Bankowość i metody statystyczne w biznesie - zadania i

Transkrypt

Bankowość i metody statystyczne w biznesie - zadania i
Wydział Matematyki Uniwersytetu Łódzkiego
w Łodzi
Dariusz Wardowski
Katedra Analizy Nieliniowej
Bankowość i metody statystyczne
w biznesie - zadania i przykłady
Łódź 2006
Rozdział 1
Oprocentowanie lokaty
1.1
Kapitalizacja prosta zgodna
W przypadku kapitalizcji prostej oprocentowaniu podlega tylko kapitał początkowy. Załóżmy, że okres stopy procentowej r pokrywa się z okresem kapitalizacji. Oznaczmy przez
K0 wartość początkową kapitału. Niech Pn , n ∈ N oznacza przyszłą wartość kapitału K0
po n okresach kapitalizacji, Zn - odsetki przypadające za n-ty okres. Załóżmy, że odsetki
dopisywane są z dołu, czyli na koniec okresu kapitalizacji, kapitalizacje taką nazywamy
kapitalizacją z dołu (Jeżeli odsetki dopisywane są na początku okresu kapitalizacji to
mówimy o kapitalizacji z góry). Zachodzą wzory
Pn = K0 (1 + nr)
n
X
Zi = K0 nr
i=1
Przykład. 1.1.1 Po podwyżce o 5% cena samochodu wynosi 30jp. Ile kosztował samochód przed podwyżką i o ile wzrosła jego cena?
Oznaczmy przez P0 starą cenę samochodu. Podwyżkę potraktujemy jako dopisanie
odsetek za dany okres. Aby wyznaczyć P0 należy zdyskontować kwotę 30jp na 1 okres.
Zatem
30
= 28, 5714 jp
P0 =
1 + 0, 05
Stąd mamy, że cena samochodu wzrosła o:
30 − 28, 5714 = 1, 4286 jp.
Zad. 1.1.1 Jaka kwota utworzy po czterech latach kapitał o wartości 400 jp w modelu
kapitalizacji prostej, jeżeli roczna stopa procentowa wynosi 15%?
Zad. 1.1.2 Za osiem miesięcy otrzymamy nagrodę w wysokości 1000 jp. Kwota ta zdyskontowana na dwa miesiące według modelu miesięcznej kapitalizacji prostej daje wartość
900 jp. Jaka jest teraźniejsza wartość nagrody?
Zad. 1.1.3 Hurtownia udziela nabywcom towarów kredytu kupieckiego w postaci odroczonego o miesiąc terminu płatności faktury. Jeżeli zapłata nastąpi natychmiast, to
1
nabywcy towaru przysługuje prawo skorzystania ze skonta 10%. Wartość zakupionego towaru wynosi 12 tys. jp. Czy opłaca się zaciągnąć kredyt bankowy i skorzystać ze skonta,
jeżeli miesięczna stopa kredytu bankowego wynosi 4%?
Zad. 1.1.4 Wyznaczyć wartość kwoty Pn po następnych k okresach kapitalizacji ze stopą
procentową r w modelu kapitalizacji prostej zgodnej.
Zad. 1.1.5 Zdyskontować wartość kwoty Pn na k okresów kapitalizacji. Stopa procentowa
wynosi r, kapitalizacja jest prosta zgodna.
1.2
Kapitalizacja złożona z dołu zgodna
W modelu kapitalizacji złożonej oprocentowaniu podlega kapitał początkowy oraz zgromadzone do tej pory odsetki. Zgodność kapitalizacji polega na tym, że okres stopy procentowej r pokrywa sie z okresem kapitalizacji. Kapitalizacja z dołu oznacza, że odsetki
dopisywane są do kapitału na koniec okresów kapitalizacji. Niech Wn oznacza przyszłą
wartość kapitału K0 po n okresach kapitalizacji. Zn niech oznacza odsetki przypadające
z n-ty okres. Zachodzą wzory
Zn+1 = Kn r, n = 0, 1, . . .
