje z białkami, zwłaszcza
zawierającymi:
* centra żelazowo-siarkowe
* jony metali przejściowych
* grupy hemowe
- Tlenek azotu może uwalniać żelazo z ferrytyny
Tlenek azotu
Tlenek azotu
- Tlenek azotu jest nietrwały w obecności tlenu. W natlenionych roztworach
wodnych jego okres półtrwania wynosi kilka sekund, a tlenek azotu reaguje z tlenem
dając dwutlenek azotu:
2NO˙ + O2
2NO2˙
- Dwutlenek azotu reaguje ze związkami nienasyconymi tworząc wolne rodniki, w
których niesparowany elektron jest zlokalizowany na atomie węgla.
- W roztworach wodnych o pH obojętnym dwutlenek
dysproporcjonowaniu, tworząc anion azotynowy i azotanowy:
NO˙ + H2O
azotu
ulega
NO2- + NO3- + 2H+
- Tlenek azotu bardzo szybko reaguje z anionorodnikiem ponadtlenkowym tworząc
nadtlenoazotyn:
NO˙ + O2-˙
ONOO-
Nadtlenoazotyn
- Nadtlenoazotyn jest silnym utleniaczem, reagującym przede wszystkim z:
* grupami SH i centrami żelazowo-siarkowymi białek
* resztami nienasyconych kwasów tłuszczowych lipidów
* anionem HCO3-, tworząc rodnik wodorowęglanowy
H+ + ONOO- + HCO3-
HCO3˙+ NO2˙ + OH-
- Rodnik węglanowy jest silnym utleniaczem i ze względu na dużą zawartość CO2 w
komórkach może odgrywać ważną rolę w uszkodzeniach wywoływanych przez
nadtlenoazotyn.
- Może być źródłem rodnika hydroksylowego
- Nadtlenoazotyn jest nietrwały (okres półtrwania to ok. 1 s), ale może dyfundować
na znaczne odległości w komórce.
- Charakterystyczna reakcja nadtlenoazotynu to nitrowanie reszt tyrozynowych w
białkach.
Nadtlenoazotyn
- Nadtlenoazotyn hamuje działanie między innymi:
* oksydazy cytochromowej (i innych składników łańcucha oddechowego)
* akonitazy (kluczowego enzymu cyklu Krebsa)
* innych białek zawierających centra żelazowo-siarkowe.
- Najważniejszym antyoksydantem usuwającym nadtlenoazotyn jest glutation i
reakcje katalizowane przez peroksyredoksyny i peroksydazy glutationowe.
Nadtlenoazotyn
- Jest mało selektywnym oksydantem utleniającym wszystkie typy makrocząsteczek i
antyoksydanty niskocząsteczkowe.
Rodniki peroksylowe i alkoksylowe
- Powstają w wyniku peroksydacji lipidów przez rodnik hydroksylowy. Rodnik odbiera
atom wodoru z cząsteczki lipidu (LH), prowadząc do utworzenia rodnika w
alkilowego (L’). W obecności tlenu rodnik ten przekształca się w rodnik peroksylowy
(LOO’).
- Rodnik peroksylowy i alkoksylowy może odbierać atom wodoru z sąsiednich
cząsteczek lipidów, prowadząc do propagacji peroksydacji. Jednocześnie rodnik
peroksylowy jest redukowany do nadtlenku lipidu. Rozkład nadtlenku lipidu w
obecności jonów metali prowadzi do powstawania rodnika alkoksylowego (LO’) lub
peroksylowego (LOO’).
Rodniki peroksylowe i alkoksylowe
- Są silnymi utleniaczami. Wywołują:
* peroksydację lipidów
* utleniania białek (prowadzące
dysfunkcji
białek
strukturalnych
inaktywacji enzymów)
* utlenianie DNA (prowadzące
modyfikacji zasad azotowych)
do
i
do
- Reagując ze sobą rodniki peroksylowe
dostarczają tlen singletowy.
