Jan TROJANOWSKI, Marian STOŃ, Henryk SZMACIŃSKI_____ A

Transkrypt

Jan TROJANOWSKI, Marian STOŃ, Henryk SZMACIŃSKI_____ A
Jan TROJANOWSKI, Marian STOŃ, Henryk SZMACIŃSKI_____
U n iv e rsity of É ducation in S łupsk
A STUDY OF THE COMPLEXATION REACTION OF
MERCURY (II) WITH RHODAMINE B FROM THE POINT
OF VIEW OF ITS UTILIZATION IN ASSAYING MERCURY
BY THE LUMINESCENCE METHOD
C o n t e n t s : 1. Introduction, 2. Experim ental, 3. D iscussion of results, 4. Con­
clusions; Streszczenie; References.
1. INTRODUCTION
M ercu ry is one of th e m ost d angerous e n v iro n m en ta l p o llu tan ts, as it
is easily accu m u lated in organism s, causing g rav e and chronic diseases.
T he source of m e rc u ry po llu tio n of surface w a te rs are c e rta in in ­
d u stria l e fflu e n ts and p la n t p ro te c tio n agents. T he m e rc u ry level in sea
w a te r [9] am ounts, for exam ple to 0.05— 0.10 ng dm"3 (B altic Sea).
This v a lu e has been considered by som e rese a rc h w o rk ers to be n a ­
tu ra l m e rc u ry level in surface w aters. M e rc u ry m ay occur in th e form
of b oth inorganic and organic com pounds, m o stly as m e th y l- and p h en y lm e rc u ry salts [17].
M e rc u ry atom s, having com pleted d orbitals, show a strong te n ­
dency to form com plexes w ith th e coordination n u m b er 2. T he s tr u ­
c tu re of th e com plexes m ay be lin e a r or te tra h e d ra l. O ctah ed ral spe­
cies are ra re ly e n co u n tered .T h e m ost stab le com plexes are form ed w ith
ligands containing atom s of halogens, carbon, nitrogen, phosphorus and
su lp h u r [4, 3, 19]. A n u m b e r of com plexes w ith oxygen-containing
anions have been re p o rte d [4], e.g. [H g(S 03)2]2‘ and [H g(N 03)4-l2\
A v a rie ty of am ines h av e also been found to fo rm com plexes w ith
Hg(II) [3], th e a ffin ity of m e rc u ry to n itro g e n -c o n ta in in g ligands being
stro n g e r in aqueous solutions th a n th a t of o th er tra n sitio n m etals. Com ­
pounds of Hg(II) w ith P-diketones [14] do n ot display c h e la te -lik e s tru c ­
tu res, b u t are ra th e r enolates, H g(O C R = C H C O R )2. R ecently, several
w orks have been confined to th e com plexes of th e m eta l w ith s u lp h u rcontaining ligands, such as ben zy lsu lp h an ilth io b en zam id e [18] and 2 -m ercaptobenzim idazole [7]. M ost fre q u e n tly , how ever, dyes have been used
Oceanology No 13(1980)
w hich e n te r in to r e a c tio n s , w ith co m p le m e n tary ions, w hich can be
u tilized for assaying m ercu ry .
T a ray a n and associates [15] stu d ied a reactio n of Hg(II) w ith
m e th y l g reen in th e p resen ce of th e Cl" and Br" ions. T he com plex
form ed, [R f H gX 3'] • R +X" w as e x tra c te d w ith benzene. E x tra c tio n of
th e Hgl"3 and HgBr"3 anions to an organic phase w ith such dyes as
m eth y le n e blue, a n tip y rin e dyes, b u ty lrh o d a m in e S, b rillia n t green,
c ry sta l violet and m e th y l g reen w as in v estig ated by Kisz and associa"
te s [11]. S h e stid e satn a y a an d associates [16] em ployed b ro m o p h en y l
blue and brom ocresol g ree n in th e presence of p h e n a n th ro lin e fo r as"
saying m e rc u ry and suggested th e fo rm atio n of a chelate, [H g(Fen)2R],
T hese studies w e re m ain ly c a rrie d out using ex tra ctio n -p h o to m e tric
m ethods.
