Krzywa uniwersalna Sierpińskiego

Transkrypt

Krzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego
Małgorzata Blaszke
Karol Grzyb
Streszczenie
W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego,
zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
otrzymania tego zbioru. Udowodnimy, że istotnie jest on krzywą (zarówno w sensie Cantora jak i Urysohna) oraz, że każda krzywa płaska
jest homeomorficznie w nim zanurzalna. Na koniec wspomnimy o tzw.
kostce Mengera i sformułujemy twierdzenie o jej uniwersalności dla
krzywych w dowolnej przestrzeni metrycznej.
Na początek chcemy uściślić,że za krzywą płaską będziemy uważali krzywą w sensie Cantora. Jest to zbiór punktów na płaszczyźnie będący continuum (zbiorem zwartym i spójnym) takim, że w dowolnie małym otoczeniu
dowolnego punktu continuum istnieje punkt do niego nie należący. Ta definicja jest na płaszczyźnie równoważna z obecnie przyjmowaną ogólną definicją
Urysohna w myśl której krzywa jest to continuum, którego wymiar w każdym
punkcie wynosi 1, tj. każdy jej punkt posiada dowolnie małe otoczenia, których brzegi nie zawierają żadnego continuum złożonego z więcej niż jednego
punktu. Implikacja w jedną stronę wynika z uniwersalności krzywej Sierpińskiego. Za ε-otoczenie sferyczne punku x, będziemy uważali kulę otwartą o
promieniu ε i środku w x.
Dywan Sierpińskiego został po raz pierwszy skonstruowany przez Stefana
Mazurkiewicza, ale nie opublikował on swojego odkrycia. Pierwsza wzmianka
o tej krzywej znalazła się w pracy Wacława Sierpińskiego z 1915r. Jest to zbiór
powstały przez procedurę rekurencyjną, którą rozpoczynamy od ustalonego
kwadratu S0 . Będziemy go nazywali dywanem stopnia zerowego. Dzielimy
go na dziewięć (3x3) identycznych kwadratów i usuwamy wnętrze środkowego ( pozostałe osiem będziemy nazywali kwadratami stopnia pierwszego ).
Oznaczmy je przeciwnie do ruchu wskazówek zegara, zaczynając od prawego
górnego, Q1 , Q2 , . . . , Q8 (patrz rys.1). Sumę ośmiu kwadratów stopnia pierwszego nazywamy dywanem stopnia pierwszego S1 . Następnie powtarzamy
1
procedurę dzielenia i usuwania części środkowej dla każdego kwadratu stopnia
pierwszego, oznaczając nowo otrzymane kwadraty Qi1 i2 i1 , i2 ∈ {1, 2, . . . , 8},
gdzie pierwszy indeks jest numerem kwadratu stopnia pierwszego, który dzielimy, a drugi indeks jest analogicznie nadanym numerem zawartego w nim
kwadratu stopnia drugiego. Otrzymamy w ten sposób 82 kwadratów stopnia
drugiego, których sumą jest dywan stopnia 2. Podobnie dostajemy kolejne
stopnie Sn , n ∈ N, z których każdy składa się z 8n kwadratów n-tego stopnia
Qi1 i2 ...in , ij ∈ {1, 2, . . . , 8}, j ∈ {1, 2, . . . , n}. Dywanem Sierpińskiego nazyT
wamy zbiór S := n∈N Sn .
Q3 Q2 Q1
Q8
Q4
Q5 Q6 Q7
Rysunek 1: Dywan stopnia pierwszego, drugiego i trzeciego.
Można łatwo dowieść, że pole dywanu jest równe 0. Jednocześnie jest
to zbiór niepusty, gdyż należą do niego conajmniej krawędzie wyjściowego
kwadratu S0 . Widać również, że średnica kwadratu n-tego stopnia ma zawsze długość 3dn , gdzie d to długość średnicy kwadratu S0 . W związku z tym
średnice kwadratów kolejnych stopni dążą do zera.
Przypomnimy teraz kilka faktów, z których będziemy korzystać podczas
dowodów. Każda przestrzeń metryczna jest T4 , tzn. dla każdych dwóch rozłącznych zbiorów domkniętych A i B istnieją rozłączne zbiory otwarte U i V ,
które zawierają odpowiednio zbiory A i B. Jeśli {Ci }i∈N jest zstępującym
T
ciągiem zbiorów zwartych oraz mamy zbiór otwarty Z ⊃ i∈N Ci , to istnieje w
tym ciągu zbiór Cn zawarty w Z. Przecięcie zstępującego ciągu zbiorów niepustych domkniętych będących podzbiorami zbioru zwartego w przestrzeni
metrycznej zupełnej jest niepuste. Jeśli dodatkowo ciąg średnic tych zbiorów
zmierza do zera, to te przecięcie składa się z dokładnie jednego punktu. Jeśli dwa zbiory A i B są rozłączne i równocześnie otwarte lub równocześnie
domknięte oraz M ⊂ A ∪ B, gdzie M jest zbiorem niepustym i spójnym, to
M ⊂ A, albo M ⊂ B. Jeśli continuum K jest podzbiorem krzywej C to jest
również krzywą. Homeomorficzny obraz krzywej jest krzywą.
