loss of elements in beech stands caused by forest

Transkrypt

loss of elements in beech stands caused by forest
P o z n a ń s ki e T o wa r z y s t w o P r z y j a c i ó ł N a u k
Wydział Nauk rolniczych i leŚnych
Prace komisji nauk rolniczych i komisji nauk leśnych
Tom 103 – 2012
Mostefa Mana, Krzysztof Janku
Loss of elements in beech stands
caused by forest operations
Abstract. During the research, the loss of elements in beech stands caused by forest operations was determined. The objective of the study was to estimate the impact of forest operations in beech stands on single
timber assortments and on groups of timber assortments. In order to measure the volume of Fagus sylvatica in
different age stands, three areas of 1ha were selected - stands 15 to 25 years old, 27 to 40 years old, and
55 years old, It was proven that the significant loss of elements was a result of branches and wood being removed from forest stands differing in stand age; wood and bark differ in the quantities of elements
Ca>Mg>N>K>Si>Mn>P>Fe>S>Cl>Na (wood), and K>Ca>N>Mn>S>Mg>Na>P>Fe>Cl>Si (bark). Leaving
brushwood in the forest is very beneficial for the abundance of elements in the soil.
Key words: forest operation, beech, timber, elements loss
Introduction and objective of the work
When timber is taken away from the forest during harvesting, some amounts of mineral compounds are lost. So far this issue, especially in the case of beech stands, has not
been investigated in Poland. Studies focused on beech and pine were conducted by
Fober H. (1990), Kubiak and Laurow (1994), Kubiak and Grodecki (1980), Giefing
(1990) and Gornowicz (1988). The publication by Kaminski (1988) shows the general
problem of forest management against the background of environmental protection. The
author discusses the issues of mineral compound withdrawal as a result of forest operations, however, without case studies dedicated to Fagus sylvatica.
The aim of this study was to determine the share of wood and the cortex of beech.
Additionally the loss of elements was estimated due to the logging of timber.
Methods and materials
The study was conducted in the Szczecin Forest Regional Directorate in the Forest
District Gryfino . Three research areas were selected at different stages of physiological
development, and marked as: A, B, C. Area (“A”) - trees within the age range of 15 to
88
Mostefa Mana, Krzysztof Janku
25 years; area (B) with trees within the age range of 27 to 40 years, and the third
area(C) with trees approximately 55 years of age. For each research area, five standard
trees were selected (based on diameter and height measurements).
Parts of harvested trees were measured using a spring dynamometer with an accuracy of 1 kg. The following tree parts were measured: brushwood to 2cm; brushwood
from 2 to 4 cm; branches from 4 to 7 cm; wood from 7 to 20 cm; wood over 20 cm (all
diameters over bark). On this basis, the percentage share of the above- mentioned groups
was calculated. To determine the share of the cortex of timber assortments of min. 4 cm
in diameter the results of Kubiak and Laurow (1994) were used. The dry cortex share in
brushwood of a diameter below 4cm, was calculated as the difference between the dry
volume with the cortex and without the cortex. Absolute humidity in beech wood was
determined according to the research carried out by Bobrowicz and Janiczyk (1952).
Average humidity was estimated at a level of 64%. Dry mass was estimated for the
wood and cortex in order to determine their chemical element content.
The share of wood and cortex mass and chemical composition in selected timber assortments was estimated according to Gaumann 1935, Rendoś 1964, Denaeyer-de Smet
1968, 1973, 1974, Kramar et al. 1977, Najdenov Rafajlov 1979, Mayer and Heinrichs
1981. This data enabled the evaluation of the mass of chosen chemical elements lost
from the environment along with the harvested timber.
Results
Dendromass in the studied area reached:
– “A” - 5096 kg/ha with 116 trees,
– “B” - 27 311 kg/ha with 483 trees,
– “C” - 77 558 kg/ha with 153 trees.
The mean mass of a single tree in particular areas reached: 43.93 kg for area “A’’,
56.54 kg for area “B’’ and 506.91 kg for area “C’’. The quantitative share of individual
timber assortment mass is presented in Tables 1-3. The older the stand , the lower the
percentage share of brushwood (brush to 2 cm diameter from 17.44% to 8.22%; brushwood from 2 to 4 cm from 11.57% to 9.32%) and branches from 4 to 7 cm (from
23.36% to 9.71%).
