załącznik do umowy - Politechnika Świętokrzyska

Transkrypt

załącznik do umowy - Politechnika Świętokrzyska
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
MODULE DESCRIPTION
Module code
Module name
Podstawy Energoelektroniki 1
The Fundamentals of Power
Electronics 1
2012/2013
Module name in English
Valid from academic year
Engineering
MODULE PLACEMENT IN THE SYLLABUS
Level of education
Electrical Engineering
1st degree
Studies profile
General
Subject
(1st degree / 2nd degree)
(general / practical)
Form and method of conducting
classes
Specialisation
Unit conducting the module
Module co-ordinator
Full-time
(full-time / part-time)
The Department of Power Engineering Electronics
Jerzy Morawski, PhD, Eng.
Approved by:
MODULE OVERVIEW
Type of subject/group of subjects
Major
Module status
Compulsory
Language of conducting classes
Polish
Module placement in the syllabus semester
3rd semester
Subject realisation in the academic
year
Winter semester
Initial requirements
Mathematics 1 and 2, the Theory of Circuits 1
and 2, the Fundamentals of Electronics 1
(basic / major / specialist subject / conjoint / other HES)
(compulsory / non-compulsory)
(winter / summer)
(module codes / module names)
Examination
No
Number of ECTS credit points
2
Method of
conducting
classes
Per semester
(yes / no)
Lecture
Classes
Laboratory
Project
Other
30
TEACHING RESULTS AND THE METHODS OF ASSESSING TEACHING RESULTS
Biuro Projektu
al. Tysiąclecia Państwa Polskiego 7
25-314 Kielce
tel. 41-34-24-209, e-mail: [email protected]
Projekt ,,Politechnika Świętokrzyska – uczelnia na miarę XXI w.’’
Program Operacyjny Kapitał Ludzki Priorytet IV Działanie 4.1, Poddziałanie 4.1.1
na podstawie umowy z Ministerstwem Nauki i Szkolnictwa Wyższego UDA – POKL.04.01.01-00-381/10-00
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
The aim of the module is to acquaint students with: basic power electronic systems for
Module electric energy processing (built on the basis of semiconductor power devices); basic
target analysis and synthesis methods of these systems, the fundamentals of correct exploitation of
these systems, and modern technologies in power engineering electronics.
Effect
symbol
W_01
W_02
W_03
U_01
U_02
U_03
K_01
Teaching results
A student is knowledgeable about electric energy
conversion with the use of power electronic systems;
a student also has systemised knowledge as
regards power semiconducting devices, system
configuration; finally, a student can explain their
operation and indicate the principles of appropriate
exploitation.
A student has basic knowledge concerning the
fundamentals of power electronic system analysis,
electrical waveforms and simulation methods.
A student has basic knowledge as regards industrial
application of converter systems and modern
technologies.
A student is able to: analyse the work of converter
systems, determine electrical waveforms in systems,
make appropriate exploitation computations, select
protections and appropriate solid state elements.
A student can use simulation methods to analyse
work and designing power electronic systems.
A student can evaluate the usefulness of the
suggested solutions in terms of exploitation
requirements and the quality of electric energy.
A student is aware of the influence of industrial
power electronic systems’ solutions on the quality of
electric energy; a student is also aware of the
necessity to apply energy-saving systems in power
electric engineering and renewable engineering.
Teaching
methods
(l/c/l/p/other)
Reference to
subject effects
l
K_W13
l
K_W13
l
K_W13
l
K_U08
K_U09
l
K_U09
l
K_U15
l
K_K02
Reference to
effects of a
field of study
T1A_W04
T1A_W04
T1A_W04
T1A_U09
T1A_U09
T1A_U13
T1A-K02
Teaching contents:
Teaching contents as regards lectures
Lecture
number
Teaching contents
1.
The purpose of power engineering electronics. The aims of power engineering
electronics. The role and significance of power electronic devices. The
requirements concerning power electronic devices. Modern technologies in
power engineering electronics.
Power semiconductor devices applied in power engineering electronics (power
diodes; transistors: bipolar, field-effect MOSFET, IGBT, and thyristors) – their
structure, characteristics, exploitation parameter, industrial applications, and
modern technologies.
Control signals of thyristors and transistors. The methods of protecting
semiconductor elements. Cooling semiconducting power devices.
Non-controllable AC/DC converters – non-controllable rectifiers. Basic
2,3
4.
5,6
Biuro Projektu
al. Tysiąclecia Państwa Polskiego 7
25-314 Kielce
tel. 41-34-24-209, e-mail: [email protected]
