ASTRONOMY STUDY OF FIRST DEGREE COURSE DIRECTORY

Transkrypt

ASTRONOMY STUDY OF FIRST DEGREE COURSE DIRECTORY
FACULTY OF PHYSICS AND ASTRONOMY
INSTITUTE OF ASTRONOMY
ASTRONOMY
STUDY OF FIRST DEGREE
COURSE DIRECTORY
1
COURSE DIRECTORY
1. Fundamentals of physics III – Electricity and magnetism
2. Spherical astronomy and Astrometry
3. Instruments and methods of observational astronomy
4. Languages and paradigms of programming
5. Classical and relativistic mechanics
6. Observational methods and data analysis in Astronomy
7. Fundamentals of physics IV – Optics, modern physics
8. Physics of stars and dispersed matter
9. Natural sciences methodology
10. Physics of stars and dispersed matter
17
11. Foundations of Quantum physics
12. Introduction to Time series analysis
13. Scientific calculation and numerical methods
14. GRADUATE (BACHELOR’s) SEMINAR
15. Wstęp do astrofizyki obiektów zwartych
2
3
5
6
7
8
10
11
13
15
18
20
22
23
24
F U N D A M E N TA L S O F P H Y S I C S I I I – E L E C T R I C I T Y A N D M A G N E T I S M
Co u rse co de : 13.2-WFiA-AST-PoF3-EM
Typ e of co u rse : compulsory
Mathematical Analysis, Algebraical and
E nt r y re qu i rem en t s: Geometrical Methods in Physics,
Fundamentals of Physics I and II
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr hab. Anatol Nowicki, prof. UZ
Nam e of le ct u re r:
Form of
instruction
Numbe
Numbe
r of
r of
teachi
teachin
ng
Semest
g
hours
er
hours
per
per
semest
week
er
Lecture - dr hab. Anatol Nowicki, prof. UZ
Class - dr Henryk Tygielski
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Exam
III
Class
30
2
6
Grade
COURSE CONTENTS:
Lecture:
Electrostatic field in the vacuum.
Electorstatic phenomena in dielectrics.
The electric current.
The magnetic field in a vaccum.
The magnetic field in a matter.
Electromagnetic induction.
The Maxwell's equations.
Electromagnetic oscillations and alternating current.
LEARNING OUTCOMES:
The knowledge and understanding of electric and magnetic phenomena. Ability of solving tasks and
problems in this field of physics.
ASSESSMENT CRITERIA:
Lecture: passing an examination is a necessery condition of ranking the lecture.
Classes: the preparation for classes and the activity on classes, positive marks from test works.
RECOMMENDED READING:
1. D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, t.3, PWN, Warszawa 2003.
2. I.W. Sawieliew, Wykłady z fizyki, t.2, PWN, Warszawa 2002, (wyd.3).
3
3.
4.
5.
R. Resnick, D. Halliday, Fizyka, t. 2, PWN, Warszawa 1999.
B. Jaworski, A. Dietław, L. Miłkowska, Kurs fizyki, t. 2, Elektryczność i magnetyzm, PWN,
Warszawa 1971.
J. Walker, Podstawy fizyki. Zbiór zadań, PWN, Warszawa 2005.
4
SPHERICAL ASTRONOMY AND ASTROMETRY
Cou rse Cod e : 13.7-WFiA-AST-EASA
Typ e of co u rse : mandatory
E nt r y re qu i rem en t s:
Trigonometry. Physics of the Solar System.
Physics of stars
La n gua ge of in st ru ct io n : polish
Di re ct o r of st ud ie s dr W. Lewandowski
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r: dr W. Lewandowski
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Class
30
2
3
Written exam
2
Grade
4
COURSE CONTENTS:
1.
2.
3.
4.
Celestial sphere – description of motions, and movement of planets and Sun. Astronomical coordinate
systems.
Time in astronomy.
Proper motion.