Tab. 1. Quantitative mass proportion of each timber assortment group in tree stand “A”
Assortment
Thin brushwood up to 2 cm
Volume
[m3]
Assortment mass [kg/ha]
fresh wood
dry wood
wood
cortex
0.9
889
320.04
297.64
22.4
Thick brushwood 2-4 cm
0.59
590
212.4
195.4
17
Small branches 4-7 cm
1.20
1 190
428.4
389.84
38.56
Medium wood 7-20 cm
2.45
2 427
873.72
795.09
78.63
89
Loss of elements in beech stands caused by forest operations.
Tab. 2. Quantitative mass proportion of each timber assortment group in tree stand “B”
Assortment mass [kg/ha]
Volume
[m3]
Assortment
fresh wood
dry wood
wood
cortex
Thin brushwood up to 2 cm
2.78
2 757
992.52
923.04
69.48
Thick brushwood 2-4 cm
2.98
2 948
1 061.28
976.93
84.95
Small branches 4-7 cm
3.35
3 314
1 193.04
1 085.67
107.37
Medium wood 7-20 cm
9.97
9 875
3 555.00
3 235.05
319.95
Large wood over 20 cm
8.50
8 417
3 030.12
2 757.41
272.71
Tab. 3. Quantitative mass proportion of each timber assortment group in tree stand “C”
Assortment mass [kg/ha]
Volume
[m3]
fresh wood
dry wood
wood
cortex
Thin brushwood up to 2 cm
6.44
6 379
2 296.44
2 135.69
160.75
Thick brushwood 2-4 cm
7.30
7 229
2 602.44
2 394.24
208.20
Assortment
Small branches 4-7 cm
7.61
7 531
2 711.16
2 467.16
244.00
Medium wood 7-20 cm
32.19
31 870
11 473.20
10 440.61
1032.59
Large wood over 20 cm
24.79
24 549
8 837.64
8 042.25
795.39
With the increase in time of trees diameter in the stand, the percentage share of
wood and cortex dry mass of brushwood and branches decreases, while the medium and
large wood increases (Table 4). In Tables 5-7 the contents of the chemical elements in
chosen dimensional timber assortments for wood and cortex are shown. In all investigated dimensions of timber assortments in all of the investigated stands, the chemical
elements contained in the wood and cortex arranged in the following descending series:
– for wood: Ca>Mg>N>K>Si>Mn>P>Fe>S>Cl>Na,
– for cortex: K>Ca>N>Mn>S>Mg>Na>P>Fe>Cl>Si.
The estimated share of mineral compounds in chosen timber assortment in the case of
wood and cortex is shown in Table 8
Tab. 4. Percentage of each timber assortment dry mass divided into wood and cortex depending on tree stand
age
Element
Thin brushwood up to
2 cm
Thick brushwood 2-4 cm
Small branches
4-7 cm
Medium wood
7-20 cm
Large wood
over 20 cm
wood
cortex
wood
cortex
wood
cortex
wood
cortex
wood
cortex
A
16.22
1.22
10.65
0.93
21.25
2.10
43.34
4.29
–
–
B
9.39
0.71
9.94
0.86
11.04
1.09
32.90
3.25
28.05
2.77
C
7.64
0.58
8.58
0.75
8.84
0.87
37.39
3.70
28.80
2.85
90
Mostefa Mana, Krzysztof Janku
Tab. 5. Proportion of chemical elements in the wood and cortex of tree stand “A” [kg/ha]
Element
Thin brush-wood up
to 2 cm
Thick brush-wood
2-4 cm
Small branches
4-7 cm
Medium wood
7-20 cm
wood
cortex
wood
cortex
wood
cortex
wood
cortex
N
0.432
0.197
0.283
0.150
0.565
0.339
1.153
0.692
P
0.045
0.015
0.029
0.011
0.058
0.025
0.119
0.051
K
0.253
0.093
0.166
0.071
0.331
0.160
0.676
0.326
