Dominik Senczyk

Transkrypt

Dominik Senczyk
OGNISKA LAMP RENTGENOWSKICH
Z WIRUJĄCĄ ANODĄ
Dominik SENCZYK
Politechnika Poznańska
E-mail: [email protected]
1. Wprowadzenie
Lampy rentgenowskie z wirującą anodą są coraz częściej spotykane w różnych zastosowaniach. Zazwyczaj mają moc od około 5 kW do 90 kW, co powoduje, że uzyskiwane z nich
promieniowanie ma natężenie znacznie większe niż w przypadku lamp z anodą stacjonarną.
Informacje dotyczące tych lamp są mało znane i z tego powodu w niniejszym referacie przedstawiono niektóre z nich. Ograniczono się przy tym do rozważenia tylko tematyki związanej
z rodzajem, wielkością i parametrami ognisk w lampach rentgenowskich z wirującą anodą.
Schemat budowy lampy rentgenowskiej z wirującą anodą pokazuje rys. 1.
Rys. 1. Budowa lampy rentgenowskiej z wirującą anodą: 1 – dysk anody, 2 – wałek anody, 3 – rotor,
4 – włókno katody, 5 – obudowa lampy
2. Podział lamp rentgenowskich z wirującą anodą
Lampy rentgenowskie z wirującą anodą można klasyfikować z różnych względów:
a) ze względu na konstrukcję lampy rozróżnia się lampy:
− zatopione,
− rozbieralne,
b) ze względu na liczbę anod są to lampy z jedną anodą,
1
c) ze względu na liczbę okienek są to lampy z jednym okienkiem,
d) ze względu na rodzaj materiału, z którego wykonano korpus, rozróżnia się lampy:
− szklane,
− szklano-metalowe,
− ceramiczne,
e) ze względu na wielkość ogniska rozróżnia się lampy:
− z dużym ogniskiem,
− z normalnym ogniskiem,
− z mikroogniskiem,
f) ze względu na liczbę ognisk rozróżnia się lampy:
− z jednym ogniskiem
− z dwoma ogniskami,
g) ze względu na kształt ogniska optycznego rozróżnia się lampy:
− z ogniskiem kołowym,
− z ogniskiem kwadratowym,
− z ogniskiem prostokątnym (liniowym),
h) ze względu na napięcie pracy są to lampy średnionapięciowe,
i) ze względu na zmianę natężenia promieniowania w czasie są to lampy emitujące w sposób ciągły,
j) ze względu na liczbę elektrod są to lampy dwuelektrodowe,
k) ze względu na kształt wiązki są to lampy emitujące wiązkę stożkową (kąt rozwarcia
stożka jest zwykle mniejszy od 90o, chociaż może być też większy od tej wartości;
przekrój wiązki płaszczyzną równoległa do osi lampy jest kołowy lub eliptyczny),
l) ze względu na kierunek emitowanej wiązki stożkowej są to lampy z wiązką boczną
(z osią zwykle prostopadłą do osi lampy; anoda odbiciowa),
m) ze względu na liczbę biegunów są to lampy jednobiegunowe,
n) ze względu na przeznaczenie rozróżnia się lampy do celów:
− defektoskopii rentgenowskiej,
− diagnostyki medycznej,
− terapii medycznej,
− rentgenografii strukturalnej,
− analizy spektralnej,
− specjalnych.
3. Węzeł katodowy lampy rentgenowskiej z wirującą anodą
Konstrukcję węzła katodowego dwuogniskowej lampy rentgenowskiej z wirującą anodą
pokazano na rys. 2.
Węzeł katodowy składa się z nóżki katody 6 i metalowej armatury (ekranu 5, główki katody 2, dysku 7), uchwytu włókien żarzenia 1, pokrywy 8, cylindra 9, wolframowych włókien
żarzenia 3, 4. Wspomniana armatura jest wykonana ze stopu niklu z dobrymi właściwościami
próżniowymi.