To assay sm all am ounts of th e m eta l by m eans of dyes, e. g. rh o d am ine B, th e e x tra c tio n -flu o rim e tric m ethod w as also used [10], T he lu m i­
nescence m ethod is m a rk e d ly m ore sensitive th a n th e pho to m etric m e­
thods.
T he objective of th is p a p e r w as to exam ine th e reactio n of Hg(II)
w ith rh o d am in e B and to estab lish optim um conditions for ex tractio n
of th e com plex form ed w ith re g a rd to th e possibility of assaying m e r­
c u ry by m eans of th is rea c tio n using th e lum inescence m ethod.
2. EXPERIMENTAL
T he stock solutions of H gC l2 and of rh o d am in e B w e re 1 X 1 0 '3M.
A p a rt fro m these, 2N solutions of H 2S 0 4 and N aC l w e re p rep ared .
A n e x tra c ta n t w as p re p a re d b y m ixing to g e th e r 2 volum es of
benzene w ith one volum e of d ie th y l eth er.
A series of solutions fo r th e m ea su rem e n ts w as p re p a re d in
10-cm 3 v o lu m etric flasks. T he vo lu m e of th e aqueous phase w as 5 cm 3
and th a t of th e e x tra c ta n t w as 3 cm 3, T ig h tly closed flasks w ere shaken
fo r 1 m in. A fte r sep aratio n of th e phases, th e organic la y e r w as tra n s ­
fe rre d to a 1-cm c u v e tte w ith a cap and an ab sorptiom etric or lum in es­
cence m ea su rem e n t w as ru n .
T he absorbance of th e solutions w as m easu red on a SPECORD
U V -V IS spectro p h o to m eter. M easu rem en ts of th e lum inescence w ere
p e rfo rm e d by using a special set-up.
T he m ea su rem e n ts of pH w ere carrie d out on an LBS-66 pH m e­
te r using glass (S-60) and calom el (K-60) electrodes.
3. DISCUSSION OF RESULTS
A v a rie ty of m odern in stru m e n ta l tec h n iq u es h av e re c e n tly been em -
ployed to assay m e rc u ry in w a te r [5], T he tech n iq u es cannot, how ­
ever, be em ployed u n d e r exp ed itio n al conditions and n o t each sta tio ­
n a ry h y d ro ch em ical lab o ra to ry is equipped w ith such expensive and
precise eq u ip m en t. H ence, it is th e ten d e n c y to develop less sophis­
tic a te d p ro ced u res th a t en able th e assaying of tra c e am ounts of m e r­
cury, in clu d in g those in sea w ater.
As reg a rd s th e m ethod selected, a flu o re sc e n t com pound could on­
ly provide a ligand coordinating w ith m erc u ry . A m ong o th e r com ­
pounds, dyes provide such ligands. In th e ex tra ctio n -p h o to m e tric and
e x tra c tio n -flu o rim e tric m ethods, x a n th e n e dyes [2] h av e found w i-
Fitg. 1. Mesomietnic structures of rhodam ine B
Rys. 1. Struktury anezomerycane rodam iny B
d esp read use. R hodam ine B is one of th ese dyes. Its m esom eric s tru c ­
tu re s are show n in Fig. 1.
A n aqueous solution of rh o d am in e B has an absorption m ax im u m
a t >.—554 nm (Fig. 2) w ith m olar ab so rp tiv ity , e, of about 105 1 mol"1
c m '1. R hodam ine B has long b een em ployed for assaying a v a rie ty of
e le m en ts [1, 6, 8, 10, 12, 13], W ith com plex anions of th e elem en ts
a cation of rh o d am in e B form s com pounds re fe rre d to as ion p a irs
[8], ion associates [6, 10] or com plexes [13, 1], w hich have b een e x tra c ­
ted from aqueous solution w ith organic solvents, m ostly w ith benzene.
In th is w ork a benzene — e th y l th e r (2:1 by vol.) m ix tu re w as used as an
e x tra c ta n t. E th e r accelerates and im proves phase separation.
