Chemical markers of varietal unifloral honeys

Transkrypt

Chemical markers of varietal unifloral honeys
50 Years of Chemistry in Opole
Chemical markers of varietal unifloral honeys
Izabela JASICKA-MISIAK*, Paweł KAFARSKI – Divistion of Analytical and Ecological Chemistry, Faculty
of Chemistry, Opole University, Opole, Poland
Please cite as: CHEMIK 2014, 68, 4, 335–340
Introduction
Bees have been living on Earth for almost 40 millions of years.
Traces of honey were found on the coasts of Jutland and Sambia inside
the amber approximately dated for 30 mln of years. During New Stone
age or neolithic period, honey played important role for humans as
a food and therapeutic agent [1, 2]. The honey was found even in
pharaoh tombs as one of the burial goods, and the bee was worshipped
in ancient Egypt. The especially surprising is the fact that the found
honey was so well preserved that it was still suitable for consumption.
During the reign of Queen Hatshepsut, one of the best pharaohs, the
emblem of Upper Egypt was honey bee [3].
According to the Directive of European Union 2001/110/EC the
honey is is a food product produced by bees from the nectar of plants
or from secretions of living parts of plants or excretions of plant-sucking
insects on the living parts of plants, which the bees collect in beehives
and transform it by combining with specific substances of their own,
store and leave in honeycombs to ripen and mature. This food product
can be either liquid, viscous or crystallized.
The annual honey production in the world amounts to 1.4 mln
tons (FAO, 2005), which constitutes less than 1% of total sugar
production. The honey is used mostly in nutrition, medicine and
cosmetic. The use of honey comes not only from its taste and
nutritious qualities, but mostly due to the fact that it is a readily
available source of energy, macro- and microelements and at the
same time it exhibits antibacterial and antioxidative activity [4]. Its
qualities allow to classify it as “minimally processed” food – the
honey, apart from standardization, is not subjected to any other
technological processes.
The growing awareness of consumers and the development of
apitherapy causes the increase of the significance of varietal nectar
honeys – described by the name of the plant they are obtained
from (monofloral) in comparison to multifloral. Market surveys
prove that about 70% of Polish consumers prefer monofloral
varietal honeys. There is an increasing interest in Polish varietal
honeys, not only in Poland, but also in other EU countries because
Polish bee-keepers are famous for the production of high-quality
honeys. Unfortunately, the honey is also adulterated product,
and the adulteration is relatively often and not a new problem.
Therefore, it is very important to control honey quality – a standard
procedure in many countries worldwide. In Poland, there is no
established, consistent procedure imposing obligation of control
for all honey producers.
Many different methods are used for identification of honey
variety. Usually, those are tests of honey sensory qualities (taste,
scent, consistence, colour). One of the oldest and the most
commonly used methods is pollen method (melisopalinology)
involving microscopic quantitative and qualitative analysis of floral
pollen content in the honey [5].
Lately, there is a tendency to seek complementary analytic
methods, that could supplement microscopic pollen analysis in
determination of geographical and botanical origin of honey. The
research is currently conducted in three directions: (i) searching
for characteristic compounds (markers) for specific variety and
Corresponding author:
Dr Izabela JASICKA-MISIAK– Ph.D., e-mail: [email protected]
338 •
geographical origin of honey, (ii) creating chemical profiles for
particular class of natural products (usually for flavonoids or phenol
acids), that form a kind of „fingerprint” for indiviudal varietal honeys
or (iii) metabolical techniques are used for distinguishing varieties
and defining honey place of origin. Such studies are carried out
also in Opole.
Characteristic markets for unifloral honey varieties
The honey taste and aroma are main organoleptic qualities that
are play decisive role in consumer decision precess. Varietal honeys
differ from one another in terms of sensoric qualities, which are
shaped among others by volatile organic compounds. The honey
taste and aroma depends mostly on the content of essential oils.
Their components include more than 600 compounds of different
structures and only some of them, those with unique chemical
structure, might be used as markers for botanical and geographical
origin of honey [6, 7]. Moreover, the identification of particular
markers depends strongly on applied techniques of isolation and
composition analysis of these compounds. The good example
are limonene dioxide and ascaridole (Fig. 1) – substance which
high level is typical for Polish linden honeys (unpublished data).
They have been isolated from honey by means of extraction with
methylene chloride.
The essential substances usually originate from nectar collected
by bees, and this is also the case for limonene dioxide and ascaridole,
that have been also obtained by extraction from flowers of small-leaved
linden (Tilia cordata) using the same solvent.