Nóżka katody ma trzy molibdenowe wprowadzenia i pierścień kowarowy 10, na którym
jest umocowana metalowa armatura katody. Główka katody 2 ma ogniskującą czaszę i dwa
prostokątne rowki, w których umieszczono włókna żarzenia dla dużego i małego ogniska
lampy. Ekran 5 umożliwia umocowanie główki 2 na dysku 7. Uchwyt 6 mocuje ceramiczne
2
izolatory, na których zamontowano włókna żarzenia. W celu uzyskania liniowego ogniska
stosuje się włókno żarzenia z drutu wolframowego o średnicy 0,2-0,3 mm w kształcie spirali.
W pokazanej konstrukcji (rys. 2) włókna żarzenia znajdują się obok siebie, przy czym
włókno żarzenia małego ogniska jest bliżej osi lampy rentgenowskiej. Takie rozmieszczenie
katod powoduje, że wiązka elektronów z różnych ognisk pada w różne miejsca na anodzie. W
innych konstrukcjach włókna żarzenia rozmieszczone są w taki sposób, że wychodzący z nich
strumień elektronów zawsze pada na tę samą ścieżkę ogniska anodowego dysku.
Rys. 2. Węzeł katodowy lampy rentgenowskiej z wirującą anodą
Wzajemne usytuowanie katody i anody w lampie z wirującą anodą pokazano na rys. 3.
Rys. 3. Wzajemne usytuowanie katody i anody w lampie z wirującą anodą
4. Węzeł anodowy lampy rentgenowskiej z anodą stacjonarną i wirującą
Węzły anodowe lamp rentgenowskich z nieruchomą i wirującą anodą różnią się zasadniczo. Węzeł anodowy lamp rentgenowskich z nieruchomą anodą z chłodzeniem przepływającą
wodą pokazano na rys. 4. Składa się on z bloku anody, tarczy i kowarowego pierścienia.
3
Blok anody wykonuje się z odtlenionej miedzi, która ma dobre właściwości cieplne, próżniowe i mechaniczne. W charakterze materiału tarczy zwykle stosuje się wolfram (za wyjątkiem lamp do celów strukturalnych) mający dużą liczbę atomową Z = 74, wysoką temperaturę topnienia (3400oC) i niską prężność par w wysokich temperaturach.
Rys. 4. Węzeł anodowy lampy rentgenowskiej: 1 − blok anody, 2 − target, 3 − kowarowy pierścień
Tarcza wolframowa pozwala na uzyskanie dużego natężenia promieniowania rentgenowskiego i stosowanie dużych mocy lamp. Jest to kołowa lub prostokątna płytka o grubości 2-3
mm wprasowana w blok anody. Do bloku anody jest przyspawany pierścień kowarowy 3,
który łączy węzeł anodowy ze szklanym balonem lampy.
Typową konstrukcję anodowego węzła lampy rentgenowskiej z wirującą anodą pokazano
na rys. 5. Węzeł anodowy tej lampy stanowi układ wirujący z optymalnym odprowadzeniem
ciepła. Składa się on z tarczy 1, węzła wirującego i węzła nieruchomego. Wirująca część
składa się z miedzianego rotora 2 będącego częścią silnika asynchronicznego, wałka 3 i tarczy
1. Elementem nośnym konstrukcji węzła jest kadłub 4 stanowiący połączenie spawaniem stalowego kadłuba z pierścieniem kowarowym, który pozwala na połączenie metalu ze szkłem.
Wałek 3 jest węzłem anody przeznaczonym do umieszczenia na nim wszystkich wirujących
mas. Składa się z części stalowej i molibdenowej, które połączono spawaniem w wodorze.
Tarcza jest umocowana na molibdenowej części wałka.
Rys. 5. Węzeł anodowy lampy rentgenowskiej z wirującą anodą: 1 – dysk anody, 2 – rotor, 3 – wałek anody,
4 – kadłub anody, 5, 6 − łożyska
Na stalowej części wałka umieszczono dwa łożyska toczne 5 i 6. Łożyska węzła anodowego w lampach rentgenowskich pracują w próżni 10−6÷5·10−7 mm sł. Hg i temperaturze do
400oC, co powoduje brak możliwości stosowania zwykłych smarów. Pracy łożysk nie sprzyja
też przepływ prądu przez wirujący obiekt podczas pracy lampy rentgenowskiej.