In Fig. 2 th e sp e ctru m of an aqueous solution of R B(C r b= 2 X 10‘5M)
m ixed w ith a Iig C l2 solution (C Hg = 1 X 1 0 '4M), cu rv e 2, and sp e ctra of
e x tra c ts of a p p ro p riate rh o d am in e B solutions (curves 1’, 2’, 3’ and 4’)
h av e also been show n. C urve 2” provides a lum inescence sp e ctru m of
th e e x tra c te d R B — H g (II) com plex.
D uring e x tra ctio n of a coloured solution of R B (C RQ ^10-4M ) w ith
benzene and e th e r, th e solution becom es colourless. T he organic la y e r
also does not becom e coloured alth o u g h it contains about 90 p e r cen t
of th e dye, as has b een d e m o n stra ted by re -e x tra c tio n of th e se p ara te d
organic lay e r w ith hyd ro ch lo ric or su lp h u ric acid, or by isolation of
rho d am in e B by ev ap oration of th e solvent and dissolution of th e d ry
resid u e in w ater. T his phenom enon can be ex p lained in term s of an
F ig. 2 Spectra of irhodamine B solutionis; CnB = 2 X 10-5M.
1 — a q u e o u s s o l u t i o n o f R b ; 1’ — e x t r a c t o f s o l u t i o n 1;
2 — a q u e o u s s o l u t i o n o f R b + Hg(II); Cng = 1 X 1(HM, pH = 1.5; 2 ’ — e x t r a c t
o f s o l u t i o n 2; 3’ — e x t r a c t o f R b s o l u t i o n , pH =
1.5; 4 ’ — e x t r a c t o f t h e
R b + Hg (II) s o l u t i o n , CHg = 1
a n e x t r a c t o f s o l u t i o n 2; 1 = 1 c m .
X lO-^uVI, pH =
1.5; 2 ” — e m i s s i o n s p e c t r u m o f
Ry'S. 2 Widma roztworów rodam iny B. C rb = 2.10-5M.
1 —
2 —
2’ —
3’ —
4’ —
2” —
r o z t w ó r w o d n y R b ; 1’ — e k s t r a k t r o z t w o r u 1;
ro.zltw ór w o d n y R b + Hg(II), C u g = 1.1CMM, pH = 1.5;
e k s t r a k t z r o z t w o r u 2;
e k s t r a k t z r o z t w o r u R b , p H = 1,5;
e k s t r a k t z r o z t w o r u R b + Hg(II), C u g = l.KHM , pH =
w i d m o e m lis y j n e e k s t r a k t u z r o z t w o r u 2; 1 = 1 c m .
1,5;
e q u ilib riu m w hich sets up in th e aqueous solution of R B. T he e q u ilib riu m
is show n in Fig. 3.
E lectro ly tic dissociation leads p ro b ab ly to sp littin g off of th e H + ion
to form a tra n s ie n t z w itte rio n R B
± w hich is su b seq u e n tly co n v erted
Fig. 3 Equilibrium form s of rhodam ine B in aqueofuis solution.
Ryis. 3. Form y rownoiwagowe rodam iny B w roatwoirze wodnym .
to a lactone fo rm of R B having a s tru c tu re sim ilar to th a t of flu o re s­
cein and its d eriv ativ es (uranin, eosin, ery th ro sin ). In th e lactonic fo rm
( R b ) , rh o d am in e B becom es colourless p ro b ab ly ow ing to d istu rb an ce
of th e sy stem of co n ju g ate double bonds. T his system u n d o u b ted ly
affected co lour-producing p ro p e rtie s of rh o d am in e and its solutions to
a g re a t e x te n t. In th is fo rm R b is fre e ly soluble in no n p o lar solvents,
such as benzene. C onsequently, d u rin g e x tra c tio n w ith th e benzene —
e th e r m ix tu re , th e e q u ilib riu m sh ifts to th e lactonic form th u s leading
to d eco lo u rtatio n of th e solution.
A t co n cen tratio n s h ig h er th a n 10"4M a fa in t pink colour appears in th e
organic lay e r a fte r e x tractio n . T his is p ro b ab ly due to th e w e a k ly po­
la r n a tu re of e th e r w hich m ay th u s solvate rh o d am in e B causing dis­
p lacem en t of th e charges sim ilar to th a t observed in th e z w itte rio n R \
w hich is coloured.