Orbital motion of planets and asteroids as seen on celestial sphere. Assertion of orbital palameters of planets
and asteroids from astrometric measurements.
LEARNING OUTCOMES:
Knowledge of methods used to describe phenomena on the celestial sphere. Basic understanding of
spherical trigonometry.
ASSESSMENT CRITERIA:
Lecture – written exam
Class – grade
RECOMMENDED READING:
6. W. Opalski, L. Cichowicz, „Astronomia geodezyjna”, Państwowe Przedsiębiorstwo wydawnictw
Kartograficznych, 1980
7.
8.
J. Mietelski, „Astronomia w geografii”, PWN, 2009
A. Branicki: „Obserwacje i pomiary astronomiczne dla studentów, uczniów i miłośników astronomii”,
Wydawnictwa Uniwersytetu Warszawskiego, 2006
OPTIONAL READING:
1. R.M. Green, „Spherical Astronomy”, Cambridge University Press 1999
2. W.M. Smart „Textbook on spherical astronomy”, Cambridge University Press
5
I N S T R U M E N T S A N D M E T H O D S O F O B S E R VAT I O N A L
ASTRONOMY
Cou rse Cod e : 13.7-WFiA-AST-IMOA
Typ e of co u rse : mandatory
E nt r y re qu i rem en t s:
Basic knowledge of optics and properities of
electromagnetic waves.
La n gua ge of in st ru ct io n : polish
Di re ct o r of st ud ie s dr W. Lewandowski
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r: dr W. Lewandowski
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Class
30
2
L
Oral exam
1
Grade
3
COURSE CONTENTS:
1.
2.
3.
4.
Methods of astronomical observations – spectroscopy, photometry, astrometry.
Optical telescopes – active optics, adaptive optics, optical interferometry.
Gamma and X-ray observations.
Satelite Gamma and X-Ray receivers.
LEARNING OUTCOMES:
Knowledge of modern methods of astronomical observations, and instrumentation used.
ASSESSMENT CRITERIA:
Lecture: oral exam
Class: Grade
RECOMMENDED READING:
9. A. Branicki: „Obserwacje i pomiary astronomiczne dla studentów, uczniów i miłośników astronomii”,
Wydawnictwa Uniwersytetu Warszawskiego, 2006
10. J. Mietelski, „Astronomia w geografii”, PWN, 2009
11. H. Hurnik, „Instrumenty obserwacyjne astrometrii. Od gnomonu do CCD i interferometru optycznego”,
Wydawnictwo Naukowe UAM w Poznaniu, 2000
OPTIONAL READING:
3. E. Rybka, „Astronomia Ogolna”, PWN, 1983
UWAGI:
6
L AN G U AG E S AN D PAR AD I G M S O F P R O G R AM M I N G
Co u rse co de : 11.3-WFiA-AST-JPP
Typ e of co u rse : compulsory
E nt r y re qu i rem en t s:
Basics of logics, basics of
programming, basics of algorithms
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: Dr Olaf Maron
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r:
Lecture: dr Olaf Maron
Laboratory: dr Olaf Maron
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
4
Laboratory
30
2
Exam
2
Grade
4
COURSE CONTENTS:
Syntax and semantics of programming languages. Imperative programming (vatiables, block structure,
procedure calls, memory allocation in heaps and stacks, examples in C, Pascal, Fortran)
Object oriented programming (classes as abstract data types, inheritance, polymorphism, examples
in C++, Java)
Functional programming (functions as a model of programming, type systems, recursion, examples
in C, Pascal, Fortran)
Programming in logics.
LEARNING OUTCOMES:
Knowledge of Basic programming paradigms, imperative, object oriented, functional. Knowledge
of common concepts and differences typical for the paradigms and languages used in the basic
programming paradigms.