Ca
2.247
0.629
1.475
0.478
2.943
1.084
6.003
2.210
Cl
0.027
0.000
0.018
0.000
0.035
0.000
0.072
0.001
Si
0.057
0.026
0.037
0.020
0.074
0.045
0.151
0.092
Fe
0.045
0.011
0.029
0.008
0.058
0.019
0.119
0.038
Mn
0.050
0.009
0.033
0.007
0.065
0.015
0.133
0.030
Mg
0.466
0.022
0.306
0.016
0.610
0.037
1.244
0.075
Na
0.012
0.003
0.008
0.002
0.016
0.005
0.032
0.011
S
0.043
0.012
0.028
0.009
0.057
0.021
0.115
0.043
Tab. 6. Proportion of chemical elements in the wood and cortex of tree stand “B” [kg/ha]
Element
Thin brushwood up to 2 cm
Thick brushwood 2-4 cm
Small branches
4-7 cm
Medium wood
7-20 cm
Large wood over
20 cm
wood
cortex
wood
cortex
wood
cortex
wood
cortex
wood
cortex
N
1.338
0.611
1.417
0.748
1.574
0.945
4.691
2.816
3.998
2.400
P
0.138
0.045
0.147
0.055
0.163
0.070
0.485
0.208
0.414
0.177
K
0.785
0.288
0.830
0.353
0.923
0.446
2.750
1.328
2.344
1.132
Ca
6.969
1.952
7.376
2.387
8.197
3.017
24.425
8.991
20.818
7.663
Cl
0.083
0.001
0.088
0.001
0.098
0.001
0.291
0.003
0.248
0.003
Si
0.175
0.081
0.186
0.099
0.206
0.126
0.615
0.374
0.524
0.319
Fe
0.138
0.034
0.147
0.042
0.163
0.053
0.485
0.156
0.414
0.133
Mn
0.154
0.027
0.163
0.033
0.181
0.042
0.540
0.124
0.460
0.106
Mg
1.445
0.067
1.529
0.082
1.699
0.103
5.063
0.307
4.315
0.262
Na
0.037
0.010
0.039
0.012
0.043
0.015
0.129
0.045
0.110
0.038
S
0.134
0.038
0.142
0.047
0.157
0.059
0.469
0.176
0.400
0.150
Discussion
The distribution of the dry mass of timber assortments showed the highest share in
dry wood mass taken from medium wood despite similar mass values to timber assortments in the range of 0-7 cm in diameter (Fig. 1).
91
Loss of elements in beech stands caused by forest operations.
Tab. 7. Proportion of chemical elements in the wood and cortex of tree stand “C” [kg/ha]
Element
Thin brush- wood Thick brush- wood
up to 2 cm
2-4 cm
wood
cortex
wood
cortex
Small branches
4-7 cm
Medium wood
7-20 cm
Large wood over
20 cm
wood
wood
wood
cortex
cortex
cortex
N
3.097
1.415
3.472
1.832
3.577
2.147
15.139
9.087
11.661
6.999
P
0.320
0.104
0.359
0.135
0.370
0.159
1.566
0.671
1.206
0.517
K
1.815
0.667
2.035
0.864
2.097
1.013
8.875
4.285
6.836
3.301
Ca
16.124
4.517
18.077
5.850
18.627
6.856
78.827
29.016
60.719
22.350
Cl
0.192
0.002
0.215
0.002
0.222
0.002
0.940
0.010
0.724
0.008
Si
0.406
0.188
0.455
0.244
0.469
0.285
1.984
1.208
1.528
0.931
Fe
0.320
0.079
0.359
0.102
0.370
0.119
1.566
0.505
1.206
0.389
Mn
0.357
0.062
0.400
0.081
0.412
0.094
1.744
0.400
1.343
0.308
Mg
3.342
0.154
3.747
0.200
3.861
0.234
16.340
0.991
12.586
0.764
Na
0.085
0.023
0.096
0.029
0.099
0.034
0.418
0.145
0.322
0.111
S
0.310
0.088
0.347
0.115
0.358
0.134
1.514
0.568
1.166
0.437
Fig. 1. Quantitative proportion of dry wood mass in timber assortments
The percentage share of the chosen chemical elements (for wood and cortex – Fig. 2)
in all timber assortments with a diameter up to 7cm, showed high levels of biogenic
elements, especially in the case of the young forest stands.
