filtracja_styczna

Transkrypt

filtracja_styczna
10. ODSALANIE I ZATĘŻANIE ROZTWORU BIAŁKA W PROCESIE
FILTRACJI STYCZNEJ
Opracował: Wojciech Piątkowski
I. WPROWADZENIE
Filtracja jest metodą oczyszczania mieszanin ciekłych i zawiesin, która wykorzystuje
różnice w wielkości rozdzielanych cząstek. Używana jest szczególnie w operacjach
oddzielania substancji stałych od rozpuszczalnika jak również do separacji składników
mieszanin rozpuszczonych w roztworze oraz do wymiany rozpuszczalnika w roztworze danej
substancji. W tym procesie stosowane są różnego rodzaju membrany (bibuły, tkaniny,
polimery itp.), które posiadają pory o odpowiedniej wielkości. Gdy mieszanina poddawana
filtracji napotyka na drodze swojego przepływu membranę, cząstki, które są mniejsze od
porów membrany przechodzą przez nią (np. cząsteczki rozpuszczalnika) zaś cząstki, które są
większe zostają zatrzymane na membranie. Proces może być prowadzony przy przepływie
stycznym lub prostopadłym do membrany.
I.1. Filtracja styczna
W filtracji stycznej (ang. TFF – Tangential Flow Filtration) przepływ strumienia
zasilającego odbywa się równolegle do powierzchni membrany. Schemat procesu
przedstawiono na rys. 1. Takie rozwiązanie, w porównaniu z przepływem prostopadłym,
powoduje mniejsze ryzyko zatykania porów membrany przez filtrowane cząstki. Umożliwia
to prowadzenie procesu bez konieczności okresowej zmiany kierunku przepływu, jak również
nie powoduje szybkiego wzrostu oporów przepływu. Wadą tego procesu jest stosunkowo
niska prędkość przepływu strumienia filtratu. Można ją poprawić przez zwiększenie parcia na
membranę, lecz jest to ograniczone wytrzymałością ciśnieniową membrany.
Dzięki zastosowaniu przepływu stycznego cząstki osiadające na membranie są porywane
przez strumień retentatu i membrana ulega samooczyszczaniu. Ma to wpływ na możliwy czas
ciągłej pracy membrany charakteryzowany przez ilość przefiltrowanej cieczy jak na rys. 2.
Małe nachylenie krzywej na prezentowanym wykresie świadczy o możliwości dłużej pracy
membrany.
83
Filtrat/Permeat
Zasilanie
Retentat
Przepływ filtratu/permeatu
Rys. 1. Schemat aparatu do filtracji stycznej wraz z kierunkami przepływu poszczególnych
strumieni [1].
Przetworzona objętość
Filtrat/Permeat
Rys. 2. Po lewej: przekrój przez membranę w czasie przepływu stycznego. Po prawej: spadek
przepływu filtratu wywołany zmniejszeniem sprawności membrany w czasie procesu [1].
I.2. Zatężanie rozcieńczonych roztworów
W procesie zatężania rozcieńczonych roztworów zwiększamy stężenie głównego
składnika próbki. Wykorzystywana przy tym membrana musi posiadać pory odpowiednio
mniejsze od rozmiarów składnika kluczowego tak, aby został on zatrzymany w strumieniu
84
retentatu. Cząstki mniejsze od porów membrany np. cząsteczki rozpuszczalnika próbki,
przechodzą przez membranę i są obecne w strumieniu filtratu – patrz rys. 3.
Rys. 3. Zatężanie próbki w procesie ultrafiltracji [2].
Zatężanie prowadzi się do osiągnięcia żądanych wartości stężenia składnika kluczowego
w próbce. Należy przy tym zwrócić uwagę na możliwość wystąpienia krystalizacji
w zatężanym roztworze. Również wzrost lepkości roztworu jest niepożądany i może
powodować znaczny wzrost ciśnienia w układzie i utrudnić przechodzenie roztworu przez
membranę. Przy wysokich oporach przepływu proces musi być prowadzony przy mniejszej
prędkości przepływu, aby nie przekroczyć wytrzymałości membrany.
I.3. Odsalanie roztworów – diafiltracja
W procesie diafiltracji roztworów można zmniejszyć siłę jonową filtrowanego roztworu
(odsalanie) lub wymienić rozpuszczalnik na inny (np. na bufor o innym pH).
Proces polega na ciągłym lub okresowym dodawaniu do filtrowanego roztworu
odpowiedniego rozpuszczalnika: wody, buforu lub roztworu soli. W tym samym czasie
odbierany jest filtrat, w którym znajduje się rozpuszczalnik pierwotny. Retentat zawierający
składnik kluczowy jest zawracany do zbiornika zasilającego. Dla procesu okresowego po
odebraniu określonej objętości filtratu („DV” na rys. 4) dodawana jest kolejna porcja
85
rozpuszczalnika. Kilkukrotny dodatek nowego rozpuszczalnika sprawia, że stopniowo
zastępuje on rozpuszczalnik pierwotny [3].
Rys. 4. Schemat procesu diafiltracji, czyli następujących po sobie etapów rozcieńczania
i zatężania próbki z użyciem membrany, DV – objętość diafiltracji (startowa Vpróbki) [3].
II. CEL ĆWICZENIA
Celem ćwiczenia jest przedstawienie zastosowania filtracji stycznej z użyciem membran
do odsolenia i zatężenia roztworu białka w skali semi–preparatywnej.
III. CZĘŚĆ DOŚWIADCZALNA
Ćwiczenie obejmuje zapoznanie się z obsługą aparatu filtracyjnego, przeprowadzenie
diafiltracji roztworu białka oraz analizę próbek po procesie.
III.1. Aparatura doświadczalna i odczynniki
Ćwiczenie wykonywane jest przy pomocy aparatu do filtracji stycznej Minim II (firmy
Pall Life Sciences) schematycznie przedstawionym na rys. 5. Składa się on z:

jednostki sterującej z panelem kontrolnym na ekranie LCD,

pompy perystaltycznej o przepływie 6 – 100 rpm (ok. 12 – 200 cm3/min),

membrany Minimate (firmy Pall Life Sciences), maksymalne ciśnienie pracy 4 bar,

trzech mierników ciśnienia i jednego miernika temperatury,

zaworu regulującego ciśnienie w układzie przez zmianę natężenia przepływu retentatu,
86

kompletu rurek z trójdrożnymi zaworami,

zbiornika na filtrowany roztwór o pojemności 500 cm3 z mieszadłem magnetycznym.
Rys. 5. Schemat aparatury do filtracji z użyciem membrany [1].
W ćwiczeniu używane są następujące odczynniki:

50 mM bufor fosforanowy pH=7 sporządzony przez rozpuszczenie odpowiedniej naważki
fosforanu disodu w wodzie i doprowadzenie kwasem fosforowym do pH=7,

1,7 M siarczan amonu rozpuszczony w buforze fosforanowym surowym,

badane białko np. hemoglobina z krwi bydlęcej, czystość 90%, (firmy Fluka).
III.2. Metodyka badań
Zbadanie przepuszczalności wody przez membranę (NWP) (na podst. [4])
Mierzymy objętościowe natężenie przepływu filtratu ( ̇ , cm3/min) dla odpowiedniego
ciśnienia transmembranowego (TMP bar) przy zamkniętym zaworze na retentacie.
Uwaga! Nie wolno przekroczyć maksymalnego ciśnienia pracy dla danej membrany (4 bar).
̇
=
∙ 600,
∙
, A – powierzchnia pracująca membrany: 50 cm2.
87
Zbadanie objętości całkowitej aparatury
Mierzymy objętość Vc cieczy (wody) zawartej w rurkach i w membranie. Odbieramy
ciecz do cylindra miarowego ze strumienia retentatu (przy zamkniętym filtracie) i przy
opróżnionym zbiorniku zasilającym.
Wypełnienie aparatu buforem
Przed rozpoczęciem filtracji wypełniamy aparat (rurki i membranę) odpowiednim
roztworem, który zapewni stabilność i rozpuszczalność składnika kluczowego. Dla białek
może być to bufor fosforanowy pH=7.
Sporządzenie roztworu białka
Sporządzamy pierwotny roztwór białka:
Rozpuszczalnik: 20% (V/V) roztwór soli 1,7 M (NH4)2SO4 w buforze pH=7. Rozpuszczamy
odpowiednią naważkę białka w zadanej objętości rozpuszczalnika.
Proces ultrafiltracji

Zatężanie
Wlewamy roztwór białka do zbiornika. Przy zamkniętym filtracie ustawiamy zawór na
retentacie na wylot z układu i włączamy pompę przy ustalonym przepływie. Spuszczamy
objętość równą Vc i natychmiast przełączamy zawór na retentacie tak, aby jego strumień był
zawracany do zbiornika. Otwieramy strumień filtratu i zbieramy go do cylindra miarowego.
Obserwując wskazania ciśnienia (max 4 bar) przykręcamy zacisk na retentacie w celu
zwiększenia przepływu filtratu. Proces prowadzimy do uzyskania kilka razy mniejszej
objętości w zbiorniku niż na początku (krotność zatężenia). Cały czas monitorujemy
wskazania ciśnienia w układzie.