ASSESSMENT CRITERIA:
Lecture: Passing the exam
Laboratory: passing 2 tests, attendance and activity in class
RECOMMENDED READING:
1. A.V. Aho, J.D. Ullman Wykłady z informatyki z przykładami w języku C, Gliwice 2003, Helion.
2. Lecture notes.
3. Internet sources
OPTIONAL READING:
7
C L A S S I C A L A N D R E L AT I V I S T I C M E C H A N I C S
Co u rse co de : 13.2-WFiA-AST-MKiR
Typ e of co u rse : compulsory
Principles of linear algebra. Principles of
mathematical analysis: differentation of
E nt r y re qu ire me n t s:
functions of many variables, partial
derivatives, equations of the second order.
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr hab. Anatol Nowicki, prof. UZ
Nam e of le ct u re r:
Form of
instruction
Numbe
Numbe
r of
r of
teachi
teachin
ng
Semest
g
hours
er
hours
per
per
semest
week
er
Lecture - dr hab. Anatol Nowicki, prof. UZ
Class - dr Sylwia Kondej
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Exam
IV
Class
30
2
6
Grade
COURSE CONTENTS:
Lecture:
The space-time:
Fundamental kinematical quantities – vector of position, velocity and acceleration. Description of motion
along an arbitraty trajectory. Description of motion in moving reference frames. The pronciple of relativity
and causality. The Minkowski space. Relativistic kinematics.
The Newton's mechanics and relativistic mechanics:
The equations of motion. The relativistic equation of motion, energy and momentum in relativistic
mechanics. Systems with one and two degree of freedom. Potential fields. Oscillatory motion. Angular
momentum. Investigation of motion in central fields, Kepler problem. The motion of n-body systems, the
conservation laws. The kinematics and dynamics of rigid body.
Class:
Structure of spacetime: description of the motion and deriving of kinematic parameters. Galilean
trasformations. The spacetime geometry. Lorentz transformations (simultaneity, clock synchronization,
time
dilation
and
Lorentz
reduction,
etc.).
Newton's and relativistic mechanics: Solving of the Newton's equations of motion for some particular
models. Examples of potential systems: the Kepler's problem and harmonic oscillator. The problem of two
bodies system. Application of relativistic equations of motion.
LEARNING OUTCOMES:
Correct undestanding of the role of mathematics as a language of description of physical phenomena.
Conceptual understanding of the relations between theoretical description of the reality and physical
8
experiment. The knowledge of classical mechanic structure and its relativistic generalization.
ASSESSMENT CRITERIA:
Lecture: passing an examination is a necessery condition of ranking the lecture.
Class: positive results of two test works.
RECOMMENDED READING:
12. W. Rubinowicz, W. Królikowski ”Mechanika teoretyczna”, PWN Warszawa 1967.
13. W. Kopczyński, A. Trautman ”Czasoprzestrzeń i grawitacja” , PWN, Warszawa 1981.
14. W. Garczyński ”Mechanika teoretyczna” , Wrocław 1978.
15. W. I. Arnold ”Metody matematyczne mechaniki klasycznej” , PWN, Warszawa 1981.
16. L. Landau, E. Lifszic ”Mechanika”, PWN Warszawa 2006.L. Landau, E. Lifszic
”Mechanika”, PWN Warszawa 2006.
9
O B S E R V AT I O N A L M E T H O D S A N D D AT A A N A LY S I S I N
ASTRONOMY
Co u rse co de : 13.7-WFiA-AST-MOAD
Typ e of co u rse : compulsory
E nt r y re qu i rem en t s: Basics of Astronomy
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: Dr hab. Jarosław Kijak, prof. UZ
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r:
Lecture: dr hab. Jarosław Kijak
Class: dr hab. Jarosław Kijak
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
15
1
Grade
Class
15
1
Grade
COURSE CONTENTS:
Astronomical Fundamentals, Electromagnetic wave, Telescopes and Receivers, The nature of
astronomical objects, analysis of data; statistical method, fitting procedure, Chi-square method.