Kn = K0 (1 + r)n , n = 0, 1, . . . ,
n
X
Zi = K0 [(1 + r)n − 1].
i=1
Przykład. 1.2.1 Ustalić stan książeczki po 10 latach, jeżeli dokonano w niej nastepujących operacji:
- na początku wpłacono 10jp,
- po pięciu latach wpłacaono 20jp,
- po nastepnym roku wypłacono 40jp.
Bank stosuje kapitalizację złożoną roczną przy rocznej stopie procentowej 15%.
Poszczególne operacje bankowe można dokonywać umownie na różnych książeczkach
zakładanych w odpowiednich momentach czasu. Końcowy stan oszczędności to suma (ze
znakiem ”+” - wpłata, ze znakiem minus ”-” wypłata) tych książęczek. Dodajemy zatem
przyszłe wartości poszczególnych kwot z uwzględnieniem ich znaków. Mamy zatem trzy
książeczki zakładane w momentach: 0, 5 i 6. Mamy
KI = 10(1 + 0, 15)10 = 40, 4556 jp,
KII = 20(1 + 0, 15)5 = 40, 22714 jp,
KIII = 40(1 + 0, 15)4 = 69, 9603 jp.
Stąd stan oszczędności po dziesięciu latach wynosi
KI + KII − KIII = 10, 7225 jp.
2
Zad. 1.2.1 Przy jakiej rocznej stopie procentowej i kapitalizacji rocznej złożonej z dołu
dany kapitał podwoi swoją wartość po pięciu latach?
Zad. 1.2.2 Rodzeństwo w wieku 8 i 10 lat otrzymało w spadku kwotę 500 tys. jp, złożoną
w banku, który stosuje kapitalizację roczną z dołu przy rocznej stopie procentowej 20%.
Życzeniem spadkodawcy było takie podzielenie spadku, aby w momencie osiągnięcia przez
dzieci 21 lat wartości przyszłe części spadku każdego dziecka były takie same. Jak należy
podzielić spadek?
Zad. 1.2.3 Obliczyć dochód banku uzyskany w ciągu 5 lat, który przyjął w depozyt
kwotę 10 tys. zł według rocznej stopy procentowej 15% i wypożyczył tę kwotę według
rocznej stopy procentowej 20%. Bank stosuje kapitalizację roczną złożoną z dołu.
Zad. 1.2.4 Ustalić stan książeczki po 15 latach, jeżeli dokonano w niej następujących
operacji: na początku wpłacono 20 jp, po siedmiu latach wypłacono 20 jp, a po następnych
dwóch latach wpłacono 20jp. Bank stosuje kapitalizację złożoną roczną z dołu przy rocznej
stopie procentowej 12%.
Zad. 1.2.5 Wyznaczyć przyszłą wartość kwoty Kn po k okresach kapitalizacji. Kapitalizacja jest złożona z dołu zgodna, stopa procentowa wynosi r.
Zad. 1.2.6 Zdyskontować kwotę Kn na k okresów. Kapitalizacja jest złożona z dołu
zgodna, stopa procentowa wynosi r.
1.3
Kapitalizacja złożona z góry zgodna
W modelu kapitalizacji złożonej oprocentowaniu podlega kapitał początkowy oraz zgromadzone do tej pory odsetki. Zgodność kapitalizacji polega na tym, że okres stopy procentowej r pokrywa sie z okresem kapitalizacji. Kapitalizacja z góry oznacza, że odsetki
dopisywane są do kapitału na początku okresów kapitalizacji. Niech Kn oznacza przyszłą
wartość kapitału K0 po n okresach kapitalizacji. Zn niech oznacza odsetki przypadające
z n-ty okres. Zachodzą wzory
Wn = K0 (1 − r)−n , n = 1, 2, . . . ,
n
X
Zi = K0 [(1 − r)−n − 1].
i=1
Przykład. 1.3.1 Ile wynosi roczna stopa procentowa, jeżeli przy rocznej kapitalizacji
złożonej z góry z kapitału 5 jp uzyskano po jednym roku wartość 8 jp?
Mamy K0 = 5, W1 = 8. Zachodzi równość
W1 = K0 (1 − r)−1
Stąd
8 = 5(1 − r)−1 ,
czyli r = 0, 09.