The other example could be abscisic acid (plant phytohormone)
that is found in heather honeys in extremely high levels [8]. The
levels of this compound are different for different countries. And so,
the level of this compound for the honeys of New Zealand origin,
although high, is still significantly lower than for Portuguese or Polish
honeys [8÷10].
ascaridole limonene dioxide abcisic acid
Fig. 1. Chemical markers of linden and heather honey
The identification of individual compounds, which have unique
chemical structure and which therefore could be considered
as markers for particular varietal honeys collected in particular
countries, is a very difficult task due to the fact that their concentration
is usually low and they are hard to analyse [11]. Much better
results might be anticipated from creation of chemical profiles for
these honeys.
Chemical profiles of unifloral varietal honeys
The creation of chemical profiles of foodstuffs is a relatively new
method of their evaluation. In this case, the information is based not
on a single chemical compound, but on reciprocal qualitative relations
between compounds in compound mixture isolated using selected
technique. The classical tests involve identification of as many as
nr 4/2014 • tom 68
metabolites (so called heatmap) that correlates the type of metabolite
with its concentration for given honey sample [15]. These maps are
so similar to the system of product labelling by means of barcode and
might provide similar function for defining honey origin.
Summary
According to the inspections carried out in the last years by the
Trading Standards Inspection, adulterated honeys have appeared on
the domestic market – honeys produced using very sweet glucosefructose syrup made from starch [16]. According to unofficial
sources, it is known that there is a significant amount of this product
brought into our country, even though the domestic market offers
rather small amounts of foreign honey. Thus, there is a suspicion
that there might be cases of mixing domestic honey with imported
honey of inferior quality.
Therefore, searching for new methods of testing honey quality,
especially varietal honeys, is a challenge that might be met by chemical
analysis of honey composition.
Acknowledgements
The Authors like to thank Beekepers, Mr. Zdzislaw Zieniewicz and Tomasz
Strojny for showing them fascinating world of bees and bee products.
Literature
1.
2.
3.
4.
5.
Fig. 2. Chemical profile of four Polish honeys
The use of compounds commonly occurring in plant
environment as markers has proven that the differences in their
relative percentage are a good way to create metabolic profiles of
varietal honeys. The construction of such profiles for many honeys of
the same variety shows uncanny similarity and striking differences with
profiles of other varieties [8, 11].
Metabolomics
The concept to analyse “fingerprints” of particular honeys have
found its development in metabolomic tests (in case of food tests
even the term foodomics is used) These technique involves systematic
identification and determination of level of all metabolites and
xenobiotics present in analyzed sample. The metabolics is sometimes
defined as systematic testing of specific chemical markers [12]. For
honeys, it is a specified set of chemical compounds that represent
effect of bee and plant living conditions and environmental condition
on quality of honeys. Therefore, metabolomic tests allow to define
botanical and geographical origin of honeys.
These tests involve simultaneous measurement of all compounds
present in honey samples using NMR or chromatographic techniques.
However, the analysis of such large amount of data requires
application of specific statistical methods and is not straightforward.
The usefulness of this method has been proven by tests of American
[13] and Italian honeys [14]. The test of metabolome of several
varietal honeys using 1H NMR allow to create colour map of
nr 4/2014 • tom 68
6.
7.
8.
9.
10.
11.
12.
13.
14.
Crane, E.: The World History of Beekeeping and Honey Hunting. Taylor
and Francis Group, 1999.
Wilson, B.: The Hive: The story of Honeybee and Us. Thomas Dunne
Books, 2006.
Buchmann, S., Repplier, B. Letters from the Hive: An Intimate History of
Bees. Honey and Humankind, Bantam Books, 2006.
Bodganov, S., Jurendic, T. Sieber, R. Gallmann, P. Honey for nutrition and
health) a review. J. Am. Coll. Nutr. 2008, 27, 677.
Bogdanov, S., Lullmann, C., Mossel, B. L., D’Arcy, B. R., Russmann,
H., Vorwohl, G., Oddo, L., Sabatini, A. G., Marcazzan, G. L., Piro,
R., Flamini, C., Morlot, M., Lheretier, J., Borneck, R., Marioleas, P.,
Tsigouri, A., Kerkvliet, J., Ortiz, A., Ivanov, T., Vit, P.: Honey quality
and international regulatory standards: review by the International Honey
Commission. Bee World 1999, 80, 61.
Manyi-Loh, C. E., Ndip, R. N. Clarke, A. M.: Volatile Compounds in Honey:
A Review on Their Involvement in Aroma, Botanical Origin Determination
and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514.
Panseri, S., Manzo, A., Chiesa, L. M., Giorgi, A.: Melissopalynological
and Volatile Compounds Analysis of Buckwheat Honey from Different
Geographical Origins and Their Role in Botanical Determination. J. Chem.
2013, 904202.
Jasicka-Misiak, I.; Poliwoda, A.; Dereń, M.; Kafarski, P.: Phenolic
compounds and abscisic acid as potential markers for the floral origin of
two Polish unifloral honeys. Food Chem. 2012, 131, 1149.