LEARNING OUTCOMES:
Understanding of physical processes in astronomical scales, ability to interpret the results of astronomical
observations
ASSESSMENT CRITERIA:
Lecture: attendance and activity
Class: passing 2 tests, attendance and activity in class
RECOMMENDED READING:
[1] Obserwacje i pomiary astronomiczne, A. Branicki, WUW 2006
[2] Astronomia popularna, WP 1990
[3] Wstęp do analizy błędu pomiarowego, J. R. Taylor, PWN,
Warszawa 1999
[4] Analiza danych (Metody statystyczne i obliczeniowe),
S. Brandt, Wydawnictwo Naukowe PWN, Warszawa 2002
[5] Compendium of Practical Astronomy, Instrumentation and Redaction Techniques, S G.D.
Roth, Springer-Verlag, Berlin 1994
10
F U N D A M E N TA L S O F P H Y S I C S I V – O P T I C S , M O D E R N P H Y S I C S
Co u rse co de : 13.2-WFiA-AST-PoF4-O,FW
Typ e of co u rse : compulsory
Fundamental kinematical notions,
mechanical oscillations and waves.
Electormagnetic waves and Maxwell's
E nt r y re qu i rem en t s: equations. Principles of mathematical
analysis: differentation of functions of many
variables, partial derivatives, equations of
the second order.
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr hab. Anatol Nowicki, prof. UZ
Nam e of le ct u re r:
Form of
instruction
Numbe
Numbe
r of
r of
teachi
teachin
ng
Semest
g
hours
er
hours
per
per
semest
week
er
Lecture - dr hab. Anatol Nowicki, prof. UZ
Class - dr Sylwia Kondej
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Exam
IV
Class
45
3
6
Grade
COURSE CONTENTS:
Lecture:
Geometrical optics: reflection and refraction of light (Fermat's principle), mirrors, lenses, prisms and
disperssion, aberrations, optical instruments.
Wave optics: periodic wave motion, interference, diffraction and diffraction gratings, disspersion and
polarizacion of light.
Quantum nature of light: fotoelectric effect, Compton effect, wave-corpuscular dualism.
Quantum nature of matter: emission spectum of atoms, de Broglie waves, electron diffraction, electron
microscope.
Quantum properties of matter: models of atom, quantization of energy and Schroedinger equation, spin of
electron and Pauli exclusion principle, multi electron atoms, periodic system of elements, atomic nucleus
and elementary particles.
Class:
Geometric and wave optics: an application of refraction and reflection law in prisma, lenses and mirrors.
Description of particular systems using optical diffraction and interference (for example, Young's efect).
The problem of the polarization of light. The wave-particle duality of light and matter (for example the
wavelength of photon, de Broglie wavelength etc.). Quantum nature of matter: particular solutions of the
Schroedinger equation and their interpretation (the potential 'well', the Coulomb potential). Examples of
nuclear processes.
11
LEARNING OUTCOMES:
Correct undestanding of physical phenomena in optics and .physics of atoms. Conceptual understanding
of the relations between theoretical description of the
reality and physical experiment. Good
understanding of the necessity of introduction of new quantum notions in description of microworld
phenomena.
ASSESSMENT CRITERIA:
Lecture: passing an examination is a necessery condition of ranking the lecture.
Class: positive results of two test works.
RECOMMENDED READING:
1.
2.
3.
B.Jaworski, A. Dietlaf, Kurs fizyki, Tom 3, “Procesy falowe. Optyka. Fizyka atomowa i
jądrowa”, PWN Warszawa, 1984.
J.R. Meyer-Arendt, “Wstęp do optyki”, PWN Warszawa, 1979.
V. Acosta, C.L. Cowan, B.J. Graham, “Podstawy fizyki współczesnej”, PWN Warszawa,
1 981.