3
Zad. 1.3.1 Ile wynosi roczna stopa procentowa, jeżeli przy rocznej kapitalizacji złożonej
z góry odsetki za drugi rok od kwoty początkowej K0 = 20 jp wynoszą 2, 2 jp?
Zad. 1.3.2 Wyznaczyć przyszłą wartość kwoty Wn po k okresach kapitalizacji. Kapitalizacja jest złożona z góry zgodna, stopa procentowa wynosi r.
Zad. 1.3.3 Zaktualizuj kwotę Wn na k okresów wstecz. Kapitalizacja jest złożona z góry
zgodna, stopa procentowa wynosi r. Jaką wartość dostaniemy po zdyskontowaniu kwoty
Wn na n okresów?
Zad. 1.3.4 W pewnym banku obowiązuje roczna kapitalizacja złożona z dołu przy rocznej stopie procentowej 12%. Jak należy zmienić stopę procentową aby po przejściu na
kapitalizację złożoną z góry roczną otrzymać równoważność warunków oprocentowania
dla pięciu lat. Czy nowe warunki oprocentowania będą równoważne dla dziesięciu lat?
Zad. 1.3.5 W banku w którym obowiązuje roczna kapitalizacja złożona z dołu kapitał
5jp utworzył po roku kapitał 6jp. Ile zyskałby właściciel kapitału (albo stracił) gdyby przy
niezmienionej rocznej stopie procentowej wprowadzono kapitalizację złożoną z góry.
1.4
Kapitalizacja niezgodna
Kapitalizacja jest niezgodna, jeżeli okres stopy procentowej r nie pokrywa się z okresem kapitalizacji. Jeżeli okres stopy procentowej jest całkowitą wielokrotnością okresu
kapitalizacji, to kapitalizację nazywamy kapitalizacją w podokresach, jeżeli natomiast
okres kapitalizacji jest całkowitą wielokrotnością okresu stopy procentowej, to kapitalizację nazywamy kapitalizacją w nadokresach. Oznaczmy przez m stosunek okresu stopy
procentowej do okresu kapitalizacji, r - roczna stopa procentowa. W zależności od wartości
m kapitalizację nazywamy:
- roczną, gdy m = 1,
- półroczną, gdy m = 2,
- kwartalną, gdy m = 4,
- miesięczną, gdy m = 12,
- tygodniową, gdy m = 52,
- dobową, gdy m = 360,
- godzinną, gdy m = 0, 5,
- czteroletnią, gdy m = 0, 25.
W kapitalizacji niezgodnej, odsetki obliczane są za pomocą względnej stopy procentowej postaci
r
r=
m
Oznaczmy przez k ilość okresów kapitalizacji. Wzory dla przyszłej wartości kapitału K0
w kapitalizacji niezgodnej po k okresach kapitalizacji są postaci:
4
- Kapitalizacja prosta
r
, k = 0, 1, . . .
m
r k
, k = 0, 1, . . .
m
r −k
, k = 0, 1, . . .
m
Pk/m = K0 1 + k
- Kapitalizacja złożona z dołu
Kk/m = K0 1 +
- Kapitalizacja złożona z góry
Wk/m = K0 1 −
Przykład. 1.4.1 Kapitał o wartości 1 jp został oprocentowany według rocznej stopy
procentowej 12%. Ustalić jego przyszłą wartość po 4 latach przy róznych okresach kapitalizacji złożonej z dołu.
Dla poszczególnych okresów kapitalizacji złozonej z dołu otrzymujemy:
- kapitalizacja dwuletnia
0, 12 2
= 1, 5376 jp
0, 5
0, 12 4
= 1, 5735 jp
0, 5
K2/0,5 = 1 +
- kapitalizacja roczna
K2/0,5 = 1 +
- kapitalizacja kwartalna
0, 12 16
= 1, 6047 jp
4
0, 12 208
= 1, 61521 jp.