A fte r tre a tm e n t of th e decolourized solution w ith su lp h u ric acid and
shaking it w ith th e organic layer, in ten se co lo u ratio n of th e aqueous
phase w as resto re d . T he acid splits th e lactonic bond and shifts e q u i­
lib riu m to w ard s th e fo rm atio n of th e R^“ cation, i.e. th e coloured form
of rho d am in e B. A sm all p o rtio n of th is cationc fo rm also passes to
th e organic lay e r since it acquires a fa in tly p e rc e p tib le slig h tly p in k co­
louration, as w as confirm ed b y th e sp e ctru m (Fig. 2, cu rv e 3’).
Of th e th re e form s of rh o d am in e B in equ ilib riu m , th e R^" ion
show s th e stro n g est com plex form ing capacity. The sp ectra of th e ex ­
tra c te d com plexes of R b w ith Hg(II) are show n in Fig. 2 (curve 2',
C Hg = 1 X 1 0 '4M; cu rv e 4’, C H g = l X 10'5M). To exam ine th e reactio n
of rhodam ine B w ith Hg(II) in g re a te r detail, th e effect of acid ity was
firs t studied. To a ran g e of solutions of rho d am in e B(C r b = 1 X 10"5M)
and of H gC lj ( lX lO ’^M), v ariab le am ounts of 2N H 2SC>4 w e re added.
S im ilar am o u n ts of th e acid w ere added to solutions of rh o d am in e B
alone. T he absorbance of th e e x tra c te d com plex and th e rh o d am in e
itse lf is show n in Fig. 4. T he m ea su rem e n ts w e re p e rfo rm e d at 564
Fig. 4 Dependence betw een extraction
of rhodamine B (1) and o f its com plex
w ith Hg(II) (2) and pH of aqueous solu­
tion.
C r b = 1 X 10-^M; C H g = 10-*M; 1 = 1cm
X = 564 nm.
Rys. 4. Zależność ekstrakcji rodaminy
B (1) i jej kom pleksu R b — H g(il) (2)
od pH roztworu, wodnego.
C r b = 1 X 10-5M; C h s = 10-*M; 1 = 1 cm
X = 564 nm.
nm . As seen, th e h ig h est absorbance is observed over th e pH ran g e
1— 2 of th e aqueous lay er cu rv e 2), i.e. w ith in th is ran g e th e larg est
n u m b er of th e R b — Hg(II) com plexes passes to th e organic layer.
T he co n trib u tio n of th e rh o d am in e itself is r a th e r sm all (curve 1).
K isz and associates [11] d em o n stra ted th e essen tial effect of th e
iodide and brom ide ions on th e e x tra ctio n of coloured Hg(II) com ­
plexes. T he effect of th e chloride ions w as n o t stu d ied in such detail,
as th e ir c o n trib u tio n w as m a rk e d ly sm aller. In th is p aper, how ever,
Fig. 5. Dependence betw een exitraction of the R b—Hg(II) com ­
p lex and NiaCl concentration in the
aqueous solution.
C r b = 1 X 10-5M; C iig = 1 X 10-4M
X = 608 nm; pH = 1; 1 = 1 cm
Rys. 5. Zależność ekstrakcji
kom pleksu R b—Hg(II) od stężenia
NaCl w roztw orze wodnym .
C r b = 1 X 10‘ 5M ; C u g = 1 X 10">M
X = 608 nm; pH = 1; 1 = 1 om
th is effect should be accounted for, since th e p ro ce d u re is to be em ployed for assaying Hg(II)' in sea w ater.