OPTIONAL READING:
S. Szczeniowski, Fizyka doswiadczalna Cz. IV, “Optyka”, PWN Warszawa, 1983.
D.C. Giancoli, “General Physics” Vol.2, Prentice-Hall. Inc. 1984.
12
P H Y S I C S O F S T A R S A N D D I S P E R S E D M AT T E R
Co u rse co de : 13.7-WFiA-AST-FGMR
Typ e of co u rse : compulsory
Knowledge of basics of classical physics
E nt r y re qu i rem en t s: (mechanics, pysics of electromagnetic wave,
classical electrodynamics).
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr W. Lewandowski
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r:
Lecture - dr W. Lewandowski
Class – dr K. Maciesiak
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Oral exam
3
V
Class
30
2
Grade
5
COURSE CONTENTS:
Basic physical laws and they application in astrophysics: gravitation, electrodynamics, properties of
electromagnetic waves. Basics of quantum mechanics.
The structure of the interior of stars. Sources of stellar energy. Transfer of radiation.
Evolution of stars. Stellar properties in different phases of evolution.
The final phases of star evolution (white dwarfs, neutron stars, black hole). Physics of matter in extremal
states.
Properties of interstellar medium. Absorption and reddening of the light of stars. Collapse of interstellar
clouds and star creation.
The structure of the Milky Way.
LEARNING OUTCOMES:
The knowledge of the basic physical laws governing the structure and evolution of stars and the
structure of the Milky Way.
ASSESSMENT CRITERIA:
Oral exam.
Attendance, passing final test.
RECOMMENDED READING:
17. F. Shu, „Galaktyki, gwiazdy, życie”, Prószyński i S_ka, 2003
18. M. Kubiak, „Gwiazdy i materia międzygwiazdowa”, PWN, 1994
19. J.M. Kreiner, „Astronomia z Astrofizyką”, PWN, 1988
13
20.
OPTIONAL READING:
1.
E. Rybka, „Astronomia ogólna”, PWN, 1983
REMARKS:
14
N AT U R A L S C I E N C E S M E T H O D O L O G Y
Co u rse co de : 08.1-WFiA-AST-MNP
Typ e of co u rse : compulsory
Knowledge of fundamentals of physics and
astronomy. Elements of the philosophical
E nt r y re qu i rem en t s:
education: of the history of philosophy, logic
and ethics.
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr hab. Anatol Nowicki, prof. UZ
Nam e of le ct u re r: dr hab. Anatol Nowicki, prof. UZ
Form of
instruction
Numbe
Numbe
r of
r of
teachi
teachin
ng
Semest
g
hours
er
hours
per
per
semest
week
er
Form of receiving a credit
for a course
Number of
ECTS credits
allocated
Full-time studies
2
Lecture
30
2
V
Grade
COURSE CONTENTS:
Introduction: the knowledge and the learning, classification of sciences.
The coming into existence of the civilization and the development of the scientific knowledge: Ancient Egypt,
Mesopotamia, the calculation of the time in the antiquity- calendar; basics of mathematics.
Learning in ancient Greece: basics of the Greek learning, the Ionic school of philosophers of the nature,
Pythagoras and his work, the idealism of the Plato, Greek concept of atoms -Democritus, Aristoteles physics,
development metematyki and mechanics in the alexandrine period, optics and acoustics, Rome and dusk of
classical science.
Natural sciences in the period of the Middle Ages: learning in the period of the Middle Ages, the contribution
of philosophers and Arabic scholars, the coming into existence of universities, the Jagiellonian University, the
Paris school, the Oxford school, the development of optics in the Middle Ages.
Natural sciences in the Renaissance period: beginning of the modern era-Leonardo da Vinci, the
development to astronomy-Kopernik, Kepler, optics, the magnetism and hydrostatyka in the Renaissance
period.
Physics before Newton: Galileo, Descartes, the revival of atom concept.
Contribution of Newton to the science: Newton's optics, the fundamentals of mechanics - the differential
calculus, his basic book „Mathematical principles of philosophy of the nature”, other works of Newton.