52
K16/4 = 1 +
- kapitalizacja tygodniowa
K208/52 = 1 +
Zad. 1.4.1 Bank stosuje następujące roczne stopy procentowe dla lokat procentowych
Czas lokaty w miesiącach
3
6
12
Roczna stopa procentowa
15 %
17 %
18 %
Odsetki dopisywane są do kapitału po deklarowanym okresie trwania lokaty. Nie podjęcie
kapitału po okresie deklarowanym jest równoważne jego wpłacie na następny taki sam
okres. Wybrać najlepszy wariant ulokowania 100jp na dwa lata. Jaką stratę poniósłby
właściciel kapitału przy wyborze wariantu najgorszego?
5
Zad. 1.4.2 Kapitał o wartości 1 jp został oprocentowany według rocznej stopy procentowej 12%. Ustalić jego przyszłą wartość po 4 latach przy różnych okresach kapitalizacji
prostej.
Zad. 1.4.3 Bank A dopisuje odsetki na koniec trwania lokaty wg rocznej stopy procentowej 9%. W banku B obowiązuje kapitalizacja kwartalna z dołu przy rocznej stopie 8%.
W którym banku korzystne jest ulokowanie pieniędzy na trzy lata. Czy odpowiedź zależy
od liczby lat trwania lokaty?
Zad. 1.4.4 Kapitał 1 jp został oprocentowany na 12% w stosunku rocznym. Ustalić jego
przyszłą wartość po 4 latach przy różnych okresach kapitalizacji złożonej z dołu.
Zad. 1.4.5 Kapitał 1 jp został oprocentowany na 12% w stosunku rocznym. Ustalić jego
przyszłą wartość po 4 latach przy różnych okresach kapitalizacji złożonej z góry.
Zad. 1.4.6 Do banku wpłacono 20jp. Przez pierwsze trzy lata obowiązywała półroczna
kapitalizacja złożona z dołu z roczną stopą 12%, przez następne dwa lata obowiązywała
kwartalna kapitalizacja złożona z góry z roczną stopą procentową 9%. Przez następny rok
obowiązywała miesięczna kapitalizacja złożona z dołu przy rocznej stopie procentowej 7%.
Zad. 1.4.7 Ile wynosi roczna stopa procentowa, jeżeli przy kwartalnej kapitalizacji z dołu
odsetki za drugi kwartał od kwoty początkowej 20jp wyniosły 2, 2jp?
Zad. 1.4.8 Wyznaczyć przyszłą wartość kwoty K0 = 100 jp po 13 miesiącach, jeżeli
roczna stopa procentowa wynosi 12% i kapitalizacja jest roczna złożona z dołu.
Zad. 1.4.9 Wyznaczyć przyszłą wartość 100 zł po 1 roku i 8 dniach, jeżeli roczna stopa
procentowa wynosi 20% i kapitalizacja jest kwartalna złożona z dołu.
Zad. 1.4.10 Wyznaczyć przyszłą wartość 500 jp po 2 latach, jeżeli bank stosuje roczną
kapitalizację złożoną z dołu przy rocznej stopie procentowej 16%. Zamienić kapitalizację
na dwuletnią, półroczną.
Zad. 1.4.11 Wyznaczyć przyszłą wartość 1 jp po 15 miesiącach, jeżeli w banku obowiązuje kapitalizacja miesięczna przy rocznej stopie procentowej 18%. Zadanie rozwiązać
wykorzystując względną stopę procentową, roczną stopę efektywną, piętnastomiesieczną
stopę efektywną.
Zad. 1.4.12 (metoda liczb procentowych) Niech r oznacza roczną stopę procentową. Przyszła wartość kwoty K0 po t dniach w oprocentowaniu prostym jest równa:
Kt = K0 (1 + t
r
),
360
natomiast odsetki za ten okres wynoszą
Z t = K0 t
r
.
360
Czynnik K0 t nazywa się liczbą procentową, natomiast 360/r nazywamy dzielnikiem
procentowym. Załóżmy, że na rachunku bankowym dokonano N operacji bankowych,
6
wpłat i wypłat, wysokość kwoty w i-tej operacji oznaczmy przez Si . Wpłaty poprzedzamy
znakiem ”+”, wypłaty znakiem ”-”. Niech ti oznacza liczbę dni, które upłynęły między
dniem dokonania i-tej operacji a dniem rozliczenia t. Przy podanych oznaczeniach wartość
konta bankowego w dniu t jest równa:
Kt =
N
X
Si +
i=1
N
r X
Si ti .