4
Tarcza anody ma kształt stożka ściętego. Częstość jej obrotu podczas pracy lampy rentgenowskiej w różnych lampach wynosi 2800, 5600, 8300 i 17000 obr/min przy częstości napięcia doprowadzanego do uzwojenia statora lampy wynoszącej 50, 100, 150 lub 300 Hz.
Średnica tarczy zależy od mocy lampy i dla anod wolframowych wynosi 50-125 mm.
Podczas pracy lampy rentgenowskiej tarcza podlega znacznym cyklicznym obciążeniom
cieplnym. W związku z tym, że promienie rentgenowskie powstają w cienkiej warstwie powierzchniowej, spadek temperatury podczas przepływu ciepła z ogniska lampy w głąb tarczy
może osiągać znaczne wartości. Powstające przy tym siły ściskające i rozciągające powodują
pękanie powierzchni ścieżki ogniska, zwiększenie chropowatości i powstanie jamek.
Elektrony wpadające do kraterów na powierzchni ścieżki ogniska powodują powstanie
promieni rentgenowskich, osłabianych podczas wychodzenia z jamek przez większe grubości
wolframu niż w przypadku wypolerowanej anody; powoduje to zmniejszenie natężenia tego
promieniowania.
Czas pracy lampy rentgenowskiej określa się liczbą włączeń przy nominalnym obciążeniu,
przy którym emisja promieniowania rentgenowskiego maleje do 70% wartości początkowej.
Gwarantowany czas pracy diagnostycznych lamp rentgenowskich wynosi 10000−12000 włączeń, a defektoskopowych 500 godzin pracy.
Węzły anodowe współczesnych lamp rentgenowskich często składają się z 2. lub 3. warstw
(warstwy wolframowej od strony katody) i podłoża z molibdenu. Takie złożone tarcze mają
zwiększoną pojemność cieplną, co pozwala na zwiększenie częstości obrotu i znaczne podwyższenie mocy lampy.
Cieplna wytrzymałość tarczy znacznie wzrasta dla wolframu z dodatkiem renu. Przykładowo: dla tarczy wykonanej ze stopu W + 10% Re po 106 włączeniach natężenie maleje tylko
o 15%, podczas gdy dla tarczy wykonanej z czystego wolframu w tych samych warunkach
natężenie maleje o 45%.
Złożone tarcze wykonuje się: odkształceniem plastycznym, naniesieniem warstwy roboczej W + 10% Re w próżni za pomocą wiązki elektronów i osadzeniem pirolitycznego wolframu z fazy gazowej.
Wysokie temperatury w granicach ścieżki ogniska podczas pracy lampy powodują powstanie naprężeń w dysku anody, które mogą doprowadzić do jego odkształcenia.
Naprężenia można zmniejszyć kilkoma poniższymi sposobami:
a) Wykonaniem dysków anodowych z przecięciami (rys. 6)
Rys. 6. Anodowy dysk z radialnymi przecięciami
b) Wykonaniem dysków anodowych z rowkami (rys. 7)
Rys. 7. Anodowy dysk z pierścieniowymi rowkami (przekrój)
5
Ścieżki dla małego i dużego ogniska są ograniczone koncentrycznymi rowkami, co prowadzi do znacznego zmniejszenia naprężeń. Rowki te powinny być tak głębokie, by osiągały
molibdenowe podłoże. Anodowy dysk z rowkami ma następujące zalety w porównaniu
z dyskiem z radialnymi przecięciami: występuje mniejsza możliwość zniszczenia dysku
w przypadku niejednorodności materiału anody, prześwietlanie można wykonywać również
przy nieruchomej anodzie.
c) Wykonaniem dysków anodowych z poczernioną powierzchnią
Naprężenia w dyskach anodowych z przecięciami i rowkami można zmniejszyć przez poczernienie powierzchni dysku zwróconej do anodowej części lampy. Powoduje to zmniejszenie temperatury anody T > 800oC o minimum 200oC, co zmniejsza jej odkształcenie.
d) Wykonaniem trójwarstwowych dysków anodowych (rys. 8).