Methodology of natural sciences on the example of physics: physical phenomena and models, physics
theories: classical mechanics, the kinetic-molecular theory of the structure of matter. Integration and the
specialization in natural sciences.
Basic model of the learning: the method of the idealization, the theory of paradigms, examples: the special
theory of relativity, the quantum theory, basic particles and quarks, the theory of everything.
LEARNING OUTCOMES:
the ability to understand and the ability of the description of chosen groups of physical phenomena in
nature, of formulating the problem and using physical research methodologies (experimental and
theoretical) for solving it.
ASSESSMENT CRITERIA:
15
Positive result of a test work.
RECOMMENDED READING:
21. L.N. Cooper, Istota i struktura fizyki, PWN, Warszawa 1975.
22. Z. Galasiewicz, Poznanie świata. Z dziejów filozofii i fizyki., Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2005.
23. L. Nowak, Wstęp do idealizacyjnej teorii nauki, PWN, Warszawa 1977.
24. A.K. Wróblewski, Historia fizyki, PWN, Warszawa 2007.
16
P H Y S I C S O F S TA R S A N D D I S P E R S E D M AT T E R
Cou rse Cod e : 13.7-WFiA-AST-FGMR
Typ e of co u rse : lecture + class
E nt r y re qu i rem en t s: Basic knowledge of physics and astronomy
La n gua ge of in st ru ct io n : polish
Di re ct o r of st ud ie s dr W. Lewandowski
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r: dr W. Lewandowski
Form of receiving a credit
for a course
Full-time studies
Lecture
30
2
5
Number of
ECTS
credits
allocated
3
Oral exam
COURSE CONTENTS:
5.
Fundamental laws of physics and their application to astronomy. Gravitation, electrodynamics,
electromagnetic waves. Quantum physics basics.
6. Structure and composition of stars. Sources of stellar energy. Transfer of radiation.
7. Stellar evolution. Properities of stars at different stages of evolution.
8. Final stages of stellar evolution (white dwarves, neutron stars, black holes). Physics of matter in extreme
conditions.
9. Properities of interstellar medium. Absorption and reddening of stellar spectra. Interstellar clouds collapse
and the formation of stars.
10. Structure of the Milky Way Galaxy.
LEARNING OUTCOMES:
Knowledge of fundamental laws governing stellar structure and evolution, and the composition and
structure of Milky Way Galaxy.
ASSESSMENT CRITERIA:
Lecture: oral exam
RECOMMENDED READING:
25. F. Shu, „Galaktyki, gwiazdy, życie”, Prószyński i S_ka, 2003
26. M. Kubiak, „Gwiazdy i materia międzygwiazdowa”, PWN, 1994
27. J.M. Kreiner, „Astronomia z Astrofizyką”, PWN, 1988
OPTIONAL READING:
5. E. Rybka, „Astronomia Ogolna”, PWN, 1983
UWAGI:
17
F O U N D AT I O N S O F Q U A N T U M P H Y S I C S
Co u rse co de : 13.2-WFiA-FIZ-PoFK
Typ e of co u rse : compulsory
Fundamental principles of physics,
E nt r y re qu i rem en t s: calculus, mathematical methods in
physics.
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: dr hab. Krzysztof Urbanowski, prof. UZ
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Lecture - dr hab. Krzysztof Urbanowski,
Nam e of le ct u re r: prof. UZ
Class - dr Bogdan Grabiec
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
30
2
Exam
V
Class
30
2
8
Grade
COURSE CONTENTS:
Lecture: Experimental foundations of quantum physics. Corpuscle properties of the electromagnetic radiation. Wave
properties of particles. Atoms structure. Mathematical methods in Quantum Mechanics – vector spaces, Hilbert spaces,
Dirac notation, operators – continuous basis and discrete basis representation. The quantum postulates and their
consequences – the state of the quantum system, correspondence of observables with operators, eigenvalue problem,
probabilistic interpretation of the measurement results, time evolution of a quantum system. Uncertainty relation.