360 i=1
P
Sumę L = i=1 N Si ti nazywamy sumaryczną liczbą procentową.
Na rachunku bankowym dokonano następujących operacji:
1. 1.01.1996 - wpłata 560 zł,
2. 15.02.1996 - wpłata 140 zł,
3. 1.03.1996 - wypłata 500 zł.
Jaką maksymalną kwotę można pobrać z tego rachunku w dniu 30.05.1996r, jeżeli roczna
stopa procentowa wynosi 12%? Rozwiązać zadanie stosując metodę liczb procentowych.
1.4.1
Efektywna i równoważna stopa procentowa
Przy ustalonej stopie procentowej przyszła wartość kapitału zależy od modelu kapitalizacji
oraz od częstości dopisywania odsetek. Czasami zachodzi potrzeba zmiany okresu kapitalizacji z równoczesnym zachowaniem efektu kapitalizacji. Wygodnie jest też zamienić
kapitalizację niezgodną na zgodną. Uzgadnianie kapitalizacji polega albo na podwyższeniu
stopy procentowej, albo na jej obniżeniu. Do tego służą dla kapitalizacji złożonej z dołu
odpowiednio efektywna i równoważna stopa procentowa, określone wzorami
ref = 1 +
r m
−1
m
1
rr = (1 + r) m − 1
Dla kapitalizacji złożonej z góry mamy odpowiednio
ref = 1 − 1 −
r m
m
1
rr = 1 − (1 − r) m .
Stopy efektywne i stopy równoważne pozwalają na zmianę bez naruszenia efektu oprocentowania kapitalizacji niezgodnych kapitalizacjami zgodnymi. Do tego służą następujące
wzory:
Kn = K0 (1 + rr )nm ,
k
Kk/m = K0 (1 + ref ) m ,
Wn = K0 (1 − rr )−nm ,
k
Wk/m = K0 (1 − ref ) m .
Powyższe wzory dają możliwość wyznaczenia przyszłej wartości kapitału po niepełnej
ilości okresów kapitalizacji. Niech r oznacza względną stopę procentową dostosowaną do
7
okresu kapitalizacji. Rzeczywisty czas oprocentowania t dzielimy na k równych części, tak
aby okres kapitalizacji był całkowita wielokrotnością m takich części. Przyszłą wartość
kapitału K0 po czasie t obliczamy stosując wzory:
k
Kt = K0 (1 + r) m
k
Wt = K0 (1 − r)− m
Przykład. 1.4.2 Wyznaczyć przyszłą wartość 500 jp po 2 latach, jeżeli bank stosuje
roczną kapitalizację złożoną z dołu przy rocznej stopie procentowej 16%.
Zadanie to rozwiążemy na różne sposoby:
- Stosując nominalną roczną stopę procentową, mamy
K2 = K0 (1 + r)2 = 500(1 + 0, 16)2 = 672, 8 jp.
- Stosując dwuletnią stopę efektywną:
ref = 1 +
0, 32 2
− 1 = 0, 3456
2
K1 = K0 (1 + ref )1 = 500 · 1, 3456 = 672, 8 jp.
- Za pomocą półrocznej stopy równoważnej:
1
rr = (1 + 0, 16) 2 − 1 = 0, 077,
K4/2 = K0 (1 + rr )4 = 500 · 1, 0774 = 672, 8 jp.
Przykład. 1.4.3 Wyznaczyć przyszłą wartość 50 jp po roku i 7 dniach, jeśli roczna stopa
procentowa wynsoi 10% i kapitalizacja jest kwartalna złożona z dołu.
Wyznaczymy dzienną, równoważną stopę procentową:
1
rr = (1 + r) m − 1 = 1 +
0, 10 901
− 1 = 0, 0002744
4
Stąd
K367 = 50(1 + rr )367 = 55, 297 jp.