Tan, S. T., Wilkins, A. L., Holland, P. T., & McGhie, T. K. (1989):
Extractives from New Zealand unifloral honeys. 2. Degraded carotenoids
and other substances from heather honey. J. Sci. Food Agricult., 1989,
37, 1217.
Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M., & Estevinho, L. M.
(2009): Antioxidant activity of Portuguese honey samples: Different
contributions of the entire honey and phenolic extract. Food Chem.,
2009, 114, 1438.
Kaškoniene, V., Venskutonis, P. R.: Floral Markers in Honey of Various
Botanical and Geographic Origins: A Review. Comprehens. Rev. Food Sci.
Food Saf. 2010, 9, 620.
Patti, G. J., Yanes, O., Siuzdak, G.: Innovation: Metabolomics: the apogee
of the omics trilogy. Nature Rev. Mol. Cell Biol. 2012, 13, 263.
Wilson, M. B., Spivak, M., Hegelman, A. D., Rendahl, A., Cohen, J. D.:
Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected
by Honey Bees. PLoS ONE 2013, 8, e77512.
Schievano, E., Stocchero, M., Morelato, E., Facchin, C., Mammi, S.:
An NMR-based metabolomic approach to identify the botanical origin of
honey. Metabolomics 2012, 8, 679.
• 339
50 Years of Chemistry in Opole
possible substances present in given mixture, and subsequently
compare their content in particular honey varieties. The profile
construction involves linking composition of isolated chemical
compound fractions with botanical and geographical origin of honey.
As an example are presented chemical profiles created for set of four
substances (myrecitin, chlorogenic acid, pinocembrin and abscisic
acid) contained in
four Polish honeys: rape, buckwheat, linded and heather honey
(unpublished data). The relative concentrations of these four compounds
have been compared on diagrams (Figure 2) for tested honeys and it
is clearly visible that the determination of their level provides an easy
way to distinguish botanical origin of honeys.
50 Years of Chemistry in Opole
15. Zieliński, Ł, Deja, S., Jasicka-Misiak, I., Kafarski, P.: Chemometrics as
a Tool of Origin Determination of Polish Monofloral and Multifloral Honey.
J. Agric. Food. Chem., in print.
16. Xue, X., Wang, Q., Li, Y., Wu, L., Chen. L., Zhao, J., Liu F.: 2-Acetylfuran3-Glucopyranoside as a Novel Marker for the Detection of Honey
Adulterated with Rice Syrup. J. Agric. Food Chem. 2013, 61, 7488.
* Izabela JASICKA-MISIAK – Ph.D., lecturer at the Division of Analytical
and Ecological Chemistry, Opole University. She completed Master studies
at the Institute of Chemistry, Opole University (1990÷1995) in the field
of chemistry, specialization, agro-biochemistry. She received the degree of
doctor of chemical sciences in the field of chemistry of natural products in
2005. Her main fields of interest are: isolation and identification of natural
substances from various matrices, as well as study of their biological activity
natural substances. For several years, she studies the content of chemical
markers in varietal honeys.
e-mail: [email protected]; phone: +48 77 452 71 15
Professor Paweł KAFARSKI – (Sc.D., Eng), professor at the Wroclaw
University of Technology and the Opole University. He held and holds many
academic functions, of which particularly important was his role as the President
of Polish Chemical Society. He has co-authored more than 300 publications.
These papers have been cited over 3590 times. His scientific interests include
design and synthesis of selected enzyme inhibitors of agrochemical and
medical importance and study of their activity, application of biocatalysis in
organic chemistry and synthesis of aminophosphonates and their derivatives
and study of their biological activity. He was awarded, amongst others, the
Jan Hanus medal by Czech Chemical Society and Wlodzimierz Trzebiatowski
medal by Senate of the Wroclaw University of Technology. He is especially
grateful to his two teachers – Zbigniew Czarnuch, Ph.D. (history teacher in
high school) and Professor Przemysław Mastalerz (academic mentor) – for
shaping his character.