Quantum mechanics of a particle in one dimension: free particle, harmonic oscillator. Quantum mechanics of a particle in
three dimensions: angular momentum. Symmetry operations in quantum mechanics: – space translations and time
translations. The hydrogenic atom.
Theoretical class: Problems and exercises for the lecture: elements of a theory of linear operators in Hilbert space,
uncertainty principle, the square potential barrier, potential well, symmetries, rotational symmetries – conservation laws.
LEARNING OUTCOMES:
To develop understanding of the essence of quantum phenomena; to develop skills in using quantum
mechanical methods for a description of quantum phenomena in the nature.
ASSESSMENT CRITERIA:
Lecture: passing an exam.
Theoretical class: passing tests
RECOMMENDED READING:
1. R. L. Liboff, Wstęp do mechaniki kwantowej, PWN, Warszawa 1987.
2. M. Grabowski, R. S. Ingarden, Mechanika kwantowa, PWN, Warszawa 1989.
3. L. I. Schiff, Mechanika kwantowa, PWN, Warszawa 1977.
18
4. I. Białynicki-Birula, M. Cieplak, J. Kaminski, Teoria kwantów, PWN, Warszawa 2001.
28. A. S. Dawydow, Mechanika kwantowa, PWN, Warszawa 1969.
OPTIONAL READING:
7. J. Brojan, J. Mostowski, K. Wódkiewicz, Zbiór zadań z mechaniki kwantowej, PWN, Warszawa 1978.
8. S. Kraszewski, Mechanika kwantowa, Skrypt kursu podstawowego,
http://iftia9.univ.gda.pl/~sjk/QM.
19
I N T R O D U C T I O N T O T I M E S E R I E S A N A LY S I S
Co u rse co de : 11.0-WFiA-AST-WACC
Typ e of co u rse : compulsory
E nt r y re qu i rem en t s:
Basics of programming, basics of
numerical methods, calculus
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: Dr Olaf Maron
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r:
Lecture: dr Olaf Maron
Class: dr Olaf Maron
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
Lecture
15
1
Exam
Class
15
1
Grade
COURSE CONTENTS:
1. Characteristics of signals
2. Spectral analysis of periodic signals
a. Fourier series
b. Amplitude and power spectrum of periodic signals
c. Application of Fourier series to obtaining the amplitude and Power spectrum of
some periodic signals
3. Numerical methods of spectral analysis
a. Processing of analog-digital signal
b. Digital filtering
c. Discrete Fourier Series
d. Discrete Fourier Transform
e. Fast Fourier Transform
f. Numerical methods of obtaining the spectral density
LEARNING OUTCOMES:
Ability to apply basic numerical methods of spectral analysis, finding spectra of signals, digital
filtering.
ASSESSMENT CRITERIA:
Lecture: Passing the exam
Laboratory: passing 2 tests, attendance and activity in class
RECOMMENDED READING:
20
29.
30.
31.
32.
E. Ozimek, Podstawy teoretyczne analizy widmowej sygnałów
Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne
J. Izydorczyk, G. Płonka, G. Tyma, Teoria sygnałów
Lecture notes
OPTIONAL READING:
9. ---
21
S C I E N T I F I C C A L C U L AT I O N A N D N U M E R I C A L M E T H O D S
Co u rse co de : 11.0-WFiA-AST-Mnum
Typ e of co u rse : compulsory
Programming in any programming language,
E nt r y re qu i rem en t s: mathematical analysis, algebra
La n gua ge of in st ru ct io n : polish
Di re ct o r of st ud ie s: Dr Krzysztof Maciesiak
Semester
Number of
teaching hours
per week
Form of
instruction
Number of
teaching hours
per semester
Nam e of le ct u re r: Dr Krzysztof Maciesiak
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
7
Class
75
5
VI
Grade
COURSE CONTENTS:
2.