Zad. 1.4.13 Wyznaczyć przyszłą wartość kwoty K0 = 100jp po 13 miesiącach, jeżeli
roczna stopa procentowa wynosi 12% i kapitalizacja jest roczna złożona z dołu.
Zad. 1.4.14 Wyznacz przyszłą wartość kwoty K0 = 15jp po roku i 10 dniach jeśli bank
stosuje miesięczną stopę procentową 2% i kapitalizacja jest miesięczna złożona z góry
Zad. 1.4.15 Wyznacz przyszłą wartość 50jp po roku i 8 dniach jeśli roczna stopa procentowa wynosi 10% i kapitalizacja jest kwartalna złożona z dołu.
Zad. 1.4.16 Wyznaczyć przyszłą wartość 500jp po 2 latach, jeśli bank stosuje roczną
kapitalizację złożoną z dołu przy rocznej stopie procentowej 16%. Rozwiązać zadanie
stosując różne okresy kapitalizacji tak aby otrzymać tą samą wartość przyszłą.
8
Zad. 1.4.17 Wyznaczyć przyszłą wartość 200jp po 15 miesiącach jeśli w banku obowiązuje kapitalizacja półroczna złożona z dołu przy rocznej stopie procentowej 2%.
Zad. 1.4.18 Wyznaczyć przyszłą wartość 100jp po 10 latach jeśli bank stosuje roczną
stopę procentową 2% i roczną kapitalizację złożoną z dołu. Zamienić z równoważnym
efektem oprocentowania kapitalizację roczną na kapitalizacje: 2-letnią, 5-letnią, półroczną
i miesięczną.
Zad. 1.4.19 Wyznaczyć przyszłą wartość 100jp po 10 latach jeśli bank stosuje półroczną
stopę procentową 2% i roczną kapitalizcję złożoną z dołu. Zamienić kapitalizację na inne
równoważne.
Zad. 1.4.20 Wyznaczyć przyszłą wartość 1jp po 15 miesiącach, jeżeli w banku obowiązuje kapitalizacja miesięczna złożona z góry przy rocznej stopie 20%. Rozważyć lokaty:
miesięczna, 15-miesięczna, 5-miesięczna, tygodniowa, dniowa.
Zad. 1.4.21 Wyznaczyć wartość 100jp po 13 miesiącach, jeśli bank stosuje roczną kapitalizację złożoną z dołu i roczną stopę procentową 5%.
Zad. 1.4.22 Wyznaczyć przyszłą wartość 500jp po 4 latach, jeśli bank stosuje roczną kapitalizację złożoną z dołu przy rocznej stopie procentowej 16%. Zamienić z równoważnym
efektem oprocentowania kapitalizację roczną na kapitalizację: 4-letnią, 2-letnią, półroczną.
Zad. 1.4.23 Wyznaczyć przyszłą wartość kwoty K0 = 100jp po 13 miesiącach, jeżeli
roczna stopa procentowa wynosi 12% i kapitalizacja jest roczna złożona z dołu. Rozwiązać
zadanie zamieniając kapitalizację na 13-miesięczną, miesięczną.
Zad. 1.4.24 Wyznacz przyszłą wartość kwoty K0 = 15jp po roku i 10 dniach jeśli bank
stosuje miesięczną stopę procentową 2% i kapitalizacja jest miesięczna złożona z góry
Zad. 1.4.25 Wyznaczyć wartość 50jp po 18 miesiącach, jeżeli bank stosuje kapitalizację
kwartalną z góry i półroczną stopę procentową r = 6%. Zamienić kapitalizację tak aby
otrzymać równoważność oprocentowania na kapitalizację:
1. 18-miesięczną,
2. półroczną,
3. kwartalną.
Zad. 1.4.26 Wyznacz przyszłą wartość 50jp po roku i 8 dniach jeśli roczna stopa procentowa wynosi 10% i kapitalizacja jest kwartalna złożona z dołu.
Zad. 1.4.27 Wyznacz przyszłą wartość 50jp po roku i 7 dniach jeśli roczna stopa procentowa wynosi 10% i kapitalizacja jest kwartalna złożona z dołu.