Twierdzenie 1 Przecięcie zstępującego ciągu continuów jest continuum.
2
Dowód Mamy C1 ⊃ C2 ⊃ . . . ⊃ Cn ⊃ . . . , gdzie dla każdego i ∈ N, Ci
jest continuum. Zbiory Ci , i ∈ N są zwarte i zawierają się w C1 , więc są
T
domknięte w C1 . Zdefiniujmy zbiór C := i∈N Ci . Jest to przecięcie rodziny
zbiorów domkniętych, a więc zbiór ten jest domknięty. Jako domknięty podzbiór zbioru zwartego C1 jest również zwarty. Co więcej na mocy faktu 2-go
jest to zbiór niepusty.
Przypuśćmy, że zbiór zwarty C nie jest spójny, można go zatem przedstawić jako sumę zbiorów A i B niepustych, domkniętych w C i rozłącznych.
Istnieją więc zbiory U i V otwarte i rozłączne, zawierające odpowiednio zbiory A i B. Zdefiniujmy W := U ∪ V .
Ponieważ A ⊂ U , B ⊂ V , C = A ∪ B, więc C ⊂ W . Z faktu 2 wynika, że
istnieje continuum Cn zawarte w W . Ponieważ C ∩ U 6= ∅ i C ∩ V 6= ∅ oraz
C ⊂ Cn to Cn ∩ U 6= ∅ i Cn ∩ V 6= ∅. Na mocy faktu 4-go otrzymaliśmy
więc sprzeczność, która dowodzi spójności zbioru C.
Twierdzenie 2 Dywan Sierpińskiego jest krzywą płaską.
Dowód Aby pokazać, że krzywa Sierpińskiego jest continuum, pokażemy
indukcyjnie, że jest nim dla każdego n dywan n-tego stopnia Sn . Dywan
pierwszego stopnia składa się z ośmiu kwadratów, które kolejno mają punkty wspólne na krawędziach, więc jest spójny. Jako skończona suma zbiorów
zwartych jest również zwarty.
Załóżmy, że dywan n-tego stopnia jest continuum. Wynika z tąd, że
dywan n + 1-stopnia też nim jest, bo składa się on z ośmiu dywanów ntego stopnia, mających kolejno punkty wspólne na krawędziach. Ponieważ
T
Sn+1 ⊂ Sn , n ∈ N, więc na mocy twierdzenia 1, ich przecięcie n∈N Sn , czyli
dywan Sierpińskiego jest continuum.
Ustalmy dowolny punkt x należący do dywanu i dowolny ε > 0. Wykazaliśmy już wcześniej, że średnice kwadratów kolejnych stopni dążą do zera.
Znajdziemy więc takie k ∈ N, że istnieje kwadrat należący do dywanu k-tego
stopnia zawierający punkt x i mający średnicę mniejszą od ε, a więc zawierający się w ε-otoczeniu sferycznym punktu x. W dywanie k + 1-stopnia
z wnętrza każdego kwadratu z dywanu stopnia k-tego usuwane są punkty,
więc w dowolnie małym otoczeniu dowolnego punktu krzywej Sierpińskiego
istnieją punkty do niej nie należące.
Twierdzenie 3 Jeśli C jest krzywą płaską, to istnieje podzbiór C 0 dywanu
Sierpińskiego homeomorficzny ze zbiorem C.
3
Dowód Zbiór C jest zwarty, więc jest ograniczony, zatem istnieje prostokąt
P go zawierający. Podzielmy go na dziewięć równych prostokątów o bokach
równoległych do boków P . Jako krzywa w sensie Cantora zbiór C nie zawiera żadnego zbioru otwartego, więc również wnętrza środkowego prostokąta.
Ze zwartości zbioru C wynika jego domkniętość. Jego dopełnienie i wnętrze
środkowego prostokąta są zbiorami otwartymi, dlatego istnieje prostokąt P0 ,
zawarty we wnętrzu środkowego prostokąta i rozłączny z C. Przedłużmy boki prostokąta P0 , do przecięcia z bokami P , uzyskując podział wyjściowego
prostokąta na dziewięć prostokątów, z których środkowy nie ma punktów
wspólnych z krzywą C, następnie usuńmy jego wnętrze. Zbiór, który został
po tej operacji nazwijmy S10 , a osiem prostokątów, które go tworzą podobnie
jak przy konstrukcji dywanu Sierpińskiego nazwijmy prostokątami pierwszego stopnia P1 , P2 , . . . , P8 .