This effect w as studied by th e lum inescence m ethod a t 608 nm and
pH 1, using fixed c o n cen tratio n s of H gC l2) C Hg , and of Rb , C r b, equal
to 1 X 1 0 '4M and 1X 10‘5M, resp ectiv ely . P a rtic u la r series of th e so lu ­
tions d iffe rre d in th e N aC l co ncentration. T h ere w e re tw o m axim a show n
in Fig. 5, one stro n g e r over th e N aC l c o n cen tratio n ran g e 0.1— 0.2M
and th e other, w eaker, over th e ra n g e 0.30— 0.34M. O ne m ay assum e
th a t th e chloride ions act as th e c o m p le m e n tary ones, affecting sta b ility
of th e com plex being form ed. T he H g(II)/C l" ra tio w as d e te rm in e d by
th e eq u ilib riu m sh ift m ethod (Fig. 8, line 2), T he ratio for th e N aC l con­
c e n tratio n s in aqueous solutions not exceeding 0.2M is 1:3. A t h ig h er
c o n cen tratio n a stra ig h t line w as obtained by th is m ethod, p ro b ab ­
ly ow ing to th e occurrence of reactio n s of a h ig h er order. D ata in Fig. 5
suggest, how ever, th a t th e [HgC]3]~ ion, w hich p a rtic ip a te s in th e fo r­
m ation of an ion p air w ith rh o d am in e B, form s a com plex w hich is m ore
stab le and m ore e x tra c ta b le to th e organic layer.
/
Fig. 6 The effect of rhodamine B on
percentage extraction of the R b—Hg(II)
com plex.
CHg = 2 X 10-5M; pH = 1.5; ), = 564 nm
1 — 1 cm.
IRyis. 0. W piyw istqzenia rodam iny B
na
proeent
ekstracji
ikompleksu
R e—Hg(II).
Ciig = 2 X 10-5M; pH = 1.5; X = 564 nm
1 = 1 cm.
Fig. 6 illu s tra te s th e effect off th e rho d am in e B c o n cen tratio n on
p erc e n ta g e e x tra ctio n of th e R b —- Hg(II) com plex a t fixed co
c o n cen
c en tratra ­
aC1 = 0 .1 5 M), a t pH 1.5.
tions of Hg Cl2 (C Hfl =2X 10-»M ), N a Cl (CNoC
« 22X
T he sa tu ra tio n of th e e x tra c ta n t wsrith
ith th e com plex occurs a t C r
rb
b«
X
10‘4M. T he h ig h est p e rc e n ta g e e x:traction
tra ctio n of th e com plex am ounts to
ito account th e co n trib u tio n to th e
ab o u t 90 p e rc e n t a fte r tak in g into
f.
e x tra ctio n of th e rhodam ine B itself.
inee B in th e com plex w as esQ u a n tita tiv e c o n trib u tio n of rhh oodam
d am in
es­
ar series of solutions and eq u ilib riu m
tab lish ed by th e m ethods of isom olar
shift. As seen from th e J o b ’s curve,;, th e IIIg
I g (II)/R
( I I ) / RB
B ratio in th e cam plex
is 1:1. T his w as confirm ed by th e eq u ilib riu m sh ift m ethod w h ere th e
Fig. 7 Absorption curve
of isom oiar series of solutions
o f E b and Hg(II);
Chs + Crb = 3 X 10-5M;
pH = 1.5; X — 564 nm.
Rys. 7. Krzywa absorpcji
serii izomolowyc'h roztw orow
R b i Hg(II);
CHg +
pH =
CHBi =
1.5; X =
3 X 10-5M;
564 nm.
slope of th e stra ig h t line in Fig. 8 is eq u al to u n ity . A ccordingly, one
can conclude th a t th e follow ing com plex of Hg(II) is form ed u n d e r these
conditions: [(IIgCl3)" R '^]. D uring e x tra c tio n of th e com plex, e q u ilib riu m
was atta in e d w ith in 30 m in and th e lum inescence in te n sity did n o t c h a n '
ge. S haking of th e aqueous la y e r w ith th e organic e x tra c ta n t fo r 60 s
allow ed m axim um e x tra ctio n of th e com plex.
Fig. 8. D ependence betw een parti­
tion coefficient o f m ercury and equili­
brium concentration of R b (curve 1;
Cng = 2 X 10-5M) and of the NaCl
cone entrait ion (line 2; C rb = 1 X 10-6M
Cng = 1 X 10-4M)
Rys. 8. Zależność współczynnika
podziału rtęci od rów now agow ego stę­
żenia R b ,{prosta 1, CHg = 2.10-5M) i
od stężenia NaCl (prosta 2, Cr„u
1.10-5M; Cng = l.HHM ).