e-mail: [email protected]; phone: +48 77 452 71 15
Z prasy światowej – innowacje: odkrycia, produkty
i technologie
From the world press - innovation: discoveries, products and technologies
Zamiana gazów odpadowych w energię
Firma Skotan SA uruchomiła na terenie kędzierzyńskich Azotów instalację badawczą energetycznego wykorzystania gazów odpadowych,
w tym pochodzącego z różnych procesów chemicznych odpadowego
wodoru. Eksperymentalny blok energetyczny o mocy ok. 1 MW wykorzystuje wodór i inne gazy palne ze znaczną energią spalania w procesie
zamiany na energię elektryczną. Rozwiązanie zastosowane w ZAK jest
w skali kraju unikatowe; pozwala zmniejszyć obciążenie dla środowiska
związane z produkcją chemiczną i koksowniczą przy jednoczesnym
zwiększeniu jej rentowności. Instalacja ma charakter badawczy, a jej
usytuowanie na terenie zakładów w Kędzierzynie pozwoli na rozszerzenie realizowanych prac badawczych i wypróbowanie technologii
w instalacjach przemysłu chemicznego. W przypadku wdrożenia technologii, ZAK będzie pierwszą firmą, w której rozwiązanie opracowane
przez Skotan znajdzie zastosowanie przemysłowe. W przyszłości potencjalnym odbiorcami technologii będą wszyscy producenci z branży
chemicznej oraz zakłady koksownicze. Prace nad budową instalacji
rozpoczęły się w czerwcu 2013 r., a ostateczny termin zakończenia
etapu badawczo-rozwojowego upływa z końcem br. Generalnym
wykonawcą eksperymentalnej instalacji była spółka West Technology
& Trading Polska, zaś dostawcą specjalnie zmodyfikowanych silników
spółka Horus-Energia. Całkowita wartość projektu badawczo-rozwojowego „Wykorzystanie odpadowego wodoru do celów energetycznych” wynosi 48,7 mln PLN, w tym aż 29,5 mln PLN pochodzi
z dofinansowania przyznanego przez PARP w ramach Programu Operacyjnego Innowacyjna Gospodarka. (kk)
(http://www.plastech.pl, 13.03.2014)
Bogatsza oferta BOPS
Spółka Basell Orlen Polyolefins Sprzedaż Sp. z o.o. (BOPS) wprowadziła do oferty handlowej skierowanej do polskiego odbiorcy najnowszy innowacyjny polipropylen – Moplen RP2473. Jest to wzorcowy
gatunek PP przeznaczony do wtrysku, łączący wysoką przezroczystość,
łatwość przetwórstwa oraz doskonałe właściwości organoleptyczne.
Moplen RP2473 był dotychczas wytwarzany w zachodnioeuropejskich
zakładach Grupy LyondellBasell, a niedawno jego produkcja została
340 •
uruchomiona również w Basell Orlen Polyolefins Sp. z o.o. w Płocku. Polipropylen Moplen RP2473 jest przeznaczony przede wszystkim do wytwarzania cienkościennych opakowań do przechowywania
produktów żywnościowych, jak np. pojemniki wielokrotnego użytku,
które muszą spełniać odpowiednie wymagania estetyczne i charakteryzować się niską emisją zapachu. Dobra płynność oraz użycie środka
nukleującego nowej generacji sprawiają, że Moplen RP2473 daje możliwość dodatkowej poprawy właściwości przetwórczych w zakresie
redukcji czasów cyklu, co pozwala na wzrost wydajności. (kk)
(http://www.plastech.pl, 17.03.2014)
Gazy ultra czyste
W zastosowaniach laboratoryjnych bardzo istotny jest dostęp
do gamy ultra czystych gazów specjalnych oraz mieszanek gazowych ściśle odpowiadających określonym potrzebom. Najpopularniejszą metodą analityczną, stosowaną w laboratoriach przemysłowych oraz laboratoriach komercyjnych, jest chromatografia gazowa
pozwalająca analizować złożone mieszaniny związków chemicznych
i oceniać ich czystość. W metodzie tej funkcję fazy nośnej pełnią
gazy ultra czyste: hel, azot, wodór lub argon. W chromatografii gazowej czystość gazów jest niezwykle ważna, gdyż zanieczyszczenia
krytyczne występujące w gazie nośnym mogą między innymi zniekształcać otrzymywane wyniki analiz oraz powodować uszkodzenia
detektorów i kolumny chromatograficznej.
Opatentowana przez Air Products technologia BIP® jest unikalną
metodą oczyszczania gazów dzięki połączeniu w butli zarówno specjalnie
zaprojektowanego zaworu, jak i układu filtrującego. System oczyszcza gaz
pod wysokim ciśnieniem, dając w efekcie możliwie najniższy poziom zanieczyszczeń krytycznych. Jednokierunkowy zawór chroni filtr przed zanieczyszczeniami z zewnątrz utrzymując równocześnie odpowiedni poziom
ciśnienia w butli. Technologia BIP® niezwykle ułatwia pracę analitykom
oraz wydłuża czas użytkowania kolumny dzięki wydatnemu zmniejszeniu
ryzyka jej uszkodzenia przez zanieczyszczenia w gazie nośnym, a jednocześnie zapewnia spójność otrzymywanych wyników. (kk)
(http://biotechnologia.pl, 21.03.2014)
Dokończenie na stronie 350
nr 4/2014 • tom 68

Podobne dokumenty