Podzielmy każdy z prostokątów pierwszego stopnia na dziewięć równych
części. Konstrukcję zacznijmy od prostokąta P1 , podobnie jak poprzednio
we wnętrzu środkowego prostokąta równego podziału istnieje prostokąt R10 ,
który nie zawiera żadnego punktu krzywej C. Przedłużamy jego boki do
przecięcia z bokami wyjściowego prostokąta P .
Rysunek 2: Sposób konstrukcji continuum S 0
4
Analogicznie istnieje prostokąt R20 zawarty w środkowej części równego podziału prostokąta P2 i ograniczony prostymi, które są przedłużeniami
boków R10 . Przedłużmy boki prostokąta R20 do przecięcia z bokami P . Tak
samo istnieje prostokąt R30 rozłączny z krzywą C, zawarty wewnątrz centralnego prostokąta równego podziału P3 , ponadto leżący w części wspólnej pasów zawartych między prostymi, które są przedłużeniami boków prostokątów
R10 i R20 . Podobnie otrzymujemy kolejne prostokąty Ri0 , i ∈ {4, 5, 6, 7, 8}.
Przez Pi0 , i ∈ {1, 2, . . . , 8} oznaczmy prostokąty zawarte odpowiednio
w Ri0 i złożone z punktów części wspólnej wszystkich pasów poziomych i
pionowych utworzonych przez przedłużenia boków prostokątów Rk0 , k ∈
{1, 2, . . . , 8, } i przechodzących przez Pi . Każdy prostokąt pierwszego stopnia Pi , i ∈ {1, 2, . . . , 8} dzielimy przez przedłużenie boków prostokąta Pi0 ,
po czym usuwamy jego wnętrze. Pozostałe osiem prostokątów oznaczamy
przeciwnie do ruchu wskazówek zaczynając od prawego górnego Pij , j ∈
{1, 2, . . . , 8}. W ten sposób otrzymamy 64 prostokąty rzędu drugiego Pi1 i2 i1 , i2 ∈
{1, 2, . . . , 8}, dające zbiór S20 .
Robimy to rekurencyjnie dla wszystkich następnych stopni, za każdym
razem uzyskując zbiór Sn0 składający się z 8n prostokątów n-tego stopnia
Pi1 i2 ...in , ij ∈ {1, 2, . . . , 8}, j ∈ {1, 2, . . . , n}. Z faktu, że prostokąt który usuwamy z wnętrza prostokąta n-tego stopnia jest zawarty we wnętrzu środkowego prostokąta jego równego podziału wynika, iż powstałe prostokąty
n + 1-tego stopnia mają boki o długości nie większej niż 2/3 odpowiednich
boków prostokąta n-tego stopnia w którym są zawarte, a więc gdy utworzymy zstępujący ciąg prostokątów kolejnych stopni to ciąg ich średnic będzie
zmierzał do zera.
Podobnie jak przy konstrukcji dywanu Sierpińskiego otrzymujemy zstępujący ciąg continuów, których przecięcie, oznaczmy je jako S 0 , jest również
continuum. Krzywa C jest całkowicie w nim zawarta.
Pokażemy teraz, że continuum S 0 jest homeomorficzne z dywanem Sierpińskiego. Ustalmy dowolny punkt x ∈ S 0 . Należy on do pewnego prostokąta
pierwszego stopnia Pi1 , do pewnego prostokąta stopnia drugiego Pi1 i2 zawartego w prostokącie Pi1 , itd.
Otrzymujemy ciąg prostokątów Pi1 ⊃ Pi1 i2 ⊃ Pi1 i2 i3 ⊃ . . . , taki, że x ∈
T
więcej z faktu 3 i tego, że ciąg średnic prostokątów zmierza
n∈N Pi1 i2 ...in . Co
T
do zera mamy n∈N Pi1 i2 ...in = {x}.
Dzięki zgodności oznaczeń otrzymanemu ciągowi prostokątów odpowiada
zstępujący ciąg kwadratów z dywanu Sierpińskiego Qi1 ⊃ Qi1 i2 ⊃ Qi1 i2 i3 ⊃
T
. . . . Z faktu 2 wynika, że n∈N Qi1 i2 ...in jest zbiorem dokładnie jednoelemen5
towym. Możemy zatem punktowi x continuum S 0 przyporządkować punkt
x0 należący do dywanu Sierpińskiego, będący przecięciem ciągu kwadratów
odpowiadającego ciągowi prostokątów do którego należy x. Zauważmy, że
różnym punktom S 0 będą odpowiadać różne punkty dywanu S, ponieważ dla
każdych dwóch różnych punktów należących do S 0 istnieje takie k, że dwa
prostokąty k-tego stopnia zawierające odpowiednio te punkty są rozłączne,
rozłączne będą więc również odpowiednie kwadraty k-tego stopnia.