T he com plexation reactio n of Hg(II) w ith rh o d am in e B m ay provide
a basis for th e d e te rm in a tio n of m e rc u ry in sea w a te r by th e lu m in es­
cence m ethod a fte r checking th e se le c tiv ity of th e m ethod w ith resp ect
to o th er heavy m eta ls p re se n t in th e en v iro n m en t.
4. CONCLUSIONS
M ercu ry (II) w as found to form th e [(HgCl3) " R ] com plex w ith rh o d a ­
m ine B in th e p resen ce of th e C l' ions. T he com plex is easily e x tra c ta b le w ith a b enzene — e th e r m ix tu re . T he m axim um absorbance of
th e com plex in th e e x tra c ta n t occurs at 564 nm .
T he m ost in te n se e x tra ctio n of th e com plex occurs w ith in th e
pH ran g e 1— 2 and w ith in th e N aCl co n cen tratio n ran g e 0.1— 0.2 M.
J a n TR O JA N O W SK I, M arian STOŃ, H e n ry k SZM A C IŃ SK I
W yższa Szkoła Pedagogiczna w Słupsku
BADANIA REAKCJI TWORZENIA KOMPLEKSU RTĘĆ (II) —
RODAMINA B POD KĄTEM ZASTOSOW ANIA JEJ W OZNACZA­
NIU RTĘCI METODĄ LUMINESCENCYJNĄ
Streszcaenie
W pracy przeanalizowano warunki zachodzenia reakji kom pleksow ania pomiędzy
rodaminą B a Hg (II) pod kątem w ykorzystania jej do oznaczania niew ielkich
ilości rtęci w w odzie m orskiej metodą lum inescencyjną. Jako m ieszaniny ekstrak­
cyjnej użyto m ieszaniny benzenu i eteru etylow ego w stosunku 2:1. Badania ab­
sorpcyjne prowadzono na 'Spektrometrze Specord UV VIS, pomiary lum inescencyjne na specjalnie zm ontowanej aparaturze a peham etryczne na pH-m etrze
LBS-66.
Ustalono, że w zakresie pH: 1—2 w ystęp uje najintensyw niejsza ekstrakcja
kom pleksów RB—Hg (II) z fazy w odnej. Przejście badanego kom pleksu do w arstw y
organicznej rów nież zależy od stężenia jonów chlorkowych, które prawdopodobnie
spełniają rolę jonu uzupełniającego. N ajlepsze efekty uzyskuje się przy stężeniu
NaCl w w odzie od 0,1—0,2 M.
N asycenie badanym kom pleksem m ieszaniny ekstrahującej, stosując stałe stę­
żenie HgCl2 (C H g = 2 • 10-5M) i optym alne warunki (p H = l,5 ; CNaci=0,15 M), uzyskano
przy stężeniu P. ; c nB s»2 • 10-4M. M aksym alny procent ekstrakcji kom pleksu w y ­
nosi około 90°/o. Na .podstawie m etody serii izom olowych roztworów oraz przy po­
m ocy m etody przesunięcia rów now agi ustalono, że w w yniku reakcji pom iędzy HB
i Hg (II) tw orzy się związek kom pleksow y o składzie [(HgCl3)- • R ^ ] .
U zyskane w yniki pozwalają stw ierdzić, że zbadaną reakcję można spożytkować
do ilościow ego oznaczania rtęci w w odzie m orskiej m etodą lum inescencyjną.
REFERENCES
1. B a b k o A. K., C h a ,p a y a Z. I., K o m p lek sn ye soedinyeniya Rodamina B
s n iekotorym i m etallam i, Zh. Anal. Khim., 1962, 17, p. 286.
2. B l u m I. A., Ekstraktsionno-fotom etricheskye m e to d y analiza, Nauka, Moskva
1970.
3. B r a n d o n C. I., The Crystal S tructure of HgCl2 .2(CBH5)3AsO, Acta Chem.
Scand., 1963, 17, p. 1363.