The investigation showed that in order to avoid mineral compound loss in the habitat, branches up to 7 cm in diameter should be left in the forest after forest operations.
The high share of mineral compounds contained in brushwood and branches (Table 8)
was 52% of the total mineral content in area A. On the contrary, this quantity is not
represented by basic mineral compounds and their share reaches 33% in area B and 30%
in area C of brushwood mass.
This refers to the problem of the improper use of forests, already well-known for
many years and mentioned by many authors Gornowicz (1988).
92
Mostefa Mana, Krzysztof Janku
Fig. 2. Percentage of chosen elements in total dry mass in areas A, B and C
Tab. 8. Percentage of chemical elements in each timber assortment divided into wood and cortex
Element
Thin brushwood up to 2 cm
wood
Thick brushwood 2-4 cm
cortex
wood
cortex
Small branches
4-7 cm
Medium wood
7-20 cm
wood
wood
cortex
cortex
Large wood over
20 cm
wood
cortex
A
13.21
3.65
8.67
2.77
17.30
6.29
35.28
12.83
–
–
B
7.38
2.29
7.81
2.80
8.68
3.54
25.87
10.56
22.05
9.00
C
6.76
1.87
7.58
2.42
7.81
2.84
28.36
11.58
21.85
8.92
Conclusion
It was proven that the significant losses of elements as result of branch and wood
removal from forest stands differs, depending on stand age; and wood and bark differ in
the percentage share of elements.
The research showed that the highest losses of mineral substances, especially in
young stands, are caused by brushwood removal with harvested timber. According to the
results, it is necessary to use technologies of forest operations which leave the highest
possible mass of brushwood and branches up to 7 cm in diameter on the operated area.
From an ecological standpoint, leaving brushwood in the forest is very beneficial for
the soil, as the abundance of elements enrich the upper layer in organic substances.
References
Demnaeyer-de Smet S. (1968): Quelque donnees sur les teneurs en K et Ca des seves xylemiques des racines,
trances I branches des essences forestieres en fin de repos hivernal, Bull.Soc.Bot.Belg. 101(1):155-176.
Demnaeyer-de Smet S.(1973):Comparaison du cycle biologique annuel de divers oligoelement dans une pessiers (Piceetum) et dans une hetraie (fagetium) etablies sur meme roches – mere.Bull.Soc.Roy.Bot.Belg.
106(1):149-165.
Loss of elements in beech stands caused by forest operations.
93
Demnaeyer-de Smet S. (1974): Cycle biologique annuel et distribution du plomb dans une pessiere (Piceetum)
et une hetraie (fagetium) etablies sur meme roches – mere.Bull.Soc.Roy.Bot.Belg. 107:115-125.
Fober H. (1990): Mineral feeding. Common Beech - Fagus sylvatica L. Our Forest Trees. Monografie Popularnonaukowe. Poznań: 144-145.
Gauman E. (1935): Der Stoffhausshalt der Buche (fagus sylvatica L.) im Laufe eines Jahres. Schweiz. Bot.
Gesell. Ber. 44:157-334.
Giefing D. F. (1990): The impact of technology harvest and transportation of timber during improvement cutting for the loss and technical quality of the remaining pine stands. CPBP Warszawa 24:77-85.
Gornowicz R. (1988): Czy pozyskując zrembki zielone zubożamy środowisko. Las Polski. Poznań 9:19.
Janiczek M. and Bobrowicz E. (1952): Humidity of fresh beech wood of Pomerania and Carpatia. PWRiL.
Warszawa 78:1-44.
Kamiński E. (1988): Forest exploitation in environmental protection. Sylwan 10:1-8.
Kubiak M. and Laurów Z. (1994) Surowiec drzewny. Fundacja Rozwoju SGGW. Warszawa. ISBN
8386241330
Kramar A., Zakutna L., Ebringerva A. (1977): Anatomicka struktura chemicke zlozenia bukovej kory. Papier
a Celuloza 11:57-62, 66.