3.
4.
5.
6.
7.
8.
9.
Interpolation
Approximation
Approximate solving of non-linear equations and their sets.
Numerical integration
Algebraic system of non-linear equations solving.
Calculating of eigenvalues and eigenvectors of matrixes.
Method of solving initial value problem for ordinary differential equations.
Method of solving boundary condition problem for partial differential equations.
LEARNING OUTCOMES:
Student can apply basic numerical methods in solving physical and astronomical problems.
ASSESSMENT CRITERIA:
Attendance, passing at least 60% of short entry tests, passing final test.
RECOMMENDED READING:
33. Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, Wydawnictwo Naukowo-Techniczne, Warszawa
1993
34. R. L. Burden, J. D. Faires, Numerical Analysis, PWS-KENT Publishing Company Boston 1985
OPTIONAL READING:
-
REMARKS:
22
G R A D U AT E ( B A C H E L O R ’ S ) S E M I N A R
Co u rse co de : 13.7-WFiA-AST-SEML
Typ e of co u rse : obligatory
E nt r y re qu i rem en t s:
Passing examinations of basic subjects
from the past years of studies
La n gua ge of in st ru ct io n : Polish
Semester
Form of
instruction
Number of
teaching hours
per week
Giorgi Melikidze
Nam e of le ct u re r: Prof. Giorgi Melikidze
Number of
teaching hours
per semester
Di re ct o r of st ud ie s: Prof.
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
S em i n a r
45
3
6
12
credit with a mark
COURSE CONTENTS:
Provide help, discussion and explanation of all uncertainties connected with choice of the
necessary literature to study for the graduate (Bachelor’s) examination. Give presentations
and commentaries concerning the topics of the graduate examinations. Teach basics of
preparation for the presentation.
LEARNING OUTCOMES:
Preparation for the graduate (Bachelor’s) examination.
ASSESSMENT CRITERIA:
Presentations.
RECOMMENDED READING:
The literature is chosen by the teacher according to topics of the presentations.
OPTIONAL READING:
23
WS TĘP DO AS TRO FI ZYKI OBIEKTÓW ZWAR TYCH
Co u rse co de : 13.7-WFiA-AST-WAOZ
Typ e of co u rse : compulsory
E nt r y re qu i rem en t s: Differential calculus and general physics
La n gua ge of in st ru ct io n : Polish
Di re ct o r of st ud ie s: Krzysztof Krzeszowski
Nam e of le ct u re r: Krzysztof Krzeszowski
Form of
instruction
Numbe
Numbe
r of
r of
teachi
teachin
ng
Semest
g
hours
er
hours
per
per
semest
week
er
Form of receiving a credit
for a course
Number of
ECTS
credits
allocated
Full-time studies
4
Lecture
30
2
IX
Exam
COURSE CONTENTS:
Kinds of compact objects: white dwarfs, neutron stars and black holes.
General Relativity Theory.
Schwarzschild solution and properties of sphericaly symetric black holes.
Slow rotation: geodethic precession and Lense’a-Thirringa precession
Kerr black holes.
Structure of white dwarfs.
Structure of neutron stars.
Stability of compact objects.
LEARNING OUTCOMES:
Knowledge of compact objects physics and solving basic excercises from General Relativity
ASSESSMENT CRITERIA:
Presence, exam
RECOMMENDED READING:
1. Gravity, James B. Hartle, Addison Wesley 2003
2. Black Holes, White Dwarfs and Neutron Stars, S. Shapiro, S. Teukolsky, Wiley-VCH 2004
3. Wstęp do ogólnej teorii względności, B. Schulz, PWN Warszawa 2002
4. Astrofizyka relatywistyczna, M. Demiański, PWN Warszawa 1991
OPTIONAL READING:
10. Internet contents
24

Podobne dokumenty