Odsalanie
Po odebraniu określonej objętości filtratu wlewamy taką samą objętość buforu pH=7 do
zbiornika. Proces prowadzimy dalej do uzyskania wcześniejszego zatężenia (tej samej
objętości filtratu). Powtarzamy operacje dodawania buforu i zatężania aż do uzyskania
żądanego stopnia odsolenia.

Zakończenie procesu
W końcowej fazie diafiltracji w celu uzyskania zatężonego produktu nie dodajemy już
nowej porcji buforu. Zamykamy zawór filtratu i prowadzimy recykl samego retentatu przez
kilka minut. Następnie odbieramy produkt do momentu spuszczenia prawie całej zawartości
88
zbiornika. Dolewamy do zbiornika objętość buforu równą całkowitej objętości aparatury (Vc)
i przepuszczamy przez system odbierając retentat. Płuczemy aparaturę w buforze a następnie
w wodzie. Po zakończeniu pracy wypełniamy układ 20% etanolem.
Zbadanie próbek białka
Otrzymane próbki zatężonego i odsolonego białka oznaczamy na detektorach
chromatografu stosując przepływ „przez bypass”, tzn. przez, krótką i cienką kapilarę, która
kieruje badaną próbkę bezpośrednio na detektor UV i detektor konduktometryczny.
Wskazania detektorów w funkcji czasu tworzą piki odpowiednio absorbancji i przewodnictwa
badanej próbki.
Białka silnie absorbują promieniowanie UV o długości fali 280 nm. Stąd pole
powierzchni obszaru pod pikiem absorbancji badanej próbki charakteryzuje masę zawartego
w niej białka.
Stężenie białka w analizowanych roztworach obliczane jest przez porównanie pól piku
badanego i piku wzorca, którym jest roztwór o znanym stężeniu danego białka w buforze.
Przewodnictwo badanych próbek jest mierzone przez detektor konduktometryczny
chromatografu. Pole pod pikiem przewodnictwa dla danej próbki charakteryzuje zawarte
w niej stężenie soli. Stopień odsolenia białka określamy przez porównanie piku
przewodnictwo próbki po filtracji z pikiem przewodnictwa dla roztworu białka przed filtracją.
Z uzyskanych pików chromatograficznych obliczamy stężenie białka oraz stopień jego
odsolenia po procesie diafiltracji.
IV. OPRACOWANIE I DYSKUSJA WYNIKÓW POMIARÓW
Otrzymane wyniki w postaci chromatogramów należy odpowiednio opracować tj.
skorygować linię bazową, usunąć zbędne dane, czyli wskazania detektora oscylujące wokół
poziomu linii bazowej oraz opisać osie i krzywe (rys. 6). Dla każdego piku należy policzyć
pole powierzchni pod krzywą i na tej podstawie, porównując ze wzorcem, określić stężenie
białka i zawartość soli w badanych próbkach.
89
Rys. 6. Przykładowy wykres porównawczy absorbancji białka przed i po procesie.
Wyniki obliczeń można przedstawić w formie tabeli:
Badana próbka Pole powierzchni pod pikiem Stężenie białka po przeliczeniu, g/dm3
wzorzec
surówka
koncentrat
W dyskusji wyników należy odnieść się do uzyskanych wartości stężeń i na tej podstawie
ocenić
wyniki
osiągnięte
w
doświadczeniu.
Można
też
podać
wady
i
zalety
przeprowadzonego procesu, zamieścić własne spostrzeżenia i uwagi.
Należy zwrócić szczególną uwagę na przyczyny ewentualnych rozbieżności wyników
z planem doświadczenia. Można również podać propozycje zmian, które poprawią przebieg
doświadczenia w przyszłości.
V. LITERATURA
[1] “Scientific & Technical Report, Introduction to Tangential Flow Filtration for
Laboratory and Process Development Applications”, Larry Schwartz, Kevin Seeley, Pall Life
Sciences, PN 33213
[2] “Scientific & Technical Report, Diafiltration: A Fast, Efficient Method for Desalting,
or Buffer Exchange of Biological Samples”, Larry Schwartz, Pall Life Sciences, PN 33289
[3] “Scientific & Technical Report, Desalting and Buffer Exchange by Dialysis, Gel Filtration
or Diafiltration”, Larry Schwartz, Pall Life Sciences, PN 33290
[4] “Care & Use Procedure, Minimate™ TFF Capsule”, Pall Life Sciences, PN 88227
90

Podobne dokumenty