- Inaktywacja rodników peroksylowych i
alkoksylowych zachodzi poprzez reakcje z
przeciwutleniaczami:
* witaminą E
* witaminą C
* glutationem
* bilirubiną
Kwas podchlorawy
- Kwas podchlorawy powstaje w reakcji nadtlenku wodoru i chlorku, w reakcji
katalizowanej przez mieloperoksydazę w fagocytach.
- MPO wykorzystuje również nadtlenek wodoru do utleniania bromku i tiocjanku w
wyniku czego powstają silne utleniacze:
* kwas podbromawy HOBr
* kwas podtiocyjanawy HOSCN
- Kwas podchlorawy jest silnym utleniaczem, reagującym z białkami, lipidami,
kwasami nukleinowymi i węglowodanami.
- Produkcja kwasu podchlorawego w czasie wybuchu tlenowego w fagocytach stanowi
istotny mechanizm obrony przed patogenami. W warunkach chronicznego zapalenia
(np. w miażdżycy) może prowadzić do uszkodzenia tkanek organizmu.
- Inaktywacja kwasu podchlorawego zachodzi w wyniku reakcji z glutationem lub
tauryną (obecną zwłaszcza w neutrofilach).
Działanie reaktywnych form tlenu i azotu
- ROS i RNS mogą uszkadzać komórki, reagując z białkami, lipidami i kwasami
nukleinowymi.
- Reagując z białkami powodują:
* zmiany aktywności enzymów
* zmiany strukturalne białek i ich nieprawidłowe fałdowanie
* nasiloną degradację białek
- Reagując z lipidami powodują:
* peroksydację lipidów prowadzącą do uszkodzeń błony komórkowej
* powstawanie toksycznych i mutagennych aldehydów (dialdehydu malonowego, 4hydroksy-2-nonenalu, akroleiny)
- Reagując z kwasami nukleinowymi powodują:
* modyfikacje zasad azotowych
* pęknięcia nici DNA
* tworzenie nietypowych wiązań DNA-DND i DNA-białka
Działanie reaktywnych form tlenu i azotu
Działanie reaktywnych form tlenu i azotu
- ROS i RNS mogą powodować:
* zaburzenia funkcji komórek
* starzenie się komórek
* cytotoksyczność
* transformację nowotworową
- Szkodliwe efekty ROS i RNS są ograniczane dzięki:
* enzymom antyoksydacyjnym
* endogennym związkom przeciwutleniającym
* przeciwutleniaczom zawartym w pożywieniu
- ROS i RNS mogą być ważnymi regulatorami szlaków transdukcji sygnałów,
niezbędnymi dla prawidłowej aktywności komórek.
Zapraszam na wykład 2
Slajdy dostępne na stronie Zakładu Biotechnologii Medycznej
Anionorodnik ponadtlenkowy
NBT reduction assay
Malech et al. PNAS 1997
Wolne rodniki i reaktywne formy tlenu
Metody doświadczalne stosowane w celu wywołania stresu oksydacyjnego w
komórkach:
* podwyższone ciśnienie parcjalne tlenu
* kontakt z aktywowanymi fagocytami
* ekspozycja na substancje utleniane jednoelektronowo przez tlen (np.
dihydroksyfumaran) lub ulegające cyklom redoks w komórkach (np. alloksan,
parakwat)
* ekspozycja na dym papierosowy
* ekspozycja na ozon
* ekspozycja na nadtlenek wodoru lub nadtlenki organiczne (np. wodoronadtlenek
kumenu)
* ekspozycja na układ oksydaza ksantynowa + substrat
alloksan
Multipletowość stanu elektronowego
Multipletowość – w mechanice kwantowej, odpowiada różnym
stopniom degeneracji danego układu wieloelektronowego
Jeśli całkowity spin elektronów określa liczba S, to jego rzut może przyjmować 2S+1
możliwości
Zgodnie z prawami mechaniki kwantowej w przypadku cząsteczki, której liczba
całkowitego spinu wynosi 1, możliwe są jej trzy orientacje względem kierunku
zewnętrznego pola magnetycznego.
Tym ustawieniom odpowiadają trzy różne poziomy energetyczne cząsteczki.
Stan podstawowy cząsteczki tlenu jest stanem trypletowym.

Podobne dokumenty