Zad. 1.4.28 Wyznaczyć przyszłą wartość 200jp po 15 miesiącach jeśli w banku obowiązuje kapitalizacja półroczna złożona z dołu przy rocznej stopie procentowej 2%. Zadanie
rozwiązać stosując stopy: 15-miesięczną, kwartalną, miesięczną, ponadto rozwiązać zadanie wyznaczając jednostkę podstawową.
9
Zad. 1.4.29 Wyznaczyć przyszłą wartość 100jp po 10 latach jeśli bank stosuje roczną
stopę procentową 2% i roczną kapitalizację złożoną z dołu. Zamienić z równoważnym
efektem oprocentowania kapitalizację roczną na kapitalizacje: 2-letnią, 5-letnią, półroczną
i miesięczną.
Zad. 1.4.30 Wyznaczyć przyszłą wartość 100jp po 10 latach jeśli bank stosuje półroczną
stopę procentową 2% i roczną kapitalizcję złożoną z dołu. Zamienić kapitalizację na inne
równoważne.
Zad. 1.4.31 Wyznaczyć przyszłą wartość 1jp po 15 miesiącach, jeżeli w banku obowiązuje kapitalizacja miesięczna złożona z góry przy rocznej stopie 20%. Rozważyć stopy
procentowe: miesięczną, 15-miesięczną, 5-miesięczną, tygodniową, dniową tak aby otrzymać równoważność warunków oprocentowania.
Zad. 1.4.32 Wyznaczyć wartość 100jp po 13 miesiącach, jeśli bank stosuje roczną kapitalizację złożoną z dołu i roczną stopę procentową 5%.
1.5
Kapitalizacja ciągła
Kapitalizacja ciągła to graniczny przypadek kapitalizacji złożonej w podokresach, gdy częstość dopisywania odsetek dązy do nieskończoności. Symbolem K(n) oznaczmy przyszłą
wartość kapitału K0 po n okresach stopy procentowej w kapitalizacji ciągłej. Zachodzi
wzór
K(n) = K0 enr , n = 1, 2, . . .
Powyższy wzór uogólnia się do postaci
K(t) = K0 etr , t > 0,
gdzie t oznacza czas oprocentowania mierzony okresem stopy procentowej r. Odsetki Zt
wyznaczone przez kapitał K0 w czasie [0,t] wynoszą
Zt = K0 (etr − 1).
Przykład. 1.5.1 Wyznaczyć przyszłą wartość 1 jp po czterech latach w modelu kapitalizacji ciągłej, jeżeli roczna stopa procentowa wynosi 12%.
Zad. 1.5.1 Wyznaczyć przyszłą wartość 10 jp po 6 latach w modelu kapitalizacji ciągłej,
jeżeli półroczna stopa procentowa wynosi 12%.
Zad. 1.5.2 Wyznaczyć wartość przyszłą kapitału K0 = 750 jp po 13 latach, 7 miesiącach
i 15 minutach, gdy okresem stopy procentowej r = 0, 0015 jest kwartał. Kapitalizacja jest
ciągła.
Zad. 1.5.3 W banku obowiązuje kapitalizacja złożona z dołu przy rocznej stopie procentowej r = 12%. Jak należy zmienić roczną stopę procentową aby po przejściu na kapitalizację ciągłą otrzymać równoważność warunków oprocentowania dla 5 lat. Czy nowe
warunki oprocentowania będą równoważne dla 10 lat?
Zad. 1.5.4 Jaka jest roczna stopa procentowa, jeżeli przy kapitalizacji ciągłej z kapitału
3 jp uzyskano po 15 miesiącach wartość 5 jp?
10
Bibliografia
[1] E. Smaga, Arytmetyka finansowa, Wydawnictwo Naukowe PWN, Warszawa-Kraków
2000.
[2] A. Kaźmierczak, Polityka pieniądza w gospodarce rynkowej, Wydawnictwo Naukowe
PWN, Warszawa 2003.
[3] Z. Dobosiewicz, Bankowość, Polskie Wydawnictwo Ekonomiczne, 2002
11

Podobne dokumenty