4. B u l l o c k J. I., T u c k D. G., Some O xyanion Com plexes of Mercury (II),
J. Chem. Soc. 1965, p 1877.
5. C h i l ' o v S., D eterm ination of Small A m oun ts of Mercury, Tatenta, 1975, 22
p. 205.
6. Ekstraktsionno-fotometricheskoe opredelenye redkozem eln ykh elem entov itryevoi podg ru ppy v prisu tsvii lantana ili tseria, P o l u e k t o v N. S., L a u e r
R. S., O v c h a r L. A., P o t a p o v S. F., Zh. Anal. Khim., 1975, 30, p: 1513:
7. F otom etricheskaya realctsiya na r tu t’s 2-m erkaptobenzim idazolom i brom krezo lo v y m pu rp u rovym , K o v a l e n k o A. A., U v a r o v a, K. A., U s a t e n k o ,
Y. I., Ziu b t’iS o v a T. I., Zh. Anal. Khim., 1977, 32, p. 270.
8. G o l k o w s k a A., P i s z o n i c k i L., A S tu d y of the Composition and ^Pro­
perties the Ion-Association C om p lex of Rhodamine B w ith Silicom olybdic Acid
w ith a V iew to its A n alytical A pplication , Talanta, 1973, 20, p. 749.
9. H e i n r i c h s H., D etermination of M ercury in W ater, Rocks, Coal and P et­
roleum w ith Flameless A tom ic Absorption S pectrophotom etry, Z. Anal. Chem.,
1975, 273, p. 197.
10. Ispolzovan ye ionnykh assotsiatov skan diya s salitsilovoy ili 2-fenilkhinolin-4karbonovoi kislotami i rodam inom S, K o n o n e n k o L. I., B e l t i n o v S.
V., D r o b y a z k o V. N., P o l u e k t o v N. S., Zh. A nal. Khiim., 1975, 30, p.
1716.
11. Izbiratelnoe ekstraktsionno-fotom etricheskoe o predelenye rtu ti osn ovn ym i krasitelyam i, Ki t s h P. P., S u i v a k o v B. Y., R o m a n V.V., ’Z o l o t o v Y. ^
A., Zh. Anal. Khim., 1977, 32, p. 1942.
12. M a r c z e n k o Z., O dczynniki organiczne w analizie nieorganicznej, PWN,
Warszawa 1959, p. 350.
13. N i e l s c h W., B ö l t z G., Zur Extraktion und photom etrischen B estim m ung
des Antim ons m it Rhodamin B., Z, Anal. Chem., 1954, 143, p. 264.
14. N o n h e b e i D. C., Mercury (II) C om plex of ß-Diketones, J. Chem. Soc., 1963,
p. 738.
15. Ob osobennostyakh ekstrakcii v sistem e r tu t’(II)-brom id-m etilovyi zelenyiorganicheskii rastvoritel, T a r a y a n V. M., M i r z o y a n F. M., L e l b e d e v a S. P., B a g r e e v a V. V., Z o l o t o v Y. A., Zh. Anal. Khim ., 1974, 29,
p. 2372.
16. S h e s t i d e s at n a y a N. L., V o r o n i c h O. G., M o t y l V. A.,E kstraktsiya raznoligandnykh k o m ple ksov tsinka, ka d m iy a i rtu ti s fenantrolinom i
n ek otorym i p r o iz vo d n ym i sulfoftalina, Zh. Anal. Khim., 1977, 32,p. 260.
17. T a l m i Y., The Rapid Sub-picogram D eterm ination of Volatile Organo-Mercury Compounds b y Gas C h rom atography w ith a M icrow ave Emission Spectrom etric Detector S ystem , Anal. Chiim. A cta, 1975, 74, p. 107.
18. U s a t e n k o Y. I., S i t a l o L. I., K o m p leksoobrazovan ye rtuti s benzolsulfonitrobenzam idom i ei am perom etricheskoe opredelenye, Zh, Anal. Khim.,
1974, 29, p. 35.
19. W i r t h T. H., D a v i d s o n N., M ercury (II) C om p lex of Am ines, J. Am.
Chem. Soc., 1964, 86, p 4314.