Rys. 8. Trójwarstwowy dysk anodowy (przekrój)
Trójwarstwowy dysk składa się z (rys. 8):
− podłoża 1 o grubości 6 mm wykonanego ze stopu Mo-Ti-Zr,
− warstwy pośredniej 2 z wolframu o grubości 0,7 mm,
− warstwy powierzchniowej 3 o grubości 0,7 mm ze stopu W-Re.
Trzy warstwy z wymienionych stopów silnie się nagrzewa i prasuje w jednym przejściu,
dzięki czemu ich grubość maleje do połowy.
Niewielka porowatość warstwy wolframowo-renowej pozwala na polepszenie elektrycznej
charakterystyki lampy rentgenowskiej. Materiały te chronią dysk przed powstaniem pęknięć i
odkształceń i dlatego nie są wymagane przecięcia i rowki.
Zastosowanie złożonych tarcz z podłożem grafitowym i warstwą roboczą pozwala na
podwyższenie dopuszczalnej mocy do 150-215 kW w ciągu 0,1 s przy dużej pojemności
cieplnej anody i wysokich obciążeniach właściwych. Tarcza składa się z grafitowego dysku w
kształcie stożka ściętego i wprasowanego metalowego pierścienia ze stopu W-Re. Pierścień
ten stanowi ścieżkę ogniska dla wiązki elektronów wysyłanych przez katodę lampy. Warstwa
stopu W-Re może być też równomiernie naniesiona na całą powierzchnię grafitowego dysku
zwróconą w kierunku katody.
Rozróżnia się dyski anodowe jedno- i dwukątowe (w pierwszym przypadku mamy do czynienia ze stożkiem ściętym o ustalonym kącie wierzchołkowym, natomiast w drugim z dwoma stożkami ściętymi o różnych kątach wierzchołkowych). W dyskach jednokątowych ścieżki ognisk znajdują się na pierścieniowej powierzchni stożkowej nachylonej pod ustalonym
kątem do płaszczyzny prostopadłej do osi lampy. W dwukątowych anodach ścieżki ognisk
znajdują się na dwóch pierścieniowych powierzchniach stożkowych nachylonych pod różnymi kątami do płaszczyzny prostopadłej do podłużnej osi lampy rentgenowskiej.
Zmniejszenie kąta nachylenia wewnętrznej powierzchni stożkowej prowadzi do zwiększenia rzeczywistego ogniska i dopuszczalnego obciążenia. Istnieją lampy rentgenowskie z różnymi kątami nachylenia powierzchni wewnętrznego i zewnętrznego ogniska (w stosunku do
osi obrotu tarczy), przy czym zwykle wynoszą one 17,5o i 10o.
6
5. Parametry ogniska lamp rentgenowskich
Rozróżnia się ognisko rzeczywiste i efektywne (optyczne) lamp rentgenowskich.
Rzeczywiste ognisko lampy odpowiada przekrojowi, w którym anoda jest przecinana przez
strumień elektronów.
Efektywne ognisko jest rzutem rzeczywistego ogniska na płaszczyznę prostopadłą do wybranego kierunku (rys. 9). Jest to kierunek centralnego promienia wiązki promieniowania,
czyli promienia wychodzącego ze środka ogniska przez środek okienka wyjściowego.
Rys. 9. Relacja między ogniskiem rzeczywistym i efektywnym dla anody ściętej pod kątem 20o
Na rysunku 10 pokazano rzeczywiste i efektywne ognisko lampy z nieruchomą anodą.
Rys. 10. Rzeczywiste i efektywne ognisko lampy rentgenowskiej z nieruchomą anodą
Bok a kwadratowego efektywnego ogniska jest związany z długością rzeczywistego ogniska b zależnością (α jest kątem nachylenia anody): b = a / sin α .
Powierzchnie ognisk wynoszą:
a2
− rzeczywistego:
S rz = a ⋅ b =
.
sin α
− efektywnego:
S ef = a 2 .
Stosunek powierzchni tych ognisk wynosi więc:
7
S rz
1
.