Reference to
teaching
results for a
module
W_01, K_01
W_01, K_01
W_01, K_01
W_01, W_02,
W-03,
Projekt ,,Politechnika Świętokrzyska – uczelnia na miarę XXI w.’’
Program Operacyjny Kapitał Ludzki Priorytet IV Działanie 4.1, Poddziałanie 4.1.1
na podstawie umowy z Ministerstwem Nauki i Szkolnictwa Wyższego UDA – POKL.04.01.01-00-381/10-00
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
6,7
systems of non-controllable single-phase and multi-phase (multi-phase)
rectifiers. System analysis, electrical waveforms, and current-voltage
characteristics. System exploitation. Sample applications.
Controllable AC/DC converters – controllable rectifiers. Basic systems of noncontrollable single-phase and multi-phase (multi-phase) rectifiers. System
analysis, electrical waveforms, and current-voltage characteristics. Inverter
operation. Control systems. Systems exploitation. Sample applications.
8.
9, 10
The influence of rectifier system parameters and control characteristics on
exploitation parameters as well as the quality of electric energy.
AC/AC converters – frequency converters and AC controllers. Basic
topologies of frequency converters; control and electric waveforms in systems.
Single-phase and three-phase AC controllers, basic system topologies, and
electric waveforms. The application of AC/AC converters.
11
DC/DC converters. Basic systems which decrease and increase voltage.
System control. Hard and soft commutation in DC/DC converters.
12. 13
DC/AC converters – inverters. Voltage and current inverters. Basic singlephase and multi-phase systems. Commutation processes. PWM control and
current wave tracing systems. ZCS and ZVS systems.
14.
15.
Basic multi-level systems of power electronic converters. Diode and capacity
levelling systems. The examples of multi-level structures. Applications.
Industrial application of power electronic systems. AC and DC drives power
supply. Power electric engineering. Renewable engineering. Simulation
techniques in power electronic engineering. TCAD, PSPICE, and MATLAB
packages.
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
W_01, W_02,
W-03,
U_01,U_03,
K_01
U_02
The methods of assessing teaching results
Effect
symbol
W_01
W_02
W_03
U_01
U_02
U_03
K_01
Methods of assessing teaching results
(assessment method, including skills – reference to a particular project, laboratory assignments, etc.)
Test 1 – part 1
Test 2 – part 1
Test 3 – part 1
Test 1 – part 2
Home assignment (a project)
Test 2 and 3 – part 2
Test 3 – part 3
STUDENT’S INPUT
ECTS credit points
Student’s
workload
Type of student’s activity
1
2
3
4
5
Participation in lectures
Participation in classes
Participation in laboratories
Participation in tutorials (2-3 times per semester)
Participation in project classes
Biuro Projektu
al. Tysiąclecia Państwa Polskiego 7
25-314 Kielce
tel. 41-34-24-209, e-mail: [email protected]
30
1
Projekt ,,Politechnika Świętokrzyska – uczelnia na miarę XXI w.’’
Program Operacyjny Kapitał Ludzki Priorytet IV Działanie 4.1, Poddziałanie 4.1.1
na podstawie umowy z Ministerstwem Nauki i Szkolnictwa Wyższego UDA – POKL.04.01.01-00-381/10-00
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
6
7
8
9
10
Project tutorials
Participation in an examination
Number of hours requiring a lecturer’s assistance
Number of ECTS credit points which are allocated for assisted work
(1 ECTS credit point=25-30 hours)
11
12
13
14
15
16
17
18
19
20
21
Unassisted study of lecture subjects
Unassisted preparation for classes
Unassisted preparation for tests
Unassisted preparation for laboratories
Preparing reports
Preparing for a final laboratory test
Preparing a project or documentation
Preparing for an examination
Preparing questionnaires
31
(sum)
1.24
11
6
2
Number of hours of a student’s unassisted work
Number of ECTS credit points which a student receives for unassisted
work
19
(sum)
0.76
(1 ECTS credit point=25-30 hours)
22
23
Total number of hours of a student’s work
ECTS credit points per module
1 ECTS credit point=25-30 hours
24
Work input connected with practical classes
Total number of hours connected with practical classes
25
Number of ECTS credit points which a student receives for practical
classes
40
2
2
0.08
(1 ECTS credit point=25-30 hours)
Biuro Projektu
al. Tysiąclecia Państwa Polskiego 7
25-314 Kielce
tel. 41-34-24-209, e-mail: [email protected]
Projekt ,,Politechnika Świętokrzyska – uczelnia na miarę XXI w.’’
Program Operacyjny Kapitał Ludzki Priorytet IV Działanie 4.1, Poddziałanie 4.1.1
na podstawie umowy z Ministerstwem Nauki i Szkolnictwa Wyższego UDA – POKL.04.01.01-00-381/10-00

Podobne dokumenty