Odwracając to rozumowanie można łatwo dowieść, że podobnie każdemu
punktowi dywanu odpowiada w ten sam sposób dokładnie jeden punkt continuum S 0 . Możemy więc stworzyć bijekcję f : S 0 → S, udowodnimy teraz, że
jest ona odwracalnie ciągła. Ustalmy dowolny punkt x ∈ S 0 i dowolny ε > 0.
Możemy znaleźć takie n, że kwadraty n-tego rzędu zawierające obraz punktu
x zawierają się w jego ε-otoczeniu. Dobierzmy teraz δ tak, że δ-otoczenie
sferyczne punktu x w przecięciu ze zbiorem Sn0 jest zawarte w prostokątach,
które odpowiadają powyższym kwadratom n-tego stopnia. Widać, że jeśli
odległość dowolnego punktu y ∈ S 0 od punktu x jest mniejsza od δ, to jego
obraz jest odległy od obrazu punktu x o nie więcej niż ε. W analogiczny sposób można udowodnić ciągłość odwzorowania odwrotnego. Dowiedliśmy tym
samym, że funkcja f jest szukanym przekształceniem homeomorficznym, a
obraz zbioru C przez f jest szukanym zbiorem C 0 .
Twierdzenie 4 Dywan Sierpińskiego jest krzywą w sensie Urysohna.
Dowód
Udowodniliśmy już, że dywan Sierpińskiego jest continuum, pozostaje
wykazać, że dowolny jego punkt posiada dowolnie małe otoczenie, którego
brzeg nie zawiera continuów złożonych. Ustalmy dowolny x ∈ S, i dowolny
ε > 0. Znajdziemy takie n ∈ N, że kwadraty n-tego stopnia będą miały
średnicę mniejszą niż 21 ε. Wybierzmy teraz kwadrat (lub jeden z kwadratów)
zawierający punkt x. Punkt ten nie może leżeć na przecięciu przekątnych
tego kwadratu, ponieważ, w następnym kroku konstrukcji dywanu zostałby usunięty. Musi więc istnieć trójkąt prostokątny wyznaczony przez boki
kwadratu i jedną z przekątnych taki, że punkt x leży w jego wnętrzu. Za szukane otoczenie przyjmijmy kwadrat, który powstanie ze znalezionego trójkąta i trzech trójkątów będących jego odbiciami symetrycznymi odpowiednio
wzdłuż przyprostokątnych oraz przecięcia przyprostokątnych. Brzeg tego otoczenia, przecina się z S po przekątnych kwadratów n-tego stopnia, czyli po
zbiorze Cantora.
6
Z tego twierdzenia, oraz z faktów 5 i 6 wynika, że każda krzywa płaska w
sensie Cantora jest krzywą w sensie Urysohna.
Jak łatwo zauważyć, konstrukcja dywanu Sierpińskiego przypomina konstrukcję zbioru Cantora na prostej. Co więcej jego konstrukcję można uważać
za dwuwymiarowe uogólnienie konstrukcji tego zbioru.
Trójwymiarowym uogólnieniem konstrukcji zbioru Cantora jest tzw. kostka Mengera. Powstaje ona przez procedurę rekurencyjną, którą rozpoczynamy od ustalonego sześcianu. Dzielimy go na 27 (3x3x3) identycznych sześcianów i usuwamy środkowy oraz do niego przyległe (pozostałe dwadzieścia
będziemy nazywali sześcianami stopnia pierwszego). Następnie powtarzamy
procedurę dzielenia i usuwania odpowiednich części dla każdego sześcianu
stopnia pierwszego (otrzymamy w ten sposób sześciany stopnia drugiego).
Podobnie dostajemy kolejne stopnie. Kostką Mengera nazywamy zbiór punktów pozostałych po nieskończonej ilości kroków. Każda ściana kostki jest
dywanem Sierpińskiego, a przekątna kostki jest zbiorem Cantora.
Rysunek 3: Kostka Mengera stopnia trzeciego.
Zbiór ten jest krzywą w przestrzeni trójwymiarowej o bardzo ciekawej
własności:
Twierdzenie 5 Dowolna krzywa w dowolnej przestrzeni metrycznej jest homeomorficznie zanurzalna w kostce Mengera.
Ze względu na stopień trudności nie dowiedziemy tego twierdzenia.
7
Literatura
[1] R. Engelking, K. Sieklucki, Wstęp do Topologii Państwowe Wydawnictwo
Naukowe, Warszawa 1986.
[2] A. Lelek, Zbiory, Państwowe Zakłady Wydawnictw Szkolnych, Warszawa
1966.
[3] A. S. Parchomienko, Co To Jest Linia, Państwowe Wydawnictwo Naukowe, Warszawa 1961.
8

Podobne dokumenty