=
S ef sin α
Wartości tego stosunku dla różnych kątów α pokazano na rys. 11. Potwierdza on, że przy
przejściu od kąta nachylenia anody wynoszącego 20o do kąta 10o powierzchnia rzeczywistego
ogniska przy nie zmienionym obciążeniu wzrasta prawie dwukrotnie.
Srz/Sef
6,0
5,5
5,0
4,5
4,0
3,5
3,0
2,5
10
12
14
16
18
o
20 α [ ]
Rys. 11. Zależność stosunku Srz/Sef od kąta α nachylenia anody w lampie rentgenowskiej z nieruchomą anodą
Na rysunku 12 pokazano anodę i włókna żarzenia dwuogniskowej lampy rentgenowskiej z
wirującą anodą mającą oddzielne ścieżki ognisk. Anoda (zwykle ma średnicę 55-100 m i grubość 7 mm) obraca się z dużą prędkością (zwykle 5000-10000 obr/min) wokół osi lampy.
Dla lampy rentgenowskiej mającej duże ognisko efektywne o rozmiarach 2×2 mm powierzchnia pierścieniowej ścieżki ogniska jest 128 razy większa od powierzchni rzeczywistego ogniska; dla małego ogniska o rozmiarach 1×1 mm stosunek ten wynosi 114.
Powierzchnia pierścieniowej ścieżki ogniska najbardziej oddalonej od osi lampy wynosi:
S k1 =
gdzie:
i wobec tego:
D3 = D2 − 2
D 2 + D3
πb ,
2
a
,
tgα
b=
a
.
sin α
⎛
a ⎞
⎟πb .
S k1 = ⎜⎜ D 2 −
tgα ⎟⎠
⎝
Stosunek powierzchni pierścieniowej ścieżki ogniska do powierzchni rzeczywistego ogniska wynosi więc ( S′rz = ab ):
⎛D
S k1
1 ⎞
⎟.
= π⎜⎜ 2 −
S′rz
tgα ⎟⎠
⎝ a
8
Rys. 12. Rzeczywiste i efektywne ognisko lampy rentgenowskiej z wirującą anodą:
1, 2 − włókna żarzenia, 3 − anoda
Rys. 13. Fragment lampy rentgenowskiej z wirującą anodą: 1 - dysk wirującej anody, 2 - łożyskowanie,
3 - strumień elektronów, 4 – katoda, 5 – wiązka promieni rentgenowskich (focal track – ścieżka ogniska)
Położenie efektywnego ogniska w lampie z wirującą anodą w przestrzeni pozostaje nie
zmienione, lecz strumień elektronów podczas obrotu anody pada na nowe miejsca pierścieniowej ścieżki ogniska, które poprzednio nie były oświetlone wiązką elektronów (rys. 14).
Powierzchnia tej ścieżki jest wielokrotnie większa od powierzchni rzeczywistego ogniska.
Na rysunku 14 pokazano sposób oświetlenia wiązką elektronów anody stacjonarnej i wirującej.
9
a)
Anoda nieruchoma
strumień elektronów pada w to samo miejsce;
ekspozycja 0,01 s
b)
Prędkość anody 6000 obr/min
strumień elektronów oświetla obszar zawarty
między punktami A i B; ekspozycja 0,01 s
c)
Prędkość anody 10000 obr/min
obszary oświetlone strumieniem elektronów
wskutek dużej prędkości wirowania anody częściowo nakładają się, co powoduje, że w danej
chwili jest oświetlony obszar zawarty między
punktami A i B; ekspozycja 0,01 s
Rys. 14. Sposób oświetlenia wiązką elektronów anody stacjonarnej i wirującej w czasie 0,01 s
6. Podsumowanie
Przedstawione informacje wyraźnie pokazują, że lampa rentgenowska z wirującą anodą
może być obciążona większą mocą, ma lepsze chłodzenie i ogniska o wielkościach podobnych do wielkości ognisk w lampach z nieruchomą anodą. Możliwe jest również uzyskanie
wiązek o różnych przekrojach (z różnych ognisk w tej samej lampie rentgenowskiej).
10

Podobne dokumenty