Kubiak and Grodecki (1980): Opracowanie procesu technologicznego i zestawu maszyn do pozyskania małowymiarowego drewna bukowego dla przemysłu celulozowo-papierniczego. Poznań: 130.
Mayer R., Heinrichs H. (1981): Gehalte von Baumwurzeln an chemicschen Elementen einschliesslich Schwermetllen aus Luftverunreinigungen. Zeischrift fur Pflanzenernahrung Und Bodenkunde 144(6):637-646.
Najdenov M., Rafailov G. (1979): Nedestructiven neutronno-aktivizzacionen analiz (NAA) na rastitelni organi na gors kod rvesni vidove. Naucni Trudove, Vyssij Lesotachniceskij Institut, Sofija (Gorsko Stopanstvo) 24:61-68.
Rendos F. 1964. Studium dusikatychlatok dreva I.Zmena obsahu dusika v dreva pocas rocneho obdobia. Drev.
Vyskun (2):57-61.
Ubytek pierwiastków w drzewostanach bukowych
w wyniku pozyskania drewna
Streszczenie
Wraz z pozyskiwanym surowcem z lasu wywożone są określone ilości pierwiastków biogennych. Do tej pory zagadnienie to było w niewielkim stopniu rozpoznane w drzewostanach bukowych. Badania takie prowadzone były szerszej dla innych gatunków lasotwórczych, w szczególności sosny. Nasunęło to myśl przeprowadzenia badań w drzewostanach bukowych. Badaniami
poruszającymi kwestie budowy drewna i kory buka zajmował się Gumann [1935], odnosiły się
one do proweniencji obszarów górskich w Szwajcarii. Chcąc rozpoznać wpływ gospodarki leśnej
na środowisko leśne w odniesieniu do drzewostanów bukowych – ich zasobność w makro- i mikroelementy – zasadne jest określenie stopnia przemieszczania i ubytku obecnych w nich pierwiastków w procesach pozyskiwania surowca drzewnego. Badania zapoczątkowane przez Gumanna, zostały ujęte w monografii Instytutu Dendrologii w Kórniku dotyczącej buka zwyczajnego.
W Polsce podobne badania prowadzone były dla sosny zwyczajnej przez M. Kubiaka wraz z zespołem [1990]. Na problem przemieszczania pierwiastków zwrócił uwagę już w 1988 r. Kamiński. Prace dotyczące tego problemu nie dotyczyły jednak buczyn.
Znaczenie tego gatunku jest łatwo zauważalne (stanowi on około6,5% zasobów drewna na
pniu w odniesieniu do wszystkich gatunków), a wśród liściastych stawia się go obok dębu, co
argumentuje potrzebę przeprowadzenia badań wpływu pozyskiwania drewna bukowego na środowisko pod względem przemieszczania pierwiastków zawartych w jego drewnie i korze.
94
Mostefa Mana, Krzysztof Janku
We wszystkich sortymentach poddanych ocenie zawartości wybranych makro- i mikroelementów
pod względem zawartości poszczególnych pierwiastków jest zgodny z poniższym schematem:
– dla drewna: Ca>Mg>N>K>Si>Mn>P>Fe>S>Cl>Na,
– dla kory: K>Ca>N>Mn>S>Mg>Na>P>Fe>Cl>Si.
Procentowy udział wybranych pierwiastków dla drewna i kory zwraca uwagę wśród badanych
sortymentów ze względu na ich istotnie wysoką zawartość w sortymentach od 0 do 7 cm. Wskazuje to na potrzebę pozostawiania w formie rozdrobnionej. Przedstawione dane dowodzą, iż celowe jest pozostawianie w lesie drobnicy gałęzio­wej, w szczególności w drzewostanach młodszych.
Świadczy o tym duży udział skład­ników mineralnych zawartych w drobnicy (chrust cienki, chrust
gruby, drobnica gałęziowa).
Adres do korespondencji – Coresponding address:
M. Mana
[email protected]
K. Janku
[email protected]
Institute for Agricultural and Forest Environment,
Polish Academy of Science, Poznań, Poland

